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Abstract

Anticontrol and synchronization of chaos for an autonomous rotational machine system with a hexagonal
centrifugal governor are studied in the paper. Two different procedures for the design of the controller are pro-
posed to anticontrol the governor system effectively. Finally, five methods are studied for chaos synchronization.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Anticontrol and synchronization of chaos have received great attention for many research
activities in recent years [1-7]. Sometimes, chaos is not only useful but actually important. For
example, chaos is desirable in many applications of liquid mixing while the required energy is
minimized. For this purpose, making a non-chaotic dynamical system chaotic is called
“anticontrol of chaos”. Besides, secure communication and information processing are proposed
as potential applications of synchronization of chaotic systems.

In previous researches, most of them were concentrated to several well-known systems, such as
Lorenz system, Rossler system and Chua’s circuits system, etc. In this paper, an autonomous
hexagonal centrifugal governor system is studied. It plays an important role in many rotational
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machines such as diesel engine, steam engine and so on. Two different procedures, linear and
nonlinear controllers with certain feedback gain are proposed to anticontrol, i.e. to chaotify, the
governor system. Four methods, linear feedback, nonlinear feedback, adaptive feedback,
backstepping design and parameter evaluation from time sequences approaches are also discussed
for synchronization of two coupled chaotic system.

2. Equations of motion

The rotational machine with centrifugal governor is depicted in Fig. 1. Some basic assumptions
for the system are
(1) neglecting the mass of the rods and the sleeve;
(2) viscous damping in rod bearing of the fly-ball is presented by damping constant c.

From Fig. 1, the kinetic and potential energies of the system are written as follows:

T=2x {%m {(r + 1 sin ¢)*n” + 12452} } = m*(r + 1 sin$)* + mlz(}bz,

V = 2kI’(1 — cos ¢)* + 2mgl(1 — cos ),

where /, m, r and ¢ represent the length of the rod, the mass of fly ball, the distance between the
rotational axis and the suspension joint, and the angle between the rotational axis and the rod. It
is easy to obtain the Lagrangian

L=T—V =mp(r+1 sing)* +mPd" — 2kIP(1 — cos ¢)* — 2mgl(1 — cos ¢).
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Fig. 1. Physical model of the system.
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Then using Lagrange equation, the equation of motion for the governor can be derived as
follows:

2 [mlzé/; — mrly? cos ¢ — 2k +my?)? sin ¢ cos ¢ + Qkl + mg)l sing| = —chp, (2.1

where c¢ is the damping coefficient.
For the rotational machine the net torque is the difference between the torque Q produced by
the engine and the load torque Q;, which is available for angular acceleration. That is,

dw
JE =0-0;, (2.2)

where J is the moment of inertia of the machine. As the angle ¢ varies, the position of control valve
which admits the fuel is also varied. The dynamical equation (2.2) can be written in the form [8]

J=ycos¢p — f, (2.3)

where y >0 is a proportionality constant and f is an equivalent torque of the load. Eq. (2.3) is the
second differential equation of motion for the system.

Usually, the governor is geared directly to the output shaft such that its speed of rotation is
proportional to the engine speed, i.e. # = nw. The operation of the fly-ball governor can be briefly
described as follows. At first, set the speed of engine at wy. If the speed of engine drops down, the
centrifugal force acting on the fly-ball would decrease, thus the control valve of fuel will open
wider. When more fuel is supplied, the speed of the engine increases until equilibrium is again
reached. Similarly, if the speed rises up, the fuel supply is reduced and the speed decreases until wq
is recovered.

By changing the time scale © = Q,,¢z, Eqgs. (2.1) and (2.3) can be written in nondimensional form

¢ = o,
@ = dw? cos ¢ + (e + pw?)sin ¢ cos ¢ — sin ¢ — bo,
@ =gqcos¢p —F, (2.4)
where
Y p n*mr 2kl
1 JQ,’ JQ,’ 2kl + mg’ ¢ 2kl + mg’

n*ml ¢ 2kl + mg
P=5T > b=——F5—, Q,=\/—7F—,
2kl + myg 2mi*Q, ml

and the dot presented the derivative with respect to 7, ¢ is d¢/dz. Hence, the dynamics of the
system of rotational machine with centrifugal governor is described by a three-dimensional
autonomous system. Denoting ¢ = x, ¢ = y,w = z, Eq. (2.4) is rewritten in the form

x =y,

. 2 1 2\ - .

y =dz*cosx + §(e + pz*) sin 2x — sin x — by,

z=g¢gcosx—F. (2.95)
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3. Anticontrol of chaos

Anticontrol of chaos is making a nonchaotic dynamical system chaotic. This implies that the
regular behaviors will be destroyed and replaced by chaotic behavior. In the real world,
chaotic behavior is important. Examples include liquid mixing, human heartbeat regulations,
resonance prevention in mechanical systems and secure communication [3]. In this section,
Egs. (2.5) are modified by the addition of a linear and a nonlinear feedbacks to chaotify the
system, respectively.

3.1. Adding a linear feedback

The state equations of the centrifugal governor system with a linear feedback controller are
represented as

XxX=y+ax,
y = dz? cosx—i—%(e —I—pzz) sin2x —sinx — by + a»y,
z=gcosx — F + aszz. (3.1

Here a,, a,, az are feedback gains and the values of parameters d, e, p, ¢, F, b are given as 0.008,
0.8, 0.04, 3, 2, 0.4, respectively.

By numerical integration method, the phase portrait of the system, Eq. (3.1), is plotted in Fig. 2
for a; =a,=a3=0. Clearly, the motion is periodic. But Eq. (3.1) exhibits both strange attractors
and limit cycles for certain choices of a;, a, and a;. For example, when a;=0.2, a,=-0.1,
az;=—0.1, one can observe a chaotic attractor as depicted in Fig. 3. By simulation results, for
certain interval of parameters, the maximum Lypunov exponent of the system is positive, i.e., the
system exhibits the strange attractor, we defined that chaotic region. Inspired by the consideration
of chaotification, we found regions of specific feedback gains for which this system is chaotic as
shown in Fig. 4.

3.2. Adding a nonlinear feedback

For our purpose, the nonlinear feedback controller, ex|x]|, is added to the right-hand side of the
first equation of Eq. (2.5). Then the system equations are represented as

X =y 4+ ex|x|,

¥ = dz* cos x + 4 (e + pz*) sin 2x — sinx — by,

z=gqcosx—F. (3.2)
System (3.2) is obtained for which certain value of ¢ (for example, 0.008 <&<0.032) has strange

attractor by numerical solution. As illustrated in Fig. 5, chaotic motion is observed from system
(3.2) with ¢ = 0.01.
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Fig. 2. Phase portrait of uncontrolled system (a; =a,=a3z=0).

Fig. 3. Phase portrait of controlled system with a;=0.2, a,=-0.1, a3=-0.1.
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Fig. 4. Parameter diagram of (a) a, versus a3 for a;=0.2, (b) a, versus a; for a;=—0.1.

4. Chaos synchronization

A characteristic property of chaotic dynamics is the sensitive dependence on initial condition.
Different initial conditions may cause entirely different trajectories for the system. However,
Pecora and Carroll [4] showed that synchronization can be achieved for the chaotic systems. This
interest phenomenon plays a significant role in the chaotic dynamics of communication signals
and may be applied to the real-time recovery of signals that have been masked in a strange
attractor and thus to encode communication. Other applications of synchronization of chaos also
have expectative potential [2]. A natural way to develop synchronization for chaotic systems is
through system decomposition. Chaotic system (3.1) is decomposed into two subsystems as
follows:

Drive system:

X1 =y, +0.2xy,

¥ = dzi cos x1 +1(e + pz7) sin2x; — sinx; — by, — 0.1y,

zp=¢qcosx; — F—0.1z,. 4.1)
Response system:

X2 = py + 0.2x2,

¥, = dz3cos xp + (e + pz3) sin 2x; — sinx; — by, — 0.1y,

Zy=¢qcosxy; — F —0.1z,. 4.2)

In the following, linear feedback, nonlinear feedback, adaptive feedback and backstepping
design approaches are discussed.
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Fig. 5. Phase portrait of controlled system with ¢=0.01.

4.1. Linear feedback synchronization

In this approach, the error between the output of the identical drive and response is used as the
control signal. For the unidirectional case, where only first equation of response system (4.2) is
combined with a linear feedback, while the equations of drive remain the same [4]:

Xz =) + 0.2X2 + kl(xl — Xz),
Py = dz% cos X + %(e —I—pz%) sin 2x; — sinx; — by, — 0.1y,
22 = ¢COSX) — F — 0.122, (43)

where k; is the constant feedback gain. With k;=0.2, the synchronization errors, ¢, = x, —
X1, €, =Yy, — ), and e. = z, — z;, are shown in Fig. 6. In this case, k; =0.15 is a critical value,
below which no complete synchronization occurs.

4.2. Nonlinear feedback synchronization

The chaotic response system (4.2) by adding nonlinear coupling term are written as
X2 =y, + 0.2x2 + ka sin(x; — x2),
$ = dz3 c0s x5 + (e + pz3) sin 2x; — sinxy — by, — 0.1y,
Zy=¢qcosxy; — F —0.1z,. 4.4)
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Fig. 6. Chaos synchronization via a linear feedback with k;=0.2.

With k,=0.2, the synchronization errors are shown in Fig. 7. In this case, k» =0.15 is a critical
value, below which no completely synchronization occurs.

4.3. Adaptive feedback synchronization

Some adaptive control strategies can direct a chaotic trajectory to stable orbits but not unstable
ones. However, it is possible to combine the feedback method for chaos synchronization [2].
For response system (4.2), the linear feedback (4.3) is replaced by

X2 =y, + 0.2x2 + k3(x; — x2),
¥, = dz3cos xp + (e + pz3) sin 2 — sinxy — by, — 0.1y,
Zy=qgcosxy; — F —0.1z;,
g =ka(y; — »). (4.5)

where the system parameter ¢ is used as an adjustable function for adaptation, and k4 is a constant
adaptive control gain to be determined in the design. Using this method, the response can be
synchronized by the chaotic drive, as shown in Fig. 8.

4.4. Backstepping design

Backstepping design is a recursive procedure that combines the choice of a Lyapunov function
for selecting a proper controller in chaos synchronization [9]. The drive system is expressed as
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Fig. 7. Chaos synchronization via a nonlinear feedback with k,=0.2.

Eq. (4.1) and a controller u is added to the right-hand side of the second equation of response
system (4.2). Let the state errors between the response system and drive system be

ex=X)— X[, e =Y,—), € =2I—ZI|; (4.6)
then error system can be derived as
éy = e, +0.2e,,
éy, =d |cos xz(ei + 2z1e.) +§(e)2c + 2x1ey)| + (e — ey

—|—§ [sin 2x2(e§ + 2z1e;) + ZZ%ex] —(b+0.1)e, +u + h.o.t.,

¢, = gex —0.le.. 4.7)
If system (4.7) did not have u, it would have an equilibrium point (0,0,0). The problem of
synchronization between drive and response system can be transformed into how to find a control
law u for stabilizing the error variables of system (4.7) at the origin.
First we consider the stability of system as follows:

e, = %’ex —0.le., (4.8)
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Fig. 8. Chaos synchronization via adaptive feedback with k3=0.5 and k4,=0.2.

where e, is regarded as a controller and it makes system (4.8) asymptotically stable. Choose
Lyapunov function V(e,) = ¢?/2. The derivative of V; is

V= —0.1¢% + gezex. 4.9)

Assume controller e, = «;(e;) and o (e;) = 0, then
Vi=-0.1e*<0 (4.10)

makes system (4.8) asymptotically stable. Function o;(e;) is an estimative function when e, is
considered as a controller. The error between e, and «;(e;) is

wy = ey — oq(es). (4.11)
Study (e, w») system

e, = ng —0.1e,,

Wy = e+ 0.2w,. (4.12)

Consider e, = ay(e-, w>) as a controller in system (4.12). Choose Lyapunov function V5(e., ws) =
Vi(e;) + w3/2. The derivative of V, is

Vy = —0.1¢2 + 0203 + ngez + wae,. (4.13)
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If oy(ez, wp) = —Ze. — wy, then
Vy=—0.1¢ — 0.8w3 <0 (4.14)
makes system (4.12) asymptotically stable. Define the error variable ws as

w3 = e, — da(e-, wy). (4.15)

Study full dimension (e, wp, w3) system

= %Wz —0.1e,,

Wo = wz + oy + 02wy,

é

2
w3 =d |cos xz(ef + 2z1e;) + %‘(wg + 2x1w2)} +(e— Dwy — (b4 0.1) (w3 + a3)

. d
+§ [sm 2x2(e§ 4+ 2z1e;) + 2Z%W2] — % +u+ h.o.t., (4.16)
where
% =_1 [Q Wy — O.Ie-] — (w3 + o+ 0.2w)).
d¢ 212 -

Choose Lyapunov function Vi(e,, wa, w3) = Va(es, wa) + w% /2. The derivative of V3 is

V3= — O.Ieﬁ — O.8w§ + ws [22162(61 COS X7 —i—%sin 2x,) 4+ ewy
—(b+0.1)(w3 + ) + dTZ%(wg + 2x1Wy) + pziwy — % + u} + h.o.t. (4.17)
Let
u=(0b+0.1)w, —2ze. (q COS X7 +§ sin 2x2> —ews
- dTZ% (W% + 2x1w3) —pziwy + %
then

V3= —0.1¢Z — 0.8w3 — (b + 0.1)w3 + h.o.t.

is quadric negative definite. Whereas x;, z; and x, are bounded, we can conclude that the equilibrium
point (0,0,0) of error system (4.7) is locally asymptotically stable. For proper initial errors
between drive and response systems, the initial errors will converge to zero and synchroniza-
tion between two chaotic subsystems will be achieved. The numerical results with initial
condition (x;(0) = 1.42, »,(0)=-2.1, z;(0)=5.55 x0)=14, »,(0)=-2, z(0)=5.5)
are shown in Fig. 9.
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4.5. Parameter evaluation from time sequences

In this section, we study another method to estimate the parameter of chaotic system by a
random optimization method for chaos synchronization [10]. For system (4.3), ¢ is the unknown
parameter and k, is a coupling constant. The difference of the two time sequences is calculated as

T
U=/IM—MFM
0

the integral time 7 is larger than a typical period of the chaotic oscillation in the governor system
and the parameter ¢ is randomly modified as

qd=q+¢

where ( is a random number. We can obtain a time sequence x5(¢) by numerical simulation of Eq.
(4.3) with the modified parameter ¢'. Then the difference of the two time sequences is calculated as

T
U = / Xy — x| dt.
0

If the difference U’ is smaller than U, the parameter is changed from ¢ to ¢'. On the other hand,
if the difference U’ is larger than U, the parameter is unchanged and kept to be ¢. The obtained
parameter value is expected to be the desired parameter until the difference U becomes zero, i.c.,
complete chaos synchronization is achieved.
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Fig. 9. Chaos synchronization via backstepping design.
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Fig. 10 displays the minimum value of U with respect to the coupling constant k. The
numerical simulation shows that the complete chaos synchronization x,(¢) = x;(¢#) occurs for
k1>0.15. This result is the same as that in Section 4.1. The difference U as a function of the
parameter ¢ for k; =0.2 is shown in Fig. 11. The complete chaos synchronization is attained when
the value of U takes a minimum value 0 at ¢ = 3. Time evolution of the parameter ¢ by the random
optimization process is shown in Fig. 12.
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5. Conclusions

The problems of anticontrol and synchronization of chaos for an autonomous rotational
machine system with a hexagonal centrifugal governor has been discussed in this paper. For
anticontrol of chaos, two different procedures to design the controller have been presented. The
periodic motion of the system disappeared and was replaced by chaotic motion effectively by
adding a linear and a nonlinear feedback term, respectively.

Synchronization of two chaotic oscillators is also studied in this paper. For two identical
chaotic systems, increase of coupling strength leads to the occurrence of complete synchroniza-
tion. Chaos synchronization of the autonomous governor system has been presented by adding
linear feedback term, adding sinusoidal term and adaptive feedback methods. Chaos
synchronization is also attained by a recursive procedure, backstepping design that combines
the choice of a Lyapunov function for selecting a proper controller. Finally, the parameter of
chaotic system is estimated from time sequences for chaos synchronization is studied. In this
paper, the theoretical study of the governor system for anticontrol and synchronization of chaos
had been proposed. The knowledge of anticontrol tells us the various conditions for steadily
running chaotic process, prevent it from going into some catastrophic event that is known to
occur whenever the chaotic orbit wanders into some particular regions of state space. As for
synchronization, our study affords a more complex model for secure communication than the
Lorenz system and Réssler system to obtain better security.
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