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SUMMARY

Based on the Mindlin shear deformation plate theory, a method is presented for determining natural
frequencies of skewed cantilevered triangular, trapezoidal and parallelogram plates using the Ritz
method, considering the effects of stress singularities at the clamped re-entrant corner. The admissible
displacement functions include polynomials and corner functions. The admissible polynomials form
a mathematically complete set and guarantee the solution convergent to the exact frequencies when
sufficient terms are used. The corner functions properly account for the singularities of moments
and shear forces at the re-entrant corner and accelerate the convergence of the solution. Detailed
convergence studies are carried out for plates of various shapes to elucidate the positive effects of
corner functions on the accuracy of the solution. The results obtained herein are compared with those
obtained by other investigators to demonstrate the validity and accuracy of the solution. Copyright
� 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A cantilevered skewed trapezoidal plate, as depicted in Figure 1, has been found in numerous
engineering applications, including aircraft and guided missiles. A cantilevered skewed triangular
plate or parallelogram plate can be treated as a special case of a trapezoidal plate. In Figure 1,
c/b = 0 represents a skewed triangular plate while c/b = 1 specifies a parallelogram plate.
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Figure 1. Geometry and co-ordinate systems of skewed cantilevered trapezoidal plate.

Because of the complexity of the geometrical shape and the boundary conditions, no exact
solution is tractable for the free vibrations of such plates. Many numerical solutions, based on
classical thin plate theories, have been published for such plates. Leissa [1–4] reviewed much of
the earlier work in this field, while more recent work was mentioned in References [5] and [6].
Generally, one finds widespread significant disagreement in frequencies obtained among these
numerous works published.

Shear deformation and rotary inertia are well known to be important to any analysis of moder-
ately thick plates or in determining the higher vibration frequencies of thin plates. Nevertheless,
rather few results have been published on the vibration frequencies of skewed triangular, trape-
zoidal and parallelogram plates as derived using plate theories including the effects of shear
deformation and rotary inertia. McGee and Butalia [7] presented a higher-order finite element
plate formulation for analysing the vibrations of skewed trapezoidal and triangular thick plates.
Karunasena et al. [8] applied the pb-2 Rayleigh–Ritz method to elucidate the vibrations of
cantilevered skewed triangular Mindlin plates.

To investigate vibrations of parallelogram plates, Kanaka Raju and Hinton [9] and Liew
et al. [10] employed Mindlin plate theory, and used a finite element approach and pb-2
Rayleigh–Ritz method, respectively, while McGee and Leissa [11] used the Ritz method and
three-dimensional elasticity theory. McGee and Butalia [12] thoroughly studied the vibrations
of skew plates using nine-node Lagrangian isoparametric quadrilateral plate elements, based on
three shear deformable thick plate theories.
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Recently, Huang [13, 14] showed that corner stress singularities arise in Mindlin plate theory
and Reddy’s refined plate theory when the vertex angle of a wedge with clamped and free
boundary conditions along its radial edges exceeds approximately 60◦, or when the vertex
angle of a corner with free–free edges is larger than 180◦. As shown in References [5, 6] for
cantilevered skewed thin plates, corner stress singularity behaviours have to be incorporated
into numerical approaches in order to obtain accurate vibration frequencies. Nevertheless, in the
aforementioned publications on cantilevered skewed triangular, trapezoidal and parallelogram
Mindlin plates, the numerical approaches used have not considered stress singularities. In
Reference [12], finite element convergence studies of cantilevered skewed thick plates reveal
that the accuracy of the results obtained using a specified mesh size declines as the skew angle
is increased. Furthermore, Karunasena et al. [8] admitted that their results, obtained by the pb-2
Rayleigh–Ritz method, are not accurate for cantilevered skewed triangular Mindlin plates with
large skew angles because their approach did not incorporate the effects of stress singularities.
Accordingly, the vibrations of cantilevered trapezoidal plates must be reexamined, considering
corner stress singularities.

The aim of this work is to present an accurate numerical solution method for the free
vibrations of skewed cantilevered triangular, trapezoidal and parallelogram Mindlin plates using
the Ritz method and considering the corner stress singularities. The Ritz method has been
widely applied to investigate the vibrations of structural components. For simplicity, polynomial
functions are commonly selected as the admissible functions in the Ritz method. However,
the Ritz method, when involving a large number of polynomial functions, is well known to
yield easily a generalized eigenvalue problem with an ill-conditioned matrix. In this work,
‘corner functions’ are introduced into the admissible functions, which also include polynomial
functions, to accelerate the convergence of solutions. The corner functions are established from
the asymptotic solutions provided by Huang [13] for both moment and shear force singularities
at a corner of a thick plate. Hence, the corner functions not only appropriately describe the
singular behaviours at the clamped re-entrant corner of a skewed cantilevered plate, but also
meet the clamped boundary conditions and free moment conditions around the re-entrant corner.
Convergence studies are herein conducted for various skew angles to demonstrate the effects
of corner functions on the accuracy of the numerical results. Accurate vibration frequencies
of cantilevered trapezoidal plates with various skew angles, aspect ratios (a/b), chord ratios
(c/b) and thickness ratios (h/b) are reported and compared to the published results obtained
by other researchers to improve the currently available data base.

2. THEORETICAL FORMULATION

For the free vibration of a plate in Cartesian co-ordinates (x, y), the maximum strain energy
(Vmax) and the maximum kinetic energy (Tmax) are (cf. Reference [8])

Vmax =
∫ ∫

A

D

2

{[
�2

x,x + �2
y,y + 2��x,x�y,y + 1 − �

2
(�x,y + �y,x)

2
]

+ �2Gh

2

[
(�x + w,x)

2 + (�y + w,y)
2]} dA (1)
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Tmax = 	2

2

∫ ∫
A

{

hw2 + 
h3

12
(�2

x + �2
y)

}
dA (2)

where w is the transverse displacement of the mid-plane; �x and �y are the bending rotations
of the mid-plane normal in the x and y directions, respectively; h is the thickness of the plate;
D = Eh3/12(1 − �2) is the flexural rigidity; E is the modulus of elasticity; � is Poisson’s
ratio; �2 is the shear correction factor; G is the shear modulus; 
 is the mass density of the
plate, and 	 is a free vibration frequency.

The use of skew co-ordinates (�, �) (Figure 1) and oblique rotations, �� and �� is usually
convenient in analysing skew plates. They are related to orthogonal co-ordinates, x and y, and
orthogonal rotations, �x and �y , by

� = x/cos �, � = y − x tan � (3)

and

�� = �x + �y tan �, �� = �y/cos � (4)

where � is the skew angle of the edge BC (Figure 1). Equations (1)–(4) can be used to restate
Vmax and Tmax in the skew co-ordinates as

Vmax =
∫ ∫

A

{
D

2

{
sec2 �(��,� − sin ���,� − sin ���,� + ��,�)

2

− 2(1 − �)
[
��,���,� − 1

4 (��,� + ��,�)
2]}

+ �2Gh

2
[(�� − sin ��� + sec �w,� − tan �w,�)

2 + (cos ��� + w,�)
2
}

dA (5)

Tmax = 	2

2

∫ ∫
A

{

hw2 + 
h3

12

[
(�� − sin ���)

2 + (cos ���)
2]} dA (6)

where dA = cos � d� d�.
In the Ritz method, the energy functional is defined as

� = Vmax − Tmax (7)

w(�, �), ��(�, �) and ��(�, �) in Equations (5) and (6) are approximated by finite series of
admissible functions, which satisfy the geometric boundary conditions under consideration, and
expressed as

��(�, �) = ��p(�, �) + ��c(�, �) (8a)

��(�, �) = ��p(�, �) + ��c(�, �) (8b)

w(�, �) = Wp(�, �) + Wc(�, �) (8c)
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where ��p, ��p and Wp consist of algebraic polynomials, and ��c, ��c and Wc consist of
corner functions, which account for the singular behaviours of moments and shear forces at
re-entrant corner � ABC in Figure 1. The polynomials in terms of skew co-ordinates are used;
hence,

��p =
I∑

i=1

J∑
j=1

Aij�
i�j−1 (9a)

��p =
I∑

i=1

J∑
j=1

Bij�
i�j−1 (9b)

Wp =
I∑

i=1

J∑
j=1

Cij�
i�j−1 (9c)

where Aij , Bij and Cij are coefficients to be determined by minimizing �. The functions
given in Equation (9) satisfy the clamped edge geometric boundary conditions at � = 0. The
upper limits (I, J ) of the three summations in Equations (9) could all be different, but here
only a single I and a single J are used, for simplification.

Although the polynomials given in Equations (9a)–(9c) constitute a mathematically complete
set of admissible functions and theoretically yield accurate values of the frequencies when I

and J are large enough, numerical difficulties due to ill-conditioning are very likely to occur
when I and J are large. It is therefore desirable to supplement the polynomial admissible
functions with the corner functions, which properly represent the singularities, to accelerate the
convergence of the solution.

The sets of corner functions are

��c(�, �) =
K∑

k=1
Āk�̄�k(�, �) (10a)

��c(�, �) =
K∑

k=1
B̄k�̄�k(�, �) (10b)

Wc(�, �) =
N∑

n=1
C̄nW̄n(�, �) (10c)

where Āk, B̄k and C̄n are arbitrary coefficients, and �̄�k, �̄�k and W̄n are established from the
asymptotic solutions presented in Reference [13]. The asymptotic solutions [13] are expressed
in terms of polar co-ordinates (r, �) as shown in Figure 1. The displacement components in
polar co-ordinates must transform into skew co-ordinates, yielding,

�̄�k = (cos � + tan � sin �)�̄�k + (sin �− tan � cos �)�̄rk (11a)

�̄�k = (sin ��̄�k − cos ��̄rk)/cos � (11b)

W̄n = r �̄n sin �̄n� (11c)
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where

�̄rk = r�k {cos(�k + 1)� − k1�1 sin(�k + 1)� − cos(�k − 1)� + �1 sin(�k − 1)�} (12a)

�̄�k = r�k {− sin(�k + 1)� − k1�1 cos(�k + 1)� + k1 sin(�k − 1)� + k1�1 cos(�k − 1)�}
(12b)

�1 = − �k(1 − �) cos(�k + 1)� − (k1(�k − 1) − �k� − 1) cos(�k − 1)�

(k1(�k − 1) − �k� − 1) sin(�k − 1)� − k1�k(1 − �) sin(�k + 1)�
(12c)

k1 = −2(1 − �) + (1 + �)(�k + 1)

2(1 − �) − (1 + �)(�k − 1)
(12d)

r =
{(

b

2
− �

)2

+ �2 − 2�

(
b

2
− �

)
sin �

}1/2

(12e)

� = tan−1
(

� cos �

(b/2 − �) − � sin �

)
(12f)

and � is the re-entrant angle (Figure 1). The characteristic values �k and �̄n are, respectively,
the roots of the following equations:

sin2 �k� = 4 − �2
k(1 + �)2 sin2 �

(3 − �)(1 + �)
(13a)

and

cos �̄n� = 0 (13b)

Some of the �k arising from Equation (13a) may be complex numbers. In such cases, �̄�k

and �̄�k in Equations (11a) and (11b) are complex, and both the real and imaginary parts are
employed as independent functions in the solution. Notably, �̄rk and �̄�k in Equations (12a)
and (12b) are obtained from the asymptotic solutions for singularities of bending moments,
while W̄n in Equation (11c) is taken from the asymptotic solutions for singularities of shear
forces [13]. When the real part of �k is less than one, �̄rk and �̄�k cause bending moment
singularities at the re-entrant corner, while W̄n corresponding to �̄n smaller than one yields
shear force singularities. The real parts of �k and �̄n must exceed zero to satisfy the regularity
condition of finite displacement at the re-entrant corner.

Using the Ritz method, the free vibration problem is solved by substituting Equations
(9a)–(9c) and (11a)–(11c) into Equations (5) and (6) and minimizing � in Equation (7).
Minimizing � with respect to the undetermined coefficients Aij , Bij , Cij , Āk , B̄k and C̄n

yields 3IJ +2K +N homogeneous, linear algebraic equations in terms of the undetermined co-
efficients, which results in the matrix form of a generalized eigenvalue problem. The eigenvalues
correspond to the non-dimensional vibration frequencies.
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3. CONVERGENCE STUDIES AND COMPARISON

The frequencies obtained by the Ritz method should monotonically converge to the exact fre-
quencies as upper bounds when a sufficient number of admissible functions are used, if the
admissible functions are taken from a complete set of functions. This section addresses conver-
gence studies which were carried out for cantilevered skewed triangular plates and parallelogram
plates. All numerical results are presented in terms of the non-dimensional frequency parameter
� defined as 	a2√
h/D. The results are for materials with a Poisson ratio (�) of 0.3.

Tables I–VI present a convergence study of the non-dimensional frequency parameters of five
skewed triangular plates (a/b = 1 or 0.5; h/b = 0.001 or 0.2; � = 30, 60 or 75◦) and a skewed
parallelogram thin plate (a/b = 0.5; c/b = 1; � = 75◦; h/b = 0.001). The shear correction
factors were set equal to 5

6 to allow the present results to be compared with published data.
The frequencies were obtained by increasing the number of polynomial terms in Equations
(9a)–(9c) (e.g. (I, J ) = (4, 4), (5, 5), . . . , (9, 9)) and the number of corner functions in Equa-
tions (10a)–(10c) (e.g. K = N = 0, 2, 5 and 10 for � = 30◦; K = N = 0, 5, 10 and 15 for
� � 60◦).

Table I. Convergence of frequency parameter � for a thin triangular plate
(a/b = 1, � = 30◦, h/b = 0.001).

K and N
in Equations
(10a)–(10c) (I, J ) in Equations (9a)–(9c)

Mode (No. of corner Reference Reference
no. functions) (4, 4) (5, 5) (6, 6) (7, 7) (8, 8) (9, 9) [6] [8]

1

0
2
5

10

6.060
5.861
5.698
5.687

5.846
5.700
5.687
5.686

5.723
5.688
5.686
5.685

5.708
5.687
5.686
5.685

5.693
5.686
5.685
5.685

5.689
5.686
5.685
5.685

5.689 5.705

2

0
2
5

10

21.93
21.56
21.47
21.46

21.65
21.48
21.46
21.45

21.51
21.46
21.45
21.45

21.49
21.46
21.45
21.45

21.47
21.45
21.45
21.44

21.46
21.45
21.45
21.45

21.46 21.50

3

0
2
5

10

36.95
36.97
36.05
35.92

36.46
35.98
35.93
35.92

36.29
35.93
35.92
35.91

36.21
35.92
35.91
35.90

35.98
35.91
35.91
35.90

35.94
35.91
35.90
35.90

35.92 36.09

4

0
2
5

10

55.32
54.83
54.57
54.41

54.67
54.49
54.41
54.40

54.64
54.42
54.40
54.39

54.59
54.41
54.39
54.38

54.50
54.40
54.39
54.38

54.42
54.39
54.38
54.38

54.40 54.46

5

0
2
5

10

71.04
70.58
70.38
70.14

70.29
70.24
70.15
70.13

70.22
70.20
70.13
70.12

70.20
70.13
70.13
70.12

70.15
70.13
70.13
70.12

70.14
70.13
70.12
70.11

70.15 70.16
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Table II. Convergence of frequency parameter � for a thin triangular plate
(a/b = 1, � = 60◦, h/b = 0.001).

K and N
in Equations
(10a)–(10c) (I, J ) in Equations (9a)–(9c)

Mode (No. of corner Reference Reference
no. functions) (4, 4) (5, 5) (6, 6) (7, 7) (8, 8) (9, 9) [6] [8]

1

0
5

10
15

7.225
6.443
6.305
6.075

6.597
6.331
6.107
6.064

6.369
6.184
6.064
6.064

6.203
6.065
6.064
6.064

6.163
6.065
6.064
6.064

6.104
6.064
6.064
6.063

6.093 6.277

2

0
5

10
15

32.53
26.95
25.80
25.42

27.13
25.82
25.55
25.39

26.13
25.70
25.39
25.39

25.74
25.40
25.39
25.39

25.44
25.39
25.39
25.38

25.42
25.39
25.39
25.38

25.43 25.84

3

0
5

10
15

73.65
66.34
53.66
53.06

60.93
54.61
53.10
52.91

55.70
53.25
52.91
52.91

54.30
52.91
52.91
52.90

53.12
52.91
52.91
52.90

53.02
52.91
52.90
52.90

53.06 54.49

4

0
5

10
15

127.2
110.4

90.35
75.91

108.3
85.96
79.21
74.24

87.94
80.25
74.24
74.23

81.65
74.24
74.24
74.23

74.43
74.24
74.23
74.23

74.39
74.23
74.23
74.22

74.26 81.46

5

0
5

10
15

183.9
142.4
122.3
101.5

123.1
108.6
101.9
101.4

106.4
102.5
101.4
101.3

103.1
101.4
101.4
101.3

102.5
101.4
101.4
101.3

101.6
101.4
101.3
101.3

101.5 102.6

Tables I–VI show that the frequencies monotonically converge to the exact ones from above
as the number of polynomial terms or the number of corner functions increases. The results
obtained using only polynomial terms (K = N = 0) converge reasonably well for small skew
angle (� = 30◦) but not for large skew angles (� = 60 or 75◦). The convergence of the frequen-
cies is significantly enhanced by augmenting the polynomial sets with an increasing number
of corner functions, especially for a large skew angle. The improvement in the convergence
of frequencies obtained by adding corner functions does not considerably change for different
values of h/b, c/b or a/b. The results obtained using I = J = 8 and K = N = 10 are exact
to at least three significant figures.

The corner functions accelerate the convergence of frequencies for two reasons. Firstly, the
corner functions properly describe the behaviours of high bending and shear stresses in the
vicinity of the re-entrant clamped corner. Secondly, each pair of �̄�k and �̄�k in Equations (10a)
and (10b) also satisfy the boundary conditions of free moments along the free edge of the
re-entrant corner.

Some of the published results obtained by others are also given in Tables I–VI. Based on
classical thin plate theory, McGee et al. [6] applied the Ritz method and added thin plate
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Table III. Convergence of frequency parameter � for a thin triangular plate
(a/b = 1, � = 75◦, h/b = 0.001).

K and N
in Equations
(10a)–(10c) (I, J ) in Equations (9a)–(9c)

Mode (No. of corner
no. functions) (4, 4) (5, 5) (6, 6) (7, 7) (8, 8) (9, 9) Reference [6]

0 8.251 7.835 7.677 7.272 6.721 6.651
5 7.792 6.689 6.484 6.436 6.435 6.4351 6.43710 6.882 6.457 6.435 6.434 6.434 6.433

15 6.450 6.435 6.434 6.433 6.433 6.432

0 32.56 31.13 30.37 29.47 28.84 27.92
5 30.87 29.44 28.27 27.74 27.74 27.732 27.7510 29.95 28.01 27.74 27.73 27.73 27.72

15 27.85 27.73 27.73 27.73 27.72 27.72

0 76.20 72.32 71.22 69.86 68.28 67.69
5 73.10 68.11 66.90 66.81 66.81 66.803 66.8510 68.01 66.87 66.81 66.80 66.79 66.79

15 66.86 66.81 66.80 66.79 66.79 66.78

0 139.2 131.6 128.5 123.2 120.4 118.3
5 133.0 118.5 117.9 117.9 117.8 117.84 117.910 120.2 117.9 117.8 117.8 117.8 117.8

15 117.9 117.8 117.8 117.7 117.7 117.7

0 209.8 179.3 165.5 154.1 151.0 146.4
5 185.7 148.5 144.7 144.3 144.3 144.25 144.310 154.4 144.5 144.3 144.2 144.2 144.1

15 144.4 144.3 144.3 144.2 144.1 144.1

theory corner functions to the algebraic polynomial admissible displacement functions. Based
on Mindlin plate theory, Karunasena et al. [8] obtained the natural frequencies of skewed
triangular plates by using the Ritz method and 120 admissible polynomial functions for each
of w, �� and ��. Comparing the presented results with those of McGee et al. [6] reveals that
the present converged results demonstrate the theoretical fact that the frequencies determined
from Mindlin plate theory are less than those obtained from thin plate theory. However, the
results of Karunasena et al. [8] violate this, indicating that these results are not accurate enough.
Indeed, some of their frequencies are seen to be much too high for � = 60◦. Karunasena et al.
[8] acknowledged that the accuracy of their results become worse as the skew angle increases
because stress singularity effects at the re-entrant corner were not considered. Notably, the
present solution does not show the shear locking phenomenon that is often found in a finite
element approach when the Mindlin plate theory is applied to a thin plate.

Table VII shows a convergence study for a cantilevered square thin plate. The shear cor-
rection factor was also set equal to 5

6 . According to the study on corner stress singularities
induced by boundary conditions given in Reference [13], moment singularities begin to arise
in the corner with free and clamped boundary conditions when the vertex angle exceeds 60◦.
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Table IV. Convergence of frequency parameter � for a thin triangular plate
(a/b = 0.5, � = 60◦, h/b = 0.001).

K and N
in Equations
(10a)–(10c) (I, J ) in Equations (9a)–(9c)

Mode (No. of corner Reference Reference
no. functions) (4, 4) (5, 5) (6, 6) (7, 7) (8, 8) (9, 9) [6] [8]

0 8.663 7.183 6.599 6.163 5.947 5.883
5 7.846 6.017 5.856 5.842 5.842 5.8421 5.846 6.11210 6.513 5.845 5.842 5.842 5.842 5.841

15 5.843 5.842 5.842 5.841 5.841 5.841

0 30.96 25.33 23.65 23.15 23.00 22.97
5 26.45 23.34 23.10 22.94 22.94 22.942 22.95 23.2610 23.15 23.08 22.94 22.94 22.93 22.93

15 22.96 22.94 22.93 22.93 22.93 22.92

0 58.37 45.65 42.70 40.49 40.14 40.05
5 46.62 43.15 39.73 39.52 39.52 39.513 39.56 42.2310 42.81 39.62 39.52 39.52 39.51 39.51

15 39.54 39.51 39.51 39.50 39.50 39.50

0 108.0 81.40 67.16 64.67 63.29 63.05
5 85.62 70.82 63.14 62.99 62.99 62.994 63.16 63.9210 72.45 64.14 62.99 62.99 62.99 62.98

15 63.00 62.99 62.98 62.97 62.96 62.96

0 120.4 97.40 74.26 70.23 67.43 66.37
5 105.2 80.64 69.13 66.36 66.36 66.365 66.64 73.8910 85.31 70.16 66.36 66.36 66.36 66.34

15 67.42 66.36 66.36 66.34 66.34 66.34

Hence, since these angles are 90◦ at both clamped–free corners, one should add corner func-
tions in corner A, as well as corner B (Figure 1). However, for simplicity, Table VII shows
the results without any corner function for corner A. Although adding corner functions ac-
celerates the convergence, the results obtained using only polynomial terms (K = N = 0) still
converge reasonably well, which is consistent with the observation from Table I. But one also
observes in Table VII that essentially the same accuracy is obtained when using 10 corner
functions with I = J = 4 as no corner functions with I = J = 9. These two solutions result
in eigenvalue determinants of order 68 and 243, respectively. Thus, adding corner functions
does increase computational efficiency significantly. The results of Huang [15] and Leissa [16]
were obtained using the Ritz method and based on classical thin plate theory. Huang [15]
used the same approach as McGee et al. [6], while Leissa [16] used characteristic beam
functions as admissible functions. Again, the present converged results for this thin plate
show excellent agreement with the results from thin plate theory, especially for the results of
Huang [15].

To further demonstrate the validity and accuracy of the present solutions, the frequency
parameters � determined from this study were compared with those in the literature for various
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Table V. Convergence of frequency parameter � for a thick triangular plate
(a/b = 1, � = 60◦, h/b = 0.2).

K and N
in Equations
(10a)–(10c) (I, J ) in Equations (9a)–(9c)

Mode (No. of corner
no. functions) (4, 4) (5, 5) (6, 6) (7, 7) (8, 8) (9, 9) Reference [8]

0 6.314 5.747 5.624 5.500 5.483 5.424
5 5.622 5.534 5.458 5.410 5.410 5.4091 5.51710 5.509 5.449 5.409 5.409 5.409 5.408

15 5.432 5.409 5.409 5.408 5.408 5.408

0 25.16 21.26 20.49 20.14 19.95 19.94
5 20.98 20.42 20.00 19.93 19.93 19.922 20.3210 20.29 20.20 19.93 19.93 19.92 19.92

15 19.99 19.93 19.92 19.92 19.92 19.91

0 40.79 29.38 25.27 24.49 23.33 23.22
5 27.39 24.64 23.98 23.20 23.19 23.193 23.6510 24.56 23.41 23.19 23.19 23.19 23.19

15 23.28 23.19 23.19 23.19 23.18 23.18

0 87.98 66.92 46.68 40.92 34.89 34.80
5 69.74 44.60 38.92 34.75 34.75 34.754 35.4310 41.03 38.01 34.75 34.75 34.75 34.74

15 35.66 34.75 34.74 34.74 34.74 34.73

0 101.7 76.13 47.29 43.74 42.16 41.74
5 80.46 46.95 42.45 41.27 41.27 41.275 41.9010 47.37 41.75 41.27 41.27 41.26 41.26

15 41.66 41.27 41.26 41.26 41.25 41.25

shapes of plates. In obtaining all of the following numerical results, I = J = 8 and K = N = 2
in Equations (9) and (10) were used for plates with � � 30◦; I = J = 8 and K = N = 10 were
used for plates with � > 30◦. The corner functions were added to corner B only. Based on
the preceding convergence study, the results given here are accurate to at least three significant
figures, and almost to four digits. Tables VIII–X compare the results obtained herein with the
published results for skewed triangular, trapezoidal and parallelogram thick plates, respectively.
Notably, the shear correction factors were set to 5

6 , �2/12 and 0.823 for triangular, trapezoidal
and parallelogram plates, respectively, as they were used in the cited references.

Table VIII lists � of triangular plates with h/b = 0.2 and various a/b ratios and � values;
the present results agree reasonably with those of Karunasena et al. [8]. However, the values
of � obtained herein are smaller than those of Karunasena et al. [8], meaning that they are
more accurate, because the present method guarantees upper bounds for the frequencies. The
differences become more significant for plates with larger � that exhibit more serious stress
singularities at the clamped re-entrant corner. There is no particular trend in the differences as
affected by a/b.
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Table VI. Convergence of frequency parameter � for a thin parallelogram plate
(a/b = 0.5, � = 75◦, h/b = 0.001).

K and N
in Equations
(10a)–(10c) (I, J ) in Equations (9a)–(9c)

Mode (No. of corner
no. functions) (4, 4) (5, 5) (6, 6) (7, 7) (8, 8) (9, 9) Reference [6]

0 7.477 6.915 6.785 6.435 6.295 6.184
5 6.994 6.398 6.137 5.995 5.994 5.9941 6.05410 6.256 6.074 5.994 5.994 5.993 5.993

15 6.023 5.994 5.994 5.993 5.993 5.992

0 29.83 27.31 25.20 24.77 24.68 24.81
5 28.08 24.88 24.56 24.52 24.51 24.512 25.0010 24.66 24.52 24.52 24.51 24.50 24.50

15 24.52 24.51 24.51 24.50 24.50 24.49

0 50.04 49.87 48.68 47.85 47.34 47.25
5 49.94 47.15 46.95 46.94 46.93 46.933 47.2110 47.26 46.94 46.94 46.93 46.93 46.92

15 46.94 46.93 46.93 46.92 46.92 46.92

0 75.35 62.53 59.49 58.37 57.52 57.42
5 64.74 59.11 57.86 57.29 57.29 57.284 57.8610 58.27 57.67 57.29 57.28 57.28 57.28

15 57.57 57.28 57.28 57.28 57.27 57.27

0 102.0 84.95 71.36 69.48 68.92 68.59
5 85.25 78.42 69.21 68.59 68.58 68.575 69.0510 77.89 69.01 68.58 68.57 68.57 68.56

15 68.75 68.58 68.57 68.57 68.56 68.55

The results of McGee and Butalia [7, 12] in Tables VIII–X were obtained using higher-order
shear deformable plate theory and the finite element approach. No shear correction factor is
involved. These results were obtained using 64 Lagrangian isoparametric plate elements with
a total of 2448 degrees of freedom, whereas the present method used, at most, 222 degrees
of freedom. The convergence studies in Reference [7] indicate that these results may converge
to only two significant figures. Generally reasonably good agreement is observed between the
present results and those of McGee and Butalia [7, 12], except in the cases of plates with
� = 75◦. McGee and Butalia [7] must have mistyped the results for a/b = 1, c/b = 0.5 and
� = 45◦ given in Table IX because they are exactly the same as those for � = 30◦. Notably,
McGee and Butalia [7] conceded that the stress singularity at the re-entrant corner should be
incorporated into their finite element modeling of highly skewed plates, when they found that
their results for thin plates exceeded those obtained by applying thin plate theory [6] using the
Ritz method.

Table X presents � values of parallelogram plates with various h/b ratios and � val-
ues; the present results agree closely with those of Liew et al. [10], who also used the
Mindlin plate theory. Nevertheless, the present results are all lower than those of Liew et al.
[10], indicating that the present work provides better upper bounds of the exact solutions.
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Table VII. Convergence of frequency parameter � for a thin square plate (� = 0◦, h/b = 0.001).

K and N
in Equations
(10a)–(10c) (I, J ) in Equations (9a)–(9c)

Mode (No. of corner Reference Reference
no. functions) (4, 4) (5, 5) (6, 6) (7, 7) (8, 8) (9, 9) [15] [16]

0 3.494 3.478 3.475 3.473 3.472 3.471
2 3.479 3.473 3.472 3.471 3.471 3.4711 3.472 3.4925 3.472 3.472 3.471 3.471 3.470 3.470

10 3.471 3.471 3.471 3.470 3.470 3.470

0 8.547 8.543 8.512 8.511 8.511 8.510
2 8.544 8.512 8.511 8.510 8.509 8.5092 8.509 8.5255 8.511 8.511 8.510 8.509 8.509 8.508

10 8.510 8.509 8.509 8.508 8.508 8.508

0 21.56 21.43 21.31 21.30 21.29 21.28
2 21.51 21.32 21.29 21.28 21.28 21.283 21.29 21.435 21.30 21.29 21.28 21.28 21.28 21.28

10 21.29 21.28 21.28 21.28 21.27 21.27

0 31.41 27.52 27.46 27.20 27.19 27.18
2 27.82 27.48 27.19 27.19 27.18 27.184 27.20 27.335 27.26 27.19 27.18 27.18 27.18 27.17

10 27.19 27.18 27.18 27.17 27.17 27.17

0 31.90 31.33 30.98 30.98 30.97 30.95
2 31.55 30.97 30.97 30.96 30.95 30.955 30.97 31.115 30.97 30.96 30.96 30.95 30.94 30.94

10 30.96 30.95 30.95 30.94 30.94 30.94

Table VIII. Comparison of frequency parameters � for triangular thick
plates (h/b = 0.2).

Mode number

a/b � (deg) 1 2 3 4

4.535 9.783 14.93 16.94
0 [4.540] [9.801] [14.98] [16.99]

〈4.542〉 〈9.873〉 〈15.03〉 〈/〉
4.273 9.452 14.40 16.24

15 [4.283] [9.470] [14.44] [16.29]
〈4.284〉 〈9.531〉 〈14.43〉 〈/〉
4.233 9.762 14.04 16.42

30 [4.239] [9.783] [14.06] [16.49]
〈4.239〉 〈9.831〉 〈13.95〉 〈16.62〉

0.5
4.335 10.58 13.41 17.46

45 [4.338] [10.62] [13.48] [17.48]
〈4.334〉 〈10.59〉 〈13.33〉 〈/〉
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Table VIII. Continued.

Mode number

a/b � (deg) 1 2 3 4

4.553 9.626 13.76 15.92
60 [4.565] [9.699] [13.82] [16.01]

〈4.534〉 〈9.633〉 〈13.83〉 〈/〉
4.915 5.454 9.471 15.53

75 [5.031] [5.567] [9.672] [15.64]
〈4.925〉 〈6.264〉 〈15.37〉 〈/〉
5.740 18.74 23.75 38.82

0 [5.744] [18.75] [23.77] [38.85]
〈5.730〉 〈18.76〉 〈23.79〉 〈/〉
5.366 17.47 23.54 35.79

15 [5.369] [17.48] [23.55] [35.81]
〈5.356〉 〈17.47〉 〈23.57〉 〈/〉
5.210 17.32 23.65 34.85

30 [5.261] [17.49] [23.88] [35.19]
〈5.246〉 〈17.46〉 〈23.87〉 〈/〉

1.0
5.225 18.24 24.09 35.56

45 [5.330] [18.60] [24.57] [36.26]
〈5.306〉 〈18.57〉 〈24.49〉 〈/〉
5.409 19.92 23.19 34.75

60 [5.517] [20.32] [23.65] [35.43]
〈5.479〉 〈20.21〉 〈23.55〉 〈/〉
5.728 13.52 21.42 21.59

75 [5.912] [14.76] [22.37] [22.45]
〈5.806〉 〈15.77〉 〈21.85〉 〈/〉
6.435 26.28 39.33 60.22

0 [6.475] [26.45] [39.48] [60.40]
〈6.447〉 〈26.29〉 〈39.53〉 〈/〉
6.066 24.52 39.50 56.69

15 [6.080] [24.67] [39.68] [56.89]
〈6.074〉 〈24.53〉 〈39.69〉 〈/〉
5.932 23.89 41.34 55.84

30 [5.961] [24.32] [45.44] [56.61]
〈5.939〉 〈23.90〉 〈41.51〉 〈/〉
5.948 24.18 45.34 56.572.0 45 [5.961] [24.32] [45.44] [56.61]

〈5.959〉 〈24.15〉 〈45.40〉 〈/〉
6.077 24.99 49.77 57.60

60 [6.119] [25.15] [49.94] [57.64]
〈6.081〉 〈24.95〉 〈49.99〉 〈/〉
6.257 26.38 35.83 50.51

75 [6.396] [26.57] [36.24] [50.53]
〈6.327〉 〈26.12〉 〈38.28〉 〈/〉

Note: [ ] denotes values from Karunasena et al. [8], 〈 〉 denotes values from
McGee and Butalia [7], / denotes no data available.
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Table IX. Comparison of frequency parameters � for trapezoidal thick
plates (h/b = 0.2).

Mode number

a/b c/b � (deg) 1 2 3 4

3.508 7.602 12.71 14.4315 〈3.521〉 〈7.674〉 〈12.86〉 〈/〉
3.551 7.882 12.97 14.5230 〈3.565〉 〈7.947〉 〈13.06〉 〈14.65〉
3.724 8.823 13.25 15.770.25 45 〈3.747〉 〈8.897〉 〈13.27〉 〈/〉
4.017 10.03 13.26 18.4060 〈4.026〉 〈10.05〉 〈13.29〉 〈/〉
4.448 7.244 12.33 15.0575 〈4.455〉 〈7.633〉 〈14.63〉 〈/〉

0.5 3.314 6.087 11.36 12.0015 〈3.330〉 〈6.147〉 〈11.40〉 〈12.00〉
3.461 6.396 11.82 12.3430 〈3.472〉 〈6.451〉 〈11.90〉 〈12.47〉
3.736 7.407 12.41 13.490.5 45 〈3.759〉 〈7.410〉 〈12.53〉 〈13.52〉
4.126 9.701 12.92 15.7160 〈4.135〉 〈9.764〉 〈12.88〉 〈/〉
4.674 7.780 12.85 13.5475 〈4.653〉 〈8.139〉 〈13.93〉 〈/〉

4.168 14.26 19.42 30.9115 〈4.170〉 〈14.32〉 〈19.52〉 〈/〉
4.152 14.43 20.11 30.4330 〈4.153〉 〈14.49〉 〈20.22〉 〈/〉
4.275 15.73 21.17 32.310.25 45 〈4.278〉 〈15.80〉 〈21.27〉 〈/〉
4.475 17.99 22.16 36.7260 〈4.494〉 〈18.08〉 〈22.18〉 〈/〉
4.803 17.90 20.43 34.6075 〈4.817〉 〈18.19〉 〈20.54〉 〈/〉1.0 3.772 11.40 18.42 27.5515 〈3.774〉 〈11.44〉 〈18.53〉 〈/〉
3.858 11.76 19.39 27.1630 〈3.864〉 〈11.81〉 〈19.52〉 〈/〉
4.078 13.17 20.68 29.110.5 45 〈3.864〉 〈11.81〉 〈19.52〉 〈/〉
4.243 16.06 22.31 34.6060 〈4.444〉 〈16.25〉 〈22.50〉 〈/〉
4.718 19.21 21.59 35.5675 〈4.887〉 〈19.61〉 〈21.68〉 〈/〉

Note: 〈 〉 denotes values from McGee and Butalia [7], / denotes no data
available.
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Table X. Comparison of frequency parameters � for parallelogram
plates (a/b = 1).

Mode number

h/b � (deg) 1 2 3 4

3.427 8.052 20.07 25.48
0 [3.431] [8.058] [20.08] [25.49]

〈3.431〉 〈8.064〉 〈20.10〉 〈25.52〉
3.523 8.203 20.73 24.62

15 [3.536] [8.228] [20.85] [24.65]
〈3.537〉 〈8.235〉 〈20.88〉 〈24.68〉
3.856 8.862 23.23 24.21

0.1 30 [3.858] [8.870] [23.24] [24.27]
〈3.863〉 〈8.878〉 〈23.29〉 〈24.30〉
4.385 10.52 24.72 28.24

45 [4.387] [10.54] [24.77] [28.26]
〈4.401〉 〈10.55〉 〈24.82〉 〈28.32〉
4.956 14.90 26.39 38.25

60 [5.049] [14.90] [27.08] [38.33]
〈5.008〉 〈14.96〉 〈27.11〉 〈38.41〉
3.335 7.333 17.53 22.42

0 [3.338] [7.340] [17.55] [22.44]
〈3.342〉 〈7.367〉 〈17.69〉 〈22.57〉
3.430 7.482 18.04 21.58

15 [3.434] [7.489] [18.06] [21.60]
〈3.439〉 〈7.516〉 〈18.18〉 〈21.74〉
3.715 8.047 19.50 21.32

0.2 30 [3.719] [8.055] [19.51] [21.35]
〈3.729〉 〈8.086〉 〈19.68〉 〈21.48〉
4.163 9.505 20.74 23.51

45 [4.171] [9.524] [20.78] [23.56]
〈4.194〉 〈9.572〉 〈21.02〉 〈/〉
4.709 13.17 22.05 28.97

60 [4.719] [13.20] [22.10] [29.03]
〈4.771〉 〈13.32〉 〈22.50〉 〈/〉

Note: [ ] denotes values from Liew et al. [10], 〈 〉 denotes values from
McGee and Butalia [12], / denotes no data available.

Notably, Liew et al. [10] applied the Ritz method with admissible polynomial functions, in-
volving 360 degrees of freedom, while the present solutions involve 198 and 222 degrees of
freedom for plates with � � 30◦ and � > 30◦, respectively.

4. CONCLUDING REMARKS

This paper has demonstrated a novel Ritz procedure to determine accurately the natural frequen-
cies of skewed cantilevered triangular, trapezoidal and parallelogram plates based on Mindlin
plate theory. The proposed procedure incorporates a mathematically complete set of admissible
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polynomials in conjunction with admissible corner functions that not only properly describe
the singular behaviours of moments and shear forces at the re-entrant clamped corner, but also
satisfy the free moment conditions along the free edge of the re-entrant corner.

The effects of adding corner functions to the admissible set of polynomials in the Ritz method
on the determination of the frequencies of a plate were investigated through convergence stud-
ies for various plates with different shapes. It was shown there that use of corner functions
accelerates the convergence of the solutions significantly, thereby permitting one to obtain accu-
rate frequencies from smaller eigenvalue determinants, and reducing numerical ill-conditioning.

The highly accurate results obtained from the present solution were demonstrated through
comparison with previously published data for cantilevered triangular, trapezoidal and parallel-
ogram plates. Significant improvement (closer upper bounds) was seen especially for the thick
plates with a large skewed angle (� � 45◦).

The procedure demonstrated in this work can be easily modified to analyse other shapes
of Mindlin plates that involve stress singularities caused by boundary conditions at a corner.
Besides the clamped–free corner dealt with here, one can also apply this method to other types
of sharp corners such as, for example, the free–free edges interesting at a notch or crack.
Moreover, although this procedure was demonstrated here only for free vibrations, it could
also be applied effectively to other plate problems, such as static loading, buckling or dynamic
response.
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