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Abstract

Synchronization of chaos for a two-degree-of-freedom heavy symmetric gyroscope
system are studied in this paper. Because of the nonlinear terms of the system, the
system exhibits both regular and chaotic motions. By Lyapunov stability theory with
control terms, by adaptive control and by random optimization method, the synchro-
nization of two identical systems and tracking of the parameter of the systems are
studied.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A lot of researches have shown that chaotic phenomena are observed in
many physical systems that possess nonlinearity [1,2]. Chaotic motions also
occur in many nonlinear control systems.

Most of physical systems in nature are nonlinear and can be described by the
nonlinear equations of motion which in general cannot be linearized. So the
studies of nonlinear systems spread quickly today. For the nonlinear system,
the study of the types of system behavior, the effects to the behavior caused by
different parameters and initial conditions, the behavior analysis of the system,
consist of the major tasks. Besides, we are also interested in the understanding
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of the complicated phenomena arised from nonlinearity. The central charac-
teristics are that a process like randomization happens in the deterministic
system and small differences in the system parameters or initial conditions
produce great ones in the final phenomena. The unpredictable and irregular
motions of many nonlinear systems have been labeled “chaotic”. By applying
various numerical results, such as bifurcation, phase portraits, time history
analysis, the behavior of the chaotic motion are presented. A large number of
studies on the chaotic behavior have been reached up to now. First, the gov-
erning equations of motion, the system model and differential equations of
motion will be formulated.

Synchronization of chaos for a two-degree-of-freedom heavy symmetric
gyroscope system are studied in this paper. By Lyapunov stability theory with
control terms, by adaptive control and by random optimization method, the
synchronization of two identical systems and tracking of the parameter of the
systems are studied.

2. Equations of motion
The schematic diagram of a heavy symmetric gyroscope mounted on a

vibrating base is shown in Fig. 1. The motion of this physical system can be
described by Euler’s angles 0, ¢ and ¢. The vibration of the base can be de-
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Fig. 1. A schematic diagram of a heavy symmetric gyroscope.
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scribed as multiple harmonic motion Y}, 4, sinayr. Let x =0, y = 0 and
z = ¢, the state equations of the system are described by [3]:

xX=y
— (By—Bgcosx)(Bo—Py cosx) Mgl Me . . )
- Psin’ x I Cy+ 55 sinx 75 D i Ax sin oyt sinx
R By
F= — 2c_osx /q_;}
simx Iy sinx

(2.1)

where /;, I5: the polar and equatorial moments of inertia of the symmetric
gyroscope, Mg: the gravity force, /: the distance between the center of gravity
and O.

We set the parameters 8, =2, f, =5, 1 =1, Mg=4, [ =0.25, C=0.5,
o =1, w, =2, w3 =3, o :O(k>3),A1 =A,=A3=---= A4, = A.

3. Chaos synchronization for systems with unknown parameter

We investigate two third-order heavy symmetric gyroscope systems in this
section. Both the systems have the same form and both the parameters are
unknown. The drive system is described as Eq. (2.1). And the system (2.1) in
which only first term is considered for the Fourier series and we set 4; = 4.
Eq. (2.1) becomes Eq. (3.1). The response system is described as Eq. (3.2).

)'Cl = X3
. Bo—Po cosxy)(fo—Pe cosx
xzz—(/“’ Fo z”%“’ Bycosn) _ ¢ x + sinx, ——Asmwltsmxl
l sin xl
. __ _ 2cosxp
X3 = sinx X2X3 +Il sinx
(3.1)
n=n
. Bo—Po cosyi)(Bo—Pg cos . .
yzz—(/"’ bo Iz}ll)é/j Pocosy) _ ¢ y +Mgl sin y; —I\f—lgAsmwltsmyl
) .
. 2cosy Boy2
3= sin yy yy Iy siny,
(3.2)

The true values of the “unknown” parameters are 8, =2, B, =5, I = 1,
Mg=4, =025 C=0.5 w; =1, A=12.1 in numerical simulation. The
initial conditions of the drive and the response systems are x;(0) = —0.5,
x(0) = =12, x3(0) =10 and y;(0) = »,(0) = »3(0) = 0.1, respectively. The
initial value of estimate for “unknown” parameter is %(O) =0.1.

For synchronizing the two third-order heavy symmetric gyroscope systems,
we add three controllers u;, u,, u3, on the first, second and third equation of
(3.2), respectively.
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n=ntu

S =— (/j‘*"ﬁwc";_y;l)r(lﬂ:l_ﬂ“’c"sy‘) ot Mg[ siny; — —A sinw;rsiny; + uy
. 2cosy

Ys = smyllyy +1151ny1+u3

(3.3)

First, subtracting Eq. (3.1) from (3.3), we can obtain the error dynamics as

e = ey +u,
oy — (ﬁ(b B Bnp Cosyl)(ﬁnp - ﬁq) COS}/’l) + (Bcb - ﬂ(p COS)C])(B‘D - ﬂq) COSXl)
? Isin’ y; I2sin’ x,
C Mgl M
— I—ez + I—g(smyl —sinx) — ll—gA sin w;#(sin y; — sinx;) + uy,
1 1 1
. 2cos 2cosx By Box
e3 = —— yly2y3+ Lo o2 o2 + us,
sin y; Sin x; Iysiny; [ sinx;
(3.4)
where e; =y —x1, €2 =) — X2, €3 = )3 — X3.
Then, choosing a Lyapunov function of the form
c\ 1 c\
2, 2, 2
V<ela625637z> :E el+ez+e3+ (Z) 5 (35)
where % = % — % and ,9 is estimate value of the unknown parameter %,

respectively [4].
Its derivative along the solution of Eq. (3.4) is

By~ Bycosy)(By — Bycosy)

. C
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. . ZCosyl
X (siny, —sinx;) + uy | + e iy 2
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2 cos 5, X
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We select
Uy = —e —ey,
= (By — Bycosyt)(By — Bycosyr) B (By — Bycosxi)(B, — By cosxy)
? I2sin’ y, 2 sin’ x,
. . Mg . . . (
— —=(siny; — sinx) +1—A sinwz(siny; —sinx;) + | ——1 |ez,
1 1
2cos y; 2cos x| Boy2 Boxa
= " WV — — X2X3 — " " — es3,
sin y; Sin x; Lisiny;  [;sinx;
c_
Z = — 62.
(3.7)

Then, Eq. (3.6) becomes
f/(el,ez,e3) = —e] — eg — eg < 0.
This means that the synchronization of the two third-order heavy symmetric

gyroscope systems can be achieved. The results are shown in Figs. 2-4.
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Fig. 2. Time history of x;, y; and the error between them.
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Fig. 3. Time history of x,, y» and the error between them.

4. Parameter identification
4.1. Synchronization of uncertain chaotic systems via adaptive control

We investigate two third-order heavy symmetric gyroscope systems in this
section. Both the systems have the same form. But the parameter, %(t) of the
response system is time-varying and uncertain.

The drive system is described as Eq. (3.1). The response system is described
by

=n
= — (ﬁd’*ﬁwC";y;i)éﬁ;’ﬁ“’cosy') — ( ) —1— g sin y, — —A sin;zsiny;
. 2cosy V2
3= 51nv1]yy +Ilsq1)ny1
(4.1

For synchronizing two third-order heavy symmetric gyroscope systems,
we add three controllers u;, u,, us, on the first, second and third equation of
Eq. (4.1), respectively.
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Fig. 4. Time history of x3, y; and the error between them.
n=y+tu ,
§y = — (ﬁ¢—ﬁ¢colsii)i/;pl—ﬁ¢ cosy) ( )yz 4+ Mgl Mgl smy1 _ I\;I_lgA sin CO]fSil’lyl T+ '
. 2cosy
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(4.2)
The drive and the response system can be written as [5,6]
. C
i= 1+ P (7).
c (4.3)
b =r0)+Fo)(£0) + v
where
X2
(By — Bycosxi)(B, — Bycosx1) Mgl . Mg . .
— |- + sinx; — ——A sin w¢sinx
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and

0
F(x)= | —x
0

From Eq. (4.3), we can obtain the error dynamics
e=10)- 16 +F0)(§ 0) -0 (1) + v (44)

Before solving our problem, we have some work to do first. Considering the
special case when the drive and the response systems have the same parameters,
which are time invariant. The drive and the response systems can be written as

i= ) +F) (1),

I
é (4.5)
=10 +F0)(§ )+ 0.
The error dynamics can be obtained
. : o
e=10) - 109+ (F0) - ) (T ) + v (46)
Choosing a Lyapunov function of the form
1 1
Vie) = EeTe =5 (e +e3+el). (4.7)
Its derivative along the solution of Eq. (4.6) is
drv c
@ == 0 = 0+ (7o) - ) (1) + U] @8)
Select
Uy = —e—ey,
L (By = Bycosy)(By — Bycosn) _ (By — By cosxi)(B, — By cosx)
’ IFsin’ y; 2 sin’ x;

C Mgl . . M . . .
+ ( — l)ez — ]—g(smyl — sinxy) +TgA sin m; #(sin y; — sinx; ),

I 1 1
2cos y; 2cosx; By Box2 8
Uy = — Ny3 —— X2X3 — - - — 5€3.
sin y; sin x; Lisiny,  Iisinx; 3

(4.9)
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Then, Eq. (4.8) can be rewritten as

dv
_ 2 2
€ — &

=

%eg <0. (4.10)

This means that the synchronization of the two systems is achieved.

Now, we use the results of this special case to solve our problem. Choosing a
Lyapunov function for Eq. (4.4)

m(ag(o—%) :V(@%(%(z)-%)%%(r)-%). @11
Let

K(e,%) _ V(e)+% (%) (%) (4.12)

Its derivative along Eq. (4.4) satisfies

%;%@(191@) (%)—(gradv<e>,é>+<,91<r>> <,9>

- (grad V(e f) = f(x) + F(y) (Igl(t)>
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Choosing
Uy = —e —ey,
= (By — Bycosyi) (B, — Bycosy)  (By — By cosxi)(B, — By cosxi)
2 = ) - ;
I?sin’ y, I?sin’ x;
C Mgl . .
+ (=@ -1 ez——g(smy] —sinxp)
1 1,
+ I—gA sin w¢(sin y; — sinx;),
1
2cos y; 2cosx; Boy2 Boxa 8
Uy = — - — XoX3 — —— - —ses,
3 sin y; Y2y sSin x; >3 Iisiny, Ijsinx; 3 3
c, . ’ r_
i (t) = —F'(x)(gradV(e)) = xe,.
1

Eq. (4.13) can be rewritten as

i (?) — (mav(0).10) 1)+ £0) (7 0) - £ (7 ) +0)

. 8
=V(e)=—el —e;— §e§ < 0. (4.14)

In this section, the parameter %(t) is unknown and the values of the other
parameters are given in Section 3. Let 4 = 12.1 and the concerned functions
becomes as

X2
2 —5cosx;)(5—2cos : o
- ( x.l )3( *) + sinx; — 44 sintsinx,
fx) = sin” x; ,
2 cosx; 5x;
I X2X3 "
L Sin x Sin x;
[ N2
2 —5cosy)(5—2cos ) o
- ( y‘l )3( ) + siny; — 44 sin ¢ sin y;
f) = sin” y;
2cosy
L sin y; 23 sin y;
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The controllers becomes

U= —ée —ey,
b — (2—5cosyi)(5 —2cosyi) (2 —5cosx;)(5—2cosx)
? sin3y1 sin3x1
C . . S .
+ I—(t) — 1 )e; — (siny — sinx;) + 44 sin#(siny; — sinx;),
1
2cosy 2cosx; S5y 5% 8
U = - XoX3 — + —zes.

n 3%} n 2X3 " n
sin y; sin x; siny; sinx; 3

In numerical simulation, the initial conditions of the drive and the response
systems are x;(0) =—0.5, x(0)=-1.2, x3(0)=10 and »(0)= 1.5,
»(0) = 2.4, 13(0) = 6, respectively. We find that the synchronization can be
achieved, and the results are shown in Figs. 5-7. The identification of
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Fig. 5. Time history of x;, y; and the error between them.



678 Z.-M. Ge, J.-K. Lee | Appl. Math. Comput. 163 (2005) 667-682

10

-10

0 5 10 15 20 25 30 35 40 45 50
t (sec)
10

0 5 10 15 20 25 30 35 40 45 50
t

e2

2
0 5 10 15 20 25 30 35 40 45 50
t (sec)

Fig. 6. Time history of x,, y» and the error between them.

parameter is also achieved. It also means that the value of % (¢) arrives the value
of% = 0.5. The result is shown in Fig. 8.

4.2. Parameters identification by random optimization

We investigate two identical third-order heavy symmetric gyroscope systems
in this section. Both systems have the same parameters, but the parameter o of
the response system is unknown. Our work is to identify the unknown
parameter.

The drive system is described by

Xl = X3

. (By=Bgcosxi)(Bo—Bycosx1) ¢ Mgl _: Mg 4 o .

Xy = Tt X + 7 Sinxp — A sin wtsinx; )
. __ _ 2cosx; Box2

X3 = sinx XoX3 + I sinx;

(4.15)
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Fig. 7. Time history of x3, y; and the error between them.

The response system is described by

ARG cosn)(fy Py cosn)
Y= I2 sin’ yl

. 2cosy Boy2
3= sin yy yy3+115m}1

ocy—i—

smy1 — —A sin w1t51ny1

679

(4.16)

To synchronize two identical third-order heavy symmetric gyroscope sys-

tems, we add one coupling term, k(x;

o=y +k(x —n)

. (Bo—Be COS}YI)(ﬁ¢7ﬂ¢ cos 1)
V2= 1- sin’ y;

- 2cosy, 2
== smyllyy3+llsq1)n}1

Define the difference by

T
U:/ |x) —y1|2dl7
09T

where T is the simulation time.

ocy+

Lsiny, —

lgA sin w;zsin y;

— ) on the first equation of (4.16).

(4.17)

(4.18)
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Fig. 9. Difference with respect to the parameter o for £ = 200.
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The difference U can be considered as a function of o and . If £ is suffi-
ciently large and « is close to %, the difference U would tend to zero. In other
words, with sufficiently large value of &, if U is small, « would be close to % The
result is shown in Fig. 9.

To identify the unknown parameter of the response system, we use the
random optimization method [7]. The algorithm is as follows:

First, choose a sufficiently large value of k. In our case, we choose £ = 200.
By estimating initial value of o, we can calculate the difference U.

The parameter o is randomly modified as

O = o0+ 7, (4.19)

where 7 is a random number which obeys the Gaussian distribution with
variance ¢ = 0.0025.

Substituting the modified parameter o, into Eq. (4.17), we can obtain ;.
The difference between two systems is

T
U = / e — 34 de. (4.20)
0

9T

If the difference U’ is smaller than U, the parameter is changed from o to o,.
On the other hand, if the difference U’ is larger than U, the parameter is

0.52

0.48} §

0.46 ]

0.44} 1

0.42 \ \ \ \ \ \ \ \ \
0 05 1 1.5 2 25 3 35 4 45 5

step number X 104

Fig. 10. Time evolution of o by random optimization process.
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unchanged and kept to be . The processes are repeated until the difference U
tends to zero.

In numerical simulation, we assume that only one parameter, « is unknown.
Parameter identification can be achieved. The result is shown in Fig. 10.

5. Conclusions

The main studies in this paper is the study of synchronization of two sys-
tems. In this paper, both analytical and computational methods have been used
to study the dynamical behaviors of the nonlinear system.

We investigate two third-order heavy symmetric gyroscope systems in Sec-
tion 3. Both the systems have the same form and both the parameters are
unknown. The true values of the “unknown” parameters are selected. We
choose three suitable controllers, and add them into the slave when ¢ = 50. By
using Lyapunov stability theory, the synchronization of the two third-order
heavy symmetric gyroscope systems can be achieved successfully.

In Section 4, we investigate two third-order heavy symmetric gyroscope
systems, while the parameter, %(t) of the response system is time varying and
uncertain. There are two purposes in this Section, one is to synchronize the two
identical systems, by the Lyapunov function and controllers which are different
from that of Section 3. The another is to track the parameter % of the drive
system. In numerical simulation, the unknown parameter % (¢) and o tracks the
known parameter 191 successfully.
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