
PHYSICAL REVIEW D 71, 086005 (2005)
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We calculate and identify the counterparts of zero-norm states in the old covariant first quantized
(OCFQ) spectrum of open bosonic string in two other quantization schemes of string theory, namely, the
light-cone Del Giudice–Di Vecchia–Fubine zero-norm states and the off-shell Becchi-Rouet-Stora-Tyutin
(BRST) zero-norm states (with ghost) in the Witten string field theory (WSFT). In particular, special
attention is paid to the interparticle zero-norm states in all quantization schemes. For the case of the off-
shell BRST zero-norm states, we impose the no-ghost conditions and recover exactly two types of on-shell
zero-norm states in the OCFQ string spectrum for the first few low-lying mass levels. We then show that
off-shell gauge transformations of WSFT are identical to the on-shell stringy gauge symmetries generated
by two types of zero-norm states in the generalized massive �-model approach of string theory. The high-
energy limit of these stringy gauge symmetries was recently used to calculate the proportionality
constants, conjectured by Gross, among high-energy scattering amplitudes of different string states.
Based on these zero-norm state calculations, we have thus related gauge symmetry of WSFT to the high-
energy stringy symmetry of Gross.

DOI: 10.1103/PhysRevD.71.086005 PACS numbers: 11.25.Hf
I. INTRODUCTION

Recently it was discovered that [1,2] the high-energy
limit �0 ! 1 of stringy Ward identities, derived from the
decoupling of two types of zero-norm states in the old
covariant first quantized (OCFQ) spectrum, implies an
infinite number of linear relations among high-energy
scattering amplitudes of different string states with the
same momenta. Moreover, these linear relations can be
used to fix the proportionality constants between high-
energy scattering amplitudes of different string states alge-
braically at each fixed mass level. Thus there is only one
independent component of high-energy scattering ampli-
tude at each fixed mass level. For the case of string-tree
amplitudes, a general formula can even be given to express
all high-energy stringy scattering amplitudes for arbitrary
mass levels in terms of those of tachyons [1,3]. These zero-
norm state calculations are independent of the high-energy
saddle-point calculations of Gross and Mende [4], Gross
[5] and Gross and Manes [6]. In fact, the results of saddle-
point calculations by those authors were found [1–3] to be
inconsistent with high-energy stringy Ward identities of
zero-norm state calculations and thus could threat the
validity of unitarity of string perturbation theory. A cor-
rected saddle-point calculation was given in [3], where the
missing terms of the calculations in Refs. [4–6] were
identified to recover the stringy Ward identities.

The importance of zero-norm states and their implica-
tion on stringy symmetries were first pointed out in the
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context of the massive �-model approach of string theory
[7]. Some implications of the corresponding stringy Ward
identities on the scattering amplitudes were discussed in
[8]. On the other hand, zero-norm states were also shown
[9] to carry the spacetime !1 symmetry [10] charges of 2D
string theory [11]. This is in parallel with the work of [12]
where the ground ring structure of ghost number zero
operators was identified in the Becchi-Rouet-Stora-Tyutin
(BRST) quantization. All the above interesting results of
26D and 2D string theories strongly suggest that a clearer
understanding of zero-norm states holds promise to un-
cover the fundamental symmetry of string theory.
Recently, a simplified method to generate zero-norm states
in 26D OCFQ bosonic string was proposed [13]. Based on
a simplified prescription to calculate positive-norm prop-
agating states given in [14], general formulas of some zero-
norm tensor states at arbitrary mass levels were calculated.
Unfortunately, general formulas for the complete set of
zero-norm states are still lacking mostly due to the high
dimensionality of spacetime D � 26. However, in the 2D
OCFQ string theory, a general formula of zero-norm states
with discrete Polyakov’s momenta at arbitrary mass levels
was given in terms of Schur polynomials [9]. On the other
hand, for the case of 26D string, the background ghost
transformations in the gauge transformations of Witten
string field theory (WSFT) [15] were shown [16] to corre-
spond, in a one-to-one manner, to the lifting of on-shell
conditions of zero-norm states in the OCFQ approach.

In this paper, we shall calculate and identify the counter-
parts of zero-norm states in two other quantization
schemes of 26D open bosonic string theory, namely, the
light-cone Del Giudice–Di Vecchia–Fubine (DDF) [17]
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zero-norm states and the off-shell BRST zero-norm states
(with ghost) in WSFT. In particular, special attention is
paid to the interparticle zero-norm states in all quantization
schemes. For the case of off-shell BRST zero-norm states,
we impose the no-ghost conditions and recover exactly two
types of on-shell zero-norm states in the OCFQ string
spectrum for the first few low-lying mass levels. We then
show that off-shell gauge transformations of WSFT are
identical to the on-shell stringy gauge symmetries gener-
ated by two types of zero-norm states in the OCFQ string
theory. Our calculations in this paper serve as the first step
to study stringy symmetries in light-cone DDF and BRST
string theories and to bridge the links between different
quantization schemes for both on-shell and off-shell string
theories. In Sec. II, we first review the calculations of zero-
norm states in the OCFQ spectrum. The most general
spectrum analysis in the helicity basis, including zero-
norm states, was then given to discuss the interparticle
D2 zero-norm state [7,8] at mass level m2 � 4. We will
see that one can use polarization of either one of the two
positive-norm states to represent the polarization of the
interparticle zero-norm state. This justifies how one can
have the interparticle symmetry transformation for the two
massive modes in the weak field massive �-model calcu-
lation derived previously [7]. In Sec. III, we calculate both
type I and type II zero-norm states in the light-cone DDF

string up to mass level m2� 4. In Sec. IV, we first calculate

off-shell zero-norm states with ghosts from linearized
gauge transformation of WSFT. After imposing the no-
ghost conditions on these zero-norm states, we can repro-
duce exactly two types of zero-norm states in OCFQ
spectrum for the first few low-lying mass levels. We then
show that off-shell gauge transformations of WSFT are
identical to the on-shell stringy gauge symmetries gener-
ated by two types of zero-norm states in the generalized
massive �-model approach [7] of string theory. The high-
energy limit of these stringy gauge symmetries was re-
cently used to calculate the proportionality constants
among high-energy scattering amplitudes of different
string states conjectured by Gross [5]. Based on the zero-
norm state calculations [1–3], we have thus related gauge
symmetry of WSFT [15] to the high-energy stringy sym-
metry conjectured by Gross [4–6]. Finally, a brief conclu-
sion is given in Sec. V.

II. ZERO-NORM STATES IN THE OCFQ
SPECTRUM

In the OCFQ spectrum of open bosonic string theory, the
solutions of physical state conditions include positive-
norm propagating states and two types of zero-norm states.
The latter are [18]

type I:L�1jxi; whereL1jxi�L2jxi�0; L0jxi�0;

(2.1)
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type II:
�
L�2 �

3

2
L2
�1

�
j~xi; where L1j~xi � L2j~xi � 0;

	L0 � 1
j~xi � 0: (2.2)

Equations (2.1) and (2.2) can be derived from the Kac
determinant in conformal field theory. While type I states
have zero norm at any spacetime dimension, type II states
have zero norm only at D � 26.

A. Zero-norm states with constraints

The solutions of Eqs. (2.1) and (2.2) up to the mass level
m2 � 4 are listed in the following [13]:

(1) m2 � �k2 � 0:

L�1jxi � k � ��1j0; ki; jxi � j0; ki; jxi � j0; ki:

(2.3)
(2) m2 � �k2 � 2:

�
L�2�

3

2
L2
�1

�
j~xi�

�
1

2
��1 ���1�

5

2
k ���2

�
3

2
	k ���1


2

�
j0;ki; j~xi� j0;ki;

(2.4)
L�1jxi � �� � ��2 � 	k � ��1
	� � ��1

j0; ki;

jxi � � � ��1j0; ki; � � k � 0: (2.5)
(3) m2 � �k2 � 4:

	L�2�
3

2
L2
�1

�
j~xi�

�
4� ���3�

1

2
	��1 ���1
	� ���1


�
5

2
	k ���2
	� ���1
�

3

2
	k ���1


2

�	� ���1
�3	k ���1
	� ���2


�
j0;ki;

j~xi�� ���1j0;ki; k ���0; (2.6)
L�1jxi � �2�
��


�1�

�
�2 � k��
��

�
�1�



�1�

�
�1
j0; ki;

jxi � �
��

�
�1j0; ki; k � � � �
��
� � 0;

�
� � ��
; (2.7)
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L�1jxi �
�
1

2
	k � ��1


2	� � ��1
 � 2� � ��3 �
3

2
	k � ��1


� 	� � ��2
 �
1

2
	k � ��2
	� � ��1


�
j0; ki;

jxi � �2� � ��2 � 	k � ��1
	� � ��1

j0; ki;

� � k � 0; (2.8)

L�1jxi �
�
17

4
	k ���1


3 �
9

2
	k ���1
	��1 ���1


� 9	��1 ���2
 � 21	k ���1
	k ���2


� 25	k ���3


�
j0; ki;

jxi �
�
25

2
k ���2 �

9

2
��1 ���1 �

17

4
	k ���1


2

�
j0; ki:

(2.9)

Note that there are two degenerate vector zero-norm
states, Eq. (2.6) for type II and Eq. (2.8) for type I, at
mass level m2 � 4. We defineD2 vector zero-norm state by
antisymmetrizing those terms which contain �


�1�
�
�2 in

Eqs. (2.6) and (2.8) as following [7]

jD2i �

��
1

2
k
k��� � 2�
���

�
�

�1�

�
�1�

�
�1

� 9k
���
�

�2�

�

�1 � 6�
�



�3
j0; ki;

k � � � 0:

(2.10)

Similarly the D1 vector zero-norm state is defined by
symmetrizing those terms which contain �


�1�
�
�2 in

Eqs. (2.6) and (2.8)

jD1i �

��
5

2
k
k��� � �
���

�
�

�1�

�
�1�

�
�1

� 9k
���
	

�2�

�

�1 � 6�
�



�3

�
j0; ki;

k � � � 0:

(2.11)

In the generalized massive �-model approach of string
theory, it can be shown that each zero-norm state in the
OCFQ spectrum generates a massive symmetry transfor-
mation for the propagating string modes. In particular, the
interparticle symmetry transformation corresponding to
the D2 interparticle zero-norm state in Eq. (2.10) can be
calculated to be [7]

�C	
��
 �

�
1

2
@	
@���
 � 2�	
���


�
;

�C�
�
 � 9@�
��
;

(2.12)

where @��
� � 0, 	@2 � 4
�� � 0 are the on-shell condi-

tions of the D2 vector zero-norm state. C	
��
 and C�
�
 in
Eq. (2.12) are the background fields of the symmetric spin-
three and antisymmetric spin-two states, respectively, at
086005
mass level m2 � 4. Equation (2.12) is the result of the first
order weak field approximation but, in contrast to the high-
energy �0 ! 1 result of [1–3], valid to all energy �0 in the
generalized �-model approach. It is important to note that
the decoupling of the D2 vector zero-norm state implies
simultaneous change of both C	
��
 and C�
�
, thus they
form a gauge multiplet. In general, an interparticle zero-
norm state can be defined to be D2 � �D1, where � is an
arbitrary constant.

B. Zero-norm states in the helicity basis

In this section, we are going to do the most general
spectrum analysis which naturally includes zero-norm
states. We will then solve the Virasoro constraints in the
helicity basis and recover the zero-norm states listed above
[7,13]. In particular, this analysis will make it clear how the
D2 zero-norm state in Eq. (2.10) can induce the interpar-
ticle symmetry transformation for two propagating states at
the mass level m2 � 4.

We begin our discussion for the mass level m2 � 2. At
this mass level, the general expression for the physical
states can be written as

��
��


�1�

�
�1 � �
�



�2
j0; ki: (2.13)

In the OCFQ of string theory, physical states satisfy the
mass shell condition

	L0 � 1
jphysi � 0 ) k2 � �2; (2.14)

and the Virasoro constraints L1jphysi � L2jphysi � 0
which give

�
 � ��
�k�; (2.15)

�
��
� � 2�
�k
k�: (2.16)

In order to solve for the constraints Eqs. (2.15) and
(2.16) in a covariant way, it is convenient to make the
following change of basis:

eP �
1

m
	E; 0; . . . ; k
; (2.17)

eL �
1

m
	k; 0; . . . ; E
; (2.18)

eTi � 	0; 0; . . . ; 1 	ith spatial direction
; . . . ; 0
;

i � 1; 2; . . . ; 24:
(2.19)

The 2nd rank tensor �
� can be written in the helicity basis
Eqs. (2.17), (2.18), and (2.19) as

�
� �
X
A;B

uABe
A

e

B
� ; A; B � P;L; Ti: (2.20)

In this new representation, the second Virasoro con-
straint Eq. (2.16) reduces to a simple algebraic relation,
and one can solve it
-3
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uPP �
1

5

�
uLL �

X24
i�1

uTiTi

�
: (2.21)

In order to perform an irreducible decomposition of the
spin-two state into the trace and traceless parts, we define
the following variables:

x �
1

25

�
uLL �

X24
i�1

uTiTi

�
; (2.22)

y �
1

25

�
uLL �

1

24

X24
i�1

uTiTi

�
: (2.23)

We can then write down the complete decompositions of
the spin-two polarization tensor as

�
��x
�
5eP
eP��eL
eL��

X24
i�1

eTi
e
Ti
�

�
�y

X24
i�1

	eL
eL��eTi
e
Ti
� 


�
X
i;j

�
uTiTj �

�ij
24

X24
l�1

uTlTl

�
eTi
e

Tj
� �uPL	eP
eL��eL
eP� 


�
X24
i�1

uPTi	e
P

e

Ti
� �eTi
eP� 
�

X24
i�1

uLTi	e
L

e

Ti
� �eTi
eL�
:

(2.24)

The first Virasoro constraint Eq. (2.15) implies that the �

vector is not an independent variable and is related to the
spin-two polarization tensor �
� as follows:

�
 � 5
���
2

p
xeP
 �

���
2

p
uPLe

L

 �

���
2

p X24
i�1

uPTie
Ti

 : (2.25)

Finally, combining the results of Eqs. (2.13), (2.24), and
(2.25), we get the complete solution for physical states at
mass level m2 � 2

��
��


�1�

�
�1��
�



�2
j0;ki

�x
�
5�P

�1�
P
�1��L

�1�
L
�1�

X24
i�1

�Ti
�1�

Ti
�1�5

���
2

p
�P
�2

�
j0;ki

(2.26)

� y
X24
i�1

	�L
�1�

L
�1 � �Ti

�1�
Ti
�1
j0; ki (2.27)

�
X
i;j

�
uTiTj �

�ij
24

X24
l�1

uTlTl

�
�Ti
�1�

Tj
�1j0; ki (2.28)

� uPL	2�P
�1�

L
�1 �

���
2

p
�L
�2
j0; ki (2.29)

�
X24
i�1

uPTi	2�
P
�1�

Ti
�1 �

���
2

p
�Ti
�2
j0; ki (2.30)

� 2
X24
i�1

uLTi�
L
�1�

Ti
�1j0; ki; (2.31)
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where the oscillator creation operators �P
�1, �

L
�1, �

Ti
�1, etc.,

are defined as
�A
�n � eA
 � �


�n; n 2 N; A � P;L; Ti: (2.32)

In comparison with the standard expressions for zero-norm
states in Sec. II A, we find that Eqs. (2.26), (2.29), and
(2.30) are identical to the type II singlet and type I vector
zero-norm states for the mass level m2 � 2

	2:26
 � 2x
��

1

2
�
� �

3

2
k
k�

�
�

�1�

�
�1

�
5

2
k
�



�2

�
j0; ki;

	2:29
 �
���
2

p
uPL�eL
k��



�1�

�
�1 � eL
�



�2
j0; ki;

	2:30
 �
X24
i�1

���
2

p
uPTi�e

Ti

k��



�1�

�
�1 � eTi
�



�2
j0; ki:

(2.33)

In addition, one can clearly see from our covariant decom-
position how zero-norm states generate gauge transforma-
tions on positive-norm states. While a nonzero value for x
induces a gauge transformation along the type II singlet
zero-norm state direction, the coefficients uPL, uPTi pa-
rametrize the type I vector gauge transformations with
polarization vectors � � eL and � � eTi , respectively.
Finally, by a simple counting of degrees of freedom, one
can identify Eqs. (2.27), (2.28), and (2.31) as the singlet (1),
(traceless) tensor (299), and vector (24) positive-norm
states, respectively. These positive-norm states are in a
one-to-one correspondence with the degrees of freedom
in the light-cone quantization scheme.

We now turn to the analysis of the m2 � 4 spectrum.
Because of the complexity of our calculations, we shall
present the calculations in three steps. We shall first write
down all of the physical states (including both positive-
norm and zero-norm states) in the simplest gauge choices
in the helicity basis. We then calculate the spin-three state
decomposition in the most general gauge choice. Finally,
the complete analysis will be given to see how the D2 zero-
norm state in Eq. (2.10) can induce the interparticle sym-
metry transformation for two propagating states at the
mass level m2 � 4.

1. Physical states in the simplest gauge choices

To begin with, let us first analyze the positive-norm
states. There are two particles at the mass level m2 � 4,
a totally symmetric spin-three particle and an antisymmet-
ric spin-two particle. The canonical representation of the
spin-three state is usually chosen as

�
���


�1�

�
�1�

�
�1j0; ki; k2 � �4; (2.34)

where the totally symmetric polarization tensor �
�� can
be expanded in the helicity basis as
-4
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�
�� �
X
A;B;C

~uABCe
A

e

B
�e

C
�; A; B; C � P;L; Ti: (2.35)

The Virasoro conditions on the polarization tensor can be
solved as follows:

k��
���0) ~uPAB�0; 8A;B�P;L;Ti; (2.36)

����
�� � 0 ) ~uLLL �
X
i

~uTiTiL � 0;

~uLLTi �
X
j

~uTjTjTi � 0:
(2.37)

If we choose to keep the minimal number of L components
in the expansion coefficients ~uABC for the spin-three parti-
cle, we get the following canonical decomposition:

jA	�
i � 	�
���


�1�

�
�1�

�
�1
j0; ki � jA	~u
i

�
X
i

~uTiTiTi	�
Ti
�1�

Ti
�1�

Ti
�1 � 3�L

�1�
L
�1�

Ti
�1
j0; ki

�
X
i�j

3~uTjTjTi	�
Tj
�1�

Tj
�1�

Ti
�1 � �L

�1�
L
�1�

Ti
�1
j0; ki

�
X

	i�j�k


6~uTiTjTk	�
Ti
�1�

Tj
�1�

Tk
�1
j0; ki

�
X
i

~uLTiTi	3�
L
�1�

Ti
�1�

Ti
�1 � �L

�1�
L
�1�

L
�1
j0; ki

�
X
	i�j


6~uLTiTj	�
L
�1�

Ti
�1�

Tj
�1
j0; ki: (2.38)

It is easy to check that the 2900 independent degrees of
freedom of the spin-three particle decompose into 24�
552� 2024� 24� 276 in the above representation.

Similarly, for the antisymmetric spin-two particle, we
have the following canonical representation:

��
;�
�


�1�

�
�2j0; ki: (2.39)

Rewriting the polarization tensor ��
;�
 in the helicity basis

��
;�
 �
X
A;B

v�A;B
eA
eB�; (2.40)

and solving the Virasoro constraints

k���
;�
 � 2v�P;L
e
L

 � 2

X24
i�1

v�P;Ti
e
Ti

 � 0; (2.41)

we obtain the following decomposition for the spin-two
state:

jB	�
i � ��
;�
�


�1�

�
�2j0; ki � jB	v
i

�
X
i

v�L;Ti
	�
L
�1�

Ti
�2 � �Ti

�1�
L
�2
j0; ki

�
X
	i�j


v�Ti;Tj
	�
Ti
�1�

Tj
�2 � �

Tj
�1�

Ti
�2
j0; ki: (2.42)

Finally, one can check that the 300 independent degrees of
freedom of the spin-two particle decompose into 24� 276
in the above expression.
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For the zero-norm states at m2 � 4, we have the follow-
ing decompositions:
(1) S
-5
pin-two tensor

jC	�
i � 	k��
��


�1�

�
�1�

�
�1 � 2�
��



�1�

�
�2
j0; ki

�
X
i

2�TiTi	�
Ti
�1�

Ti
�1�

P
�1 � �L

�1�
L
�1�

P
�1

� �Ti
�1�

Ti
�2 � �L

�1�
L
�2
j0; ki

�
X
	i�j


2�TiTj	2�
Ti
�1�

Tj
�1�

P
�1 � �Ti

�1�
Tj
�2

� �
Tj
�1�

Ti
�2
j0; ki

�
X
i

2�LTi	2�
L
�1�

Ti
�1�

P
�1 � �L

�1�
Ti
�2

� �Ti
�1�

L
�2
j0; ki; (2.43)

where we have solved the Virasoro constraints on
the polarization tensor �
�

�
� �
X
A;B

�ABe
A

e

B
�; (2.44)

�
��
� � ��PP � �LL �
X
i

�TiTi � 0; (2.45)

k��
� � �2�PPe
P

 � 2�PLe

L
� � 2

X
i

�PTie
Ti

 � 0:

(2.46)

The 324 degrees of freedom of on-shell �
� decom-
pose into 24� 276� 24 in Eq. (2.43).
(2) S
pin-one vector (with polarization vector � � k � 0,
�
 �

P
A�Ae

A

, A � L; Ti)

jD1	�
i �
��

5

2
k
k��� � �
���

�
�

�1�

�
�1�

�
�1

� 9k	
��
�


�1�

�
�2 � 6�
�



�3
j0; ki

(2.47)

�
X
A

�A

�
9�P

�1�
P
�1�

A
�1 � �L

�1�
L
�1�

A
�1

�
X
i

�Ti
�1�

Ti
�1�

A
�1 � 9	�P

�1�
A
�2

� �A
�1�

P
�2
 � 6�A

�3

�
j0; ki: (2.48)
(3) S
pin-one vector (with polarization vector � � k � 0,
�
 �

P
A�Ae

A

, A � L; Ti)

jD2	�
i �
��

1

2
k
k��� � 2�
���

�
�

�1�

�
�1�

�
�1

� 9k
�
��
�



�1�

�
�2 � 6�
�



�3

�
j0; ki

(2.49)
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�
X
A

�A

�
2�L

�1�
L
�1�

A
�1 � 2

X
j

�
Tj
�1�

Tj
�1�

A
�1

� 9	�P
�1�

A
�2 � �A

�1�
P
�2
 � 6�A

�3

�
j0; ki:

(2.50)
(4) S
pin-zero singlet

jEi �
��

17

4
k
k�k� �

9

2
�
�k�

�
�

�1�

�
�1�

�
�1

� 	21k
k� � 9�
�
�


�1�

�
�2

� 25k
�


�3

�
j0; ki (2.51)

�

�
25	�P

�1�
P
�1�

P
�1�3�P

�1�
P
�2�2�P

�3


�9�L
�1�

L
�1�

P
�1�9�L

�1�
L
�2

�9
X
i

	�Ti
�1�

Ti
�1�

P
�1��Ti

�1�
Ti
�2


�
j0;ki: (2.52)
2. Spin-three state in the most general gauge choice

In this section, we study the most general gauge choice
associated with the totally symmetric spin-three state
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�"
���


�1�

�
�1�

�
�1 � "	
�
�



�1�

�
�2 � "
�



�3
j0; ki;

(2.53)

where Virasoro constraints imply

"	
�
 � �
3

2
k�"
��; (2.54)

"
 �
1

2
k�k�"
��; (2.55)

2�
�"
�� � k
k�"
��: (2.56)

Equations (2.54) and (2.55) imply that both "	
�
 and "

are not independent variables, and Eq. (2.56) stands for the
constraint on the polarization "
��. In the helicity basis,
we define
"
�� �

X
A;B;C

uABCeA
eB�e
C
�; A; B; C � P;L; Ti: (2.57)

Equation (2.56) then givesX
A;B

�ABuABC � 2uPPC; A; B; C � P;L; Ti; (2.58)

which implies

3uPPC�uLLC�
X
j

uTjTjC�0; C�P;L;Ti: (2.59)

Eliminating uLLP, uLLL, and uLLTi from the above equa-
tions, we have the solution for "
��, "	
�
, and "
:
"
���uPPP�eP
eP�eP��3	eL
eL�eP��per:

�uPPL�	eP
eP�eL��per:
�3eL
eL�eL�
�
X
i

uPPTi�	e
P

eP�e

Ti
� �per:


�3	eL
eL�e
Ti
� �per:

�

X
i

uPTiTi�	e
P

e

Ti
� e

Ti
� �per:
�	eL
eL�eP��per:

�

X
	i�j


uPTiTj�e
P

e

Ti
� e

Tj
� �per:


�
X
i

uPLTi�e
P

eL�e

Ti
� �per:
�

X
i

uLTiTi�	e
L

e

Ti
� e

Ti
� �per:
�eL
eL�eL�
�

X
	i�j


uLTiTj�e
L

e

Ti
� e

Tj
� �per:


�
X
i

uTiTiTi�e
Ti

e

Ti
� e

Ti
� �	eL
eL�e

Ti
� �per:

�

X
i�j

uTjTjTi�	e
Tj

 e

Tj
� e

Ti
� �per:
�	eL
eL�e

Ti
� �per:



�
X

	i�j�k


uTiTjTk�e
Ti

e

Tj
� e

Tk
� �per:
; (2.60)
1

3
"	
�
 � uPPP	e

P

e

P
� � 3eL
e

L
�
 � uPPL	e

P

e

L
� � eL
e

P
� 


�
X
i

uPPTi	e
P

e

Ti
� � eTi
eP� 


�
X
i

uPLTi	e
L

e

Ti
� � eTi
eL�


�
X
i

uPTiTi	e
Ti

e

Ti
� � eL
eL�


�
X
	i�j


uPTiTj	e
Ti

e

Tj
� � e

Tj
� e

Tj

 
; (2.61)

1

2
"
 �

�
uPPPe

P

 � uPPLe

L

 �

X
i

uPPTie
Ti



�
: (2.62)

Putting all these polarizations back to the general form of
physical states Eq. (2.53), we get

�"
���


�1�

�
�1�

�
�1 � "	
�
�



�1�

�
�2 � "
�



�3
j0; ki

� jA	~u
i � jC	�
i �
�
1

9

�
uLLL �

X
i

uTiTiL

��
jD1	eL
i

�
X
i

�
1

9

�
uLLTi �

X
j

uTjTjTi

��
jD1	e

Ti
i

�
1

75

�
uLLP �

X
i

uPTiTi

�
jEi: (2.63)

For the first two terms on the right-hand side (r.h.s.) of
Eq. (2.63), we need to make the following replacements.
For the positive-norm state jA	~u
i in Eq. (2.38)
-6
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~uTiTiTi ! uTiTiTi �
1

3
uPPTi ;

~uTjTjTi ! uTjTjTi �
1

9
uPPTi ; ~uTiTjTk ! uTiTjTk ;

~uLTiTi ! uLTiTi �
1

9
uPPL; ~uLTiTj ! uLTiTj :

(2.64)

For the spin-two zero-norm state jC	�
i in Eq. (2.43), the
replacement is given by

2�LTi ! 3uPLTi ; 2�TiTj ! 3uPTiTj ; for i � j;

2�TiTi ! 3
�
uPTiTi �

3

25
uPPP

�
: (2.65)

It is important to note that for the spin-three gauge
multiplet, only spin-two, singlet, and D1 vector zero-
norm states appear in the decomposition Eq. (2.63). In
the next section, we will see how one can include the
missing D2 zero-norm state in the analysis.

3. Complete spectrum analysis and theD2 zero-norm state

After all these preparations, we are ready for a complete
analysis of the most general decomposition of physical
states at m2 � 4. The most general forms of physical states
at this mass level are given by

��
���


�1�

�
�1�

�
�1 � �	
�
�



�1�

�
�2

� ��
�
�


�1�

�
�2 � �
�



�3
j0; ki: (2.66)

The Virasoro constraints are

�	
�
 � �
3

2
k��
��; (2.67)

�k���
�
 � 3�
 �
3

2
k�k��
��; (2.68)

2k���
�
 � 3�
 � 3	k�k� � ���
�
��: (2.69)

The solutions to Eqs. (2.68) and (2.69) are given by

k���
�
 �
�
1

2
k�k� � ���

�
�
��; (2.70)

3�
 � 	2k�k� � ���
�
��: (2.71)

In contrast to the previous discussion Eqs. (2.54) and
(2.55), where both �	
�
 and �
 are completely fixed by the
leading spin-three polarization tensor �
��, we now have a
new contribution from k���
�
. It will become clear that
this extra term includes the interparticle zero-norm state
D2, Equations (2.49) and (2.50). Furthermore, it should be
clear that the antisymmetric spin-two positive-norm physi-
cal states are defined by requiring �
�� � �	
�
 � 0 and
�
 � k���
�
 � 0. In the following, for the sake of clarity,
we shall focus on the effects of the new contribution
induced by the ��
�
 only.
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The two independent polarization tensors of the most
general representation for physical states Eq. (2.66) are
given in the helicity basis by

�
�� �
X
ABC

UABCeA
eB�e
C
�; A; B; C � P;L; Ti; (2.72)

��
�
 �
X
A;B

V�AB
e
A

e

B
�: (2.73)

The Virasoro constraint Eq. (2.70) demands that

3UPPP �ULLP �
X
i

UPTiTi � 0; (2.74)

3UPPL �ULLL �
X
i

ULTiTi � 2V�PL
; (2.75)

3UPPTi �ULLTi �
X
j

UTjTjTi � 2V�PTi
: (2.76)

In contrast to Eq. (2.59), the solutions to the above equa-
tions become

UPPL � U	1

PPL �U	2


PPL;

where U	1

PPL �

1

3

�
ULLL �

X
i

UTiTiL

�
;

U	2

PPL �

2

3
V�PL
;

(2.77)

UPPTi � U	1

PPTi

�U	2

PPTi

;

where U	1

PPTi

�
1

3

�
ULLTi �

X
j

UTjTjTi

�
;

U	2

PPTi

�
2

3
V�PTi
:

(2.78)

It is clear from the expressions above that only U	2

PPL and

U	2

PPTi

give new contributions to our previous analysis in
the last section, so we can simply write down all these new
terms as

��
�� �
2

3

�
V�PL
	eP
eP�eL� � per:


�
X
i

V�PTi
	e
P

eP�e

Ti
� � per:


�
; (2.79)

���
�
 � V�PL
	eP
eL� � per:
 �
X
i

V�PTi
	e
P

e

Ti
� � per:


�
X
i

V�TiL
	e
Ti

eL� � per:


�
X
i�j

V�TjTi
	e
Tj

 e

Ti
� � per:
; (2.80)
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��	
�
 �2
�
V�PL
	e

P

e

L
��per:
�

X
i

V�PTi
	e
P

e

Ti
� �per:


�
;

(2.81)

��
 � 2
�
V�PL
e

L

 �

X
i

V�PTi
e
Ti



�
: (2.82)

Finally, the complete decomposition of physical states
Eq. (2.66) in the helicity basis becomes

��
���


�1�

�
�1�

�
�1 � �	
�
�



�1�

�
�2

� ��
�
�


�1�

�
�2 � �
�



�3
j0; ki

� jA	UCBA
i � jB	V�TiA

i � jC	UPBA
i (2.83)

�
X

A�L;Ti

�
1

9

�
ULLA �

X
i

UTiTiA

��
jD1	e

A
i

(2.84)

�
1

9

X
A�L;Ti

V�PA
jD
0
2	e

A
i (2.85)

�
1

75

�
ULLP �

X
i

UPTiTi

�
jEi: (2.86)

In Eq. (2.83), jA	UCBA
i is given by Eq. (2.38) with ~uCBA
given by Eq. (2.64) and we have replaced u by U on the
r.h.s. of Eq. (2.64). The antisymmetric spin-two positive-
norm state jB	V�TiA

i is given by Eq. (2.42) and we have
replaced v by V in Eq. (2.42). Finally, jC	UPBA
i is given
by Eq. (2.43) with � given by Eq. (2.65) and we have
replaced u by U on the r.h.s. of Eq. (2.65). In Eq. (2.85),
jD0

2	e
A
i � jD2	e

A
i � 2jD1	e
A
i is the interparticle zero-

norm state introduced at the end of Sec. II A with � � �2.
Note that the value of � is a choice of convention fixed by
the parametrizations of the polarizations. It can always be
adjusted to be zero. In view of Eqs. (2.77) and (2.78), we
see that one can use either V�PA
 or U	2


PPA (A � L; Ti) to
represent the polarization of the jD0

2	e
A
i interparticle

zero-norm state.
We conclude that once we turn on the antisymmetric

spin-two positive-norm state in the general representation
of physical states Eq. (2.66), it is naturally accompanied by
the D0

2 interparticle zero-norm state. The polarization of
the D0

2 interparticle zero-norm state can be represented by
either V�PA
 or U	2


PPA (A � L; Ti) in Eqs. (2.72) and (2.73).
Thus this interparticle zero-norm state will generate an
interparticle symmetry transformation in the �-model cal-
culation considered in [7,13]. Note that, in contrast to the
high-energy symmetry of Gross [5], this symmetry is valid
to all orders in �0.
086005
III. LIGHT-CONE DDF ZERO-NORM STATES

In the usual light-cone quantization of bosonic string
theory, one solves the Virasoro constraints to get rid of two
string coordinates X�. Only 24 string coordinates �i

n, i �
1; . . . ; 24, remain, and there are no zero-norm states in the
spectrum. However, there exists another related quantiza-
tion scheme, the DDF quantization, which does include the
zero-norm states in the spectrum. In the light-cone DDF
quantization of open bosonic string [17], one constructs
transverse physical states with discrete momenta

p
 � p

0 � Nk
0 � 	1; 0; . . . ;�1� N
; (3.1)

where X� � 1��
2

p 	X0 � X25
 and p� � 1, p� � �1� N.

In Eq. (3.1) m2 � �p2 � 2	N � 1
 and p

0 �

	1; 0; . . . ;�1
, k
0 � 	0; 0; . . . ;�1
, respectively. All other
momenta can be reached by Lorentz transformations. The
DDF operators are given by [17]

Ai
n �

1

2(

Z 2(

0

_Xi	)
einX
�	)
d); i � 1; . . . ; 24; (3.2)

where the massless vertex operator Vi	nk0; )
 �
_Xi	)
einX

�	)
 is a primary field with conformal dimension
one and is periodic in the world sheet time ) if one chooses
k
 � nk
0 with n 2 Z. It is then easy to show that

�Lm; A
i
n
 � 0; (3.3)

�Ai
m; A

j
n
 � m�ij�m�n: (3.4)

In addition to sharing the same algebra, Eq. (3.4), with
string coordinates �i

n; the DDF operators Ai
n possess a

nicer property Eq. (3.3), which enables us to easily write
down a general formula for the positive-norm physical
states as following:

	Aj
�1


i1	Ak
�2


i2 � � � 	Al
�m


im j0; p0i; ir 2 N; (3.5)

where j0; p0i is the tachyon ground state and N �
Pm

r�1 rir
is the level of the state. Historically, DDF operators were
used to prove no-ghost (negative-norm states) theorem for
D � 26 string theory. Here we are going to use them to
analyze zero-norm states. It turns out that zero-norm states
can be generated by

~A�
n � A�

n �
X1
m�1

XD�2

i�1

:Ai
mA

i
n�m : ; (3.6)

where A�
n is given by

A�
n �

1

2(

Z 2(

0

�
: _X�einX

�
: �

1

2
in

d
d)

	log _X�
einX
�

�
d):

(3.7)

It can be shown that ~A�
n commute with Lm and satisfy the

following algebra:

� ~A�
m; Ai

n
 � 0; (3.8)
-8



ANATOMY OF ZERO-NORM STATES IN STRING THEORY PHYSICAL REVIEW D 71, 086005 (2005)
� ~A�
m; ~A

�
n 
 � 	m� n
 ~A�

m�n �
26�D

12
m3�m�n: (3.9)

Equations (3.4), (3.8), and (3.9) constitute the spectrum
generating algebra for the open bosonic string including
zero-norm states. The ground state j0; p0i � j0i satisfies
the following conditions:

Ai
nj0i � ~A�

n j0i � 0; n > 0; (3.10)

~A�
0 j0i � �

26�D
24

; Ai
0j0i � 0:

We are now ready to construct zero-norm states in the DDF
formalism.

(1) m2 � 0: One has only one scalar ~A�
�1j0i, which has

zero norm for any D.
(2) m2 � 2: One has a light-cone vector Ai

�1
~A�
�1j0i,

which has zero norm for any D, and two scalars, whose
norms are calculated to be

k	a ~A�
�1

~A�
�1 � b ~A�

�2
j0ik �
26�D

2
b2: (3.12)

For b � 0; one has a ‘‘pure type I’’ zero-norm state,
~A�
�1

~A�
�1j0i, which has zero norm for any D. By combining

with the light-cone vector Ai
�1

~A�
�1j0i, one obtains a vector

zero-norm state with 25 degrees of freedom, which corre-
spond to Eq. (2.5) in the OCFQ approach. For b � 0, one
obtains a type II scalar zero-norm state for D � 26, which
corresponds to Eq. (2.4) in the OCFQ approach.

(3) m2 � 4:
(I) A spin-two tensor Ai

�1A
j
�1

~A�
�1j0i, which has zero

norm for any D.
(II) Three light-cone vectors, whose norms are calcu-

lated to be

k	aAi
�1

~A�
�1

~A�
�1 � bAi

�2
~A�
�1 � cAi

�1
~A�
�2
j0ik

�
26�D

2
c2: (3.13)

(III) Three scalars, whose norms are calculated to be

k	d ~A�
�1

~A�
�1

~A�
�1 � e ~A�

�1
~A�
�2 � f ~A�

�3
j0ik

� 2	26�D
	e� f
2: (3.14)

For c � 0 in Eq. (3.13), one has two pure type I light-cone
vector zero-norm states. For e� f � 0 in Eq. (3.14), one
has two pure type I scalar zero-norm states. One of the two
type I light-cone vectors, when combining with the spin-
two state in I, gives the type I spin-two tensor which
corresponds to Eq. (2.7) in the OCFQ approach. The other
type I light-cone vector, when combining with one of the
two type I scalars, gives the type I vector zero-norm state
which corresponds to Eq. (2.8) in the OCFQ approach. The
other type I scalar corresponds to Eq. (2.9). Finally, for c �

0 and e� f � 0, one obtains the type II vector zero-norm
state for D � 26, which corresponds to Eq. (2.6) in the
086005
OCFQ approach. It is easy to see that a special linear
combination of b and c will give the interparticle vector
zero-norm state which corresponds to the interparticle D2

zero-norm state in Eq. (2.10). This completes the analysis
of zero-norm states for m2 � 4. Note that the exact map-
ping of zero-norm states in the light-cone DDF formalism
and the OCFQ approach depends on the exact relation
between operators 	 ~A�

n ; Ai
n; Ln
 and �


n , which has not
been worked out in the literature.
IV. BRST ZERO-NORM STATES IN WSFT

Cubic string field theory is defined on a disk with the
action

S � �
1

g0

�
1

2

Z
� �QB��

1

3

Z
� �� ��

�
; (4.1)

where QB is the BRST charge

QB �
X1

n��1

Lm
�ncn �

X1
m;n��1

m� n
2

: cmcnb�m�n : � c0;

(4.2)

and � is the string field with ghost number 1 and b, c are
conformal ghosts. Since the ghost number of vacuum on a
disk is �3, the total ghost number of this action is 0 as
expected. The string field can be expanded as

� �
X
k;m;n

A
���;k���m���n���	x
�


k � � � bm � � � cn � � � j�i;

where the string ground state j�i is

j�i � c1j0i: (4.3)

The gauge transformation for the string field can be written
as

�� � QB�� g	� ���� ��
; (4.4)

where � is the string field with ghost number 0.
For the purpose of discussion in this paper, we are going

to consider the linearized gauge transformation

�� � QB�; (4.5)

where QB� is just the off-shell zero-norm states. In the
following, we will explicitly show that the components of
Eq. (4.5) are in one-to-one correspondence to the zero-
norm states obtained in the OCFQ approach in Sec. II level
by level for the first few mass levels.

There is no zero-norm state in the lowest string mass
level with m2 � �2, so our analysis will start with the
mass level of m2 � 0.

(i) m2 � 0:
The string field can be expanded as

� � fiA
	x
�


�1 � �	x
b�1c0gj�i; (4.6)

� � f�0	x
b�1gj�i: (4.7)
-9
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The gauge transformation is then

QB� �

�
�
1

2
�2
0�

0b�1c0 � �0�0 � ��1

�
j�i: (4.8)

The nilpotency of the BRST charge QB gives

Q2
B� � 0; (4.9)

which can be easily checked to be valid for any D. Thus
Eq. (4.8) can be interpreted as a type I zero-norm state. To
compare it with the zero-norm state obtained in the OCFQ
approach in Sec. II, we need to reduce the Hilbert space by
removing the ghost states. In particular, the coefficients of
terms with ghost operators must vanish. For the state in
Eq. (4.8), it is

�2
0�

0 � 0; (4.10)

which gives the on-shell condition k2 � 0 and the follow-
ing zero-norm state:

QB� � �0�0 � ��1j�i: (4.11)

This is the same as the scalar zero-norm state obtained in
the OCFQ approach.

(ii) m2 � 2:
The string field expansions are

� � f�B
�	x
�


�1�

�
�1 � iB
	x
�



�2 � i5
	x
�



�1b�1c0

� 50	x
b�2c0 � 51	x
b�1c�1gj�i; (4.12)

� � fi�0
	x
�


�1b�1 � �1	x
b�2gj�i: (4.13)

The off-shell zero-norm states are calculated to be

QB��

��
i�0
�

0
��

1

2
�1�
�

�
�

�1�

�
�1�	i�0��0�

1


���2� i
1

2
	�2

0�2
	�0 ���1
b�1c0

�
1

2
	�2

0�2
�1b�2c0�	i�0 ��
0�3�1
b�1c�1

�
j�i:

(4.14)

The nilpotency condition requires

Q2
B� �

D� 26

2
�1c�2j�i � 0: (4.15)

There are two solutions of Eq. (4.15), which correspond to
the type I and type II zero-norm states, respectively.
(1) T
ype I: in this case D is not restricted to the critical
string dimension in Eq. (4.15), i.e. D � 26. Thus

�1 � 0: (4.16)

The no-ghost conditions of Eq. (4.14) lead to the on-
086005-10
shell constraints

�2
0 � 2 � 0; (4.17)

�0 � �
0 � 0: (4.18)

The off-shell zero-norm state in Eq. (4.14) then
reduces to an on-shell vector zero-norm state

QB� � if	�0 � ��1
	�0 � ��1
 � �0 � ��2gj�i:

(4.19)
(2) T
ype II: in this case D is restricted to the critical
string dimension, i.e. D � 26, and �1 can be an
arbitrary function. The no-ghost conditions then
lead to the on-shell constraints

�2
0 � 2 � 0; (4.20)

i�0 � �0 � 3�1 � 0: (4.21)

The second condition can be solved by a special
solution

�0
 � �
3i
2
�0
�

1; (4.22)

which leads to an on-shell scalar zero-norm state

QB� �

�
3

2
	�0 � ��1


2 �
1

2
	��1 � ��1


�
5

2
�0 � ��2


�
�1j�i: (4.23)

Again, up to a constant factor, the zero-norm states
Eqs. (4.19) and (4.23) are the same as Eqs. (2.4) and
(2.5) calculated in the OCFQ approach.
(iii) m2 � 4:
The string fields are expanded as

� � f�iC
��	x
�


�1�

�
�1�

�
�1 � C
�	x
�



�2�

�
�1

� iC
	x
�


�3 � 6
�	x
�



�1�

�
�1b�1c0

� i60

	x
�



�1b�2c0 � i61


	x
�


�1b�1c�1

� i62

	x
�



�2b�1c0 � 60	x
b�3c0

� 61	x
b�2c�1 � 62	x
b�1c�2gj�i; (4.24)
� � f��
�	x
�


�1�

�
�1b�1 � i�1
	x
�



�2b�1j�i

� i�2
	x
�


�1b�2 � �2	x
b�3 � �3	x
b�1b�2c0gj�i:

(4.25)
The off-shell zero-norm states are
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QB��

��
��0	
���
�

i
2
�2	
���


�
�

�1�

�
�1�

�
�1�	i�0
�

2
�� i�0��

1

�2�
���2�
�
�



�2�

�
�1�	�0
�

2�2i�1
� i�2

�


�3

�

�
1

2
	�2

0�4
�
��
1

2
�3�
�

�
�

�1�

�
�1b�1c0�

�
�
i
2
	�2

0�4
�2
��0
�3
�
�

�1b�2c0

�	2��
0��
�2i�1
�3i�2

�



�1b�1c�1�

�
�
i
2
	�2

0�4
�1
��0
�
3

�
�

�2b�1c0�

�
�
1

2
�2
0�4
�2��3

�
b�3c0

�	�i�

0 �

2

�4�2�2�3
b�2c�1�	�2i�


0 �
1

�5�2�4�3��


b�1c�2

�
j�i: (4.26)

�

The nilpotency condition requires
Q2
B� � 	D� 26


�
i
2
�2
�



�1c�2 � 2�2c�3

�
1

2
�3b�1c�2c0

�
� 0: (4.27)
Similarly, we classify the solutions of Eq. (4.27) by type I
and type II in the following:
(1) T
ype I: D � 26. This leads to

�2 � �3 � �2
 � 0: (4.28)

The no-ghost conditions lead to the on-shell con-
straints

�2
0 � 4 � 0; (4.29)

��
0��
 � i�1
 � 0; (4.30)

�2i	�0 � �1
 � �

 � 0: (4.31)

One can apply the same technique as in Sec. II B to
obtain a complete set of solutions to Eqs. (4.30) and
(4.31). However, for simplicity, we shall list all
independent solutions only. There are three inde-
pendent solutions to the above equations, which
correspond to the three type I on-shell zero-norm
states:

(i) Tensor zero-norm state

�1
 � 0; ��
0�
� � 0; �

 � 0;

(4.32)

QB� � �f�0
����


�1�

�
�1�

�
�1

� 2�
��


�2�

�
�1gj�i: (4.33)

(ii) Vector zero-norm state

�0 � �1 � 0;

�
� � �
i
4
�0��

1

 � �0
�

1
�
;

(4.34)
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QB�� i
1

2
	�0 ���1


2	�1 ���1


�2i	�1 ���3
�
3

2
	�0 ���1
	�

1 ���2


�
1

2
	�0 ���2
	�1 ���1


�
j�i: (4.35)

(iii) Scalar zero-norm state

�1
 �
i	D� 1


9
�0
�;

�
� � �
���
	8�D


36
�0
�0��;

(4.36)

QB� � �
2

9

�
	8�D


8
	�0 � ��1


3 �
9

2
�0

� ��1
	��1 � ��1
 � 9	��1 � ��2


�
3	D� 2


4
	�0 � ��1
	�0 � ��2


� 	D� 1
	�0 � ��3


�
�j�i:

(4.37)

If we set D � 26, then

QB� � �
2

9

�
17

4
	�0 � ��1


3 �
9

2
	�0 � ��1


� 	��1 � ��1
 � 9	��1 � ��2


� 21	�0 � ��1
	�0 � ��2


� 25	�0 � ��3


�
�j�i; (4.38)

where � is an arbitrary function.

(2) T
ype II: D � 26 in Eq. (4.27), and �2, �3, and �2
 are

arbitrary functions. The no-ghost conditions lead to
the on-shell constraints

�2
0 � 4 � 0; (4.39)

�3 � 0; (4.40)

2��
0��
 � 2i�1
 � 3i�2
 � 0; (4.41)
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i�

0 �

2

 � 4�2 � 0; (4.42)

�2i�

0 �

1

 � 5�2 � �

 � 0: (4.43)

In addition to all three type I zero-norm states as
found above, we now have a new solution to the
above equations. This special solution can be chosen
as

�2 � �
i
4
	�0 � �

2
 � 0; (4.44)

�
� � �C	�0
�
2
� � �0��

2


; (4.45)

�1
 �
8iC� 3

2
�2
; (4.46)

which gives an on-shell vector zero-norm state:

QB� � i
�
	8iC� 2
	�2 � ��3
 �

1

2
	��1 � ��1


� 	�2 � ��1
 � 	2iC� 1
	�0 � ��2


� 	�2 � ��1
 � 2iC	�0 � ��1

2	�2 � ��1


�
12iC� 3

2
�0 � ��1
	�2 � ��2


�
j�i:

(4.47)

For a special value of C � �3i=4, Eq. (4.47) be-
comes

QB� � i
�
4	�2 � ��3
 �

1

2
	��1 � ��1
	�

2 � ��1


�
5

2
	�0 � ��2
	�

2 � ��1
 �
3

2
	�0 � ��1


2

�	�2 � ��1
 � 3	�0 � ��1
	�
2 � ��2


�
j�i:

(4.48)

Up to a constant factor, zero-norm states in
Eqs. (4.33), (4.35), (4.38), and (4.48) are exactly
the same as Eqs. (2.6), (2.7), (2.8), and (2.9) calcu-
lated in the OCFQ approach. In addition, it can be
checked that for C � �5i=8 and �i=16 in
Eq. (4.47), one gets D1 and D2 zero-norm states of
the OCFQ approach in Eqs. (2.11) and (2.10),
respectively.
In Ref. [16], the background ghost transformations
in the gauge transformations of WSFT [15] were
shown to correspond, in a one-to-one manner, to the
lifting of on-shell conditions of zero-norm states in
the OCFQ approach. For the rest of this section, we
are going to go one step further and apply the results
calculated above to demonstrate that off-shell gauge
transformations of WSFT are indeed identical to the
on-shell stringy gauge symmetries generated by two
types of zero-norm states in the generalized massive
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�-model approach [7] of string theory. For the mass
level m2 � 2, by using Eqs. (4.12) and (4.13), the
linearized gauge transformation of WSFT in
Eq. (4.5) gives

�B
� � �@	
�
0
�
 �

1

2
�1�
�; (4.49)

�B
 � �@
�1 �
1

2
�0
; (4.50)

�5
 �
1

2
	@2 � 2
�0
; (4.51)

�50 �
1

2
	@2 � 2
�1; (4.52)

�51 � �@
�0
 � 3�1: (4.53)

For the type I gauge transformation induced by the
zero-norm state in Eq. (2.5), one can use Eqs. (4.16),
(4.17), and (4.18) to eliminate the background ghost
transformations Eqs. (4.51), (4.52), and (4.53).
Finally, conditions of world sheet conformal invari-
ance in the presence of weak background fields [7]
can be used to express B
 in terms of B
�, and one
ends up with the following on-shell gauge trans-
formation by Eq. (4.49):

�B
� � @	
�
0
�
; @
�0
 � 0;

	@2 � 2
�0
 � 0:
(4.54)

Similarly, one can apply the same procedure to the
type II zero-norm state in Eq. (2.4), and derive the
following type II gauge transformation:

�B
� �
3

2
@
@��1 �

1

2
�
��1; 	@2 � 2
�1 � 0:

(4.55)

Equations (4.54) and (4.55) are consistent with the
massive �-model calculation in the OCFQ string
theory in [7].
For the mass level m2 � 4, by using Eqs. (4.24) and
(4.25), the linearized gauge transformation of
WSFT in Eq. (4.5) gives

�C
�� � �@
	
�

0
��
 �

1

2
�2
	
�
�
; (4.56)

�C�
�
 � �@���1

 � @�
�2�
; (4.57)
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�C	
�
 � �@	��
1


 � @	
�

2
�
 � 2�0
� � �2�
�;

(4.58)

�C
 � �@
�
2 � 2�1
 � �2
; (4.59)

�6
� �
1

2
	@2 � 4
�0
� �

1

2
�3�
�; (4.60)

�60

 �

1

2
	@2 � 4
�2
 � @
�3; (4.61)

�61

 � �2@��0�
 � 2�1
 � 3�2
; (4.62)

�62

 �

1

2
	@2 � 4
�1
 � @
�3; (4.63)

�60 �
1

2
	@2 � 4
�2 � �3; (4.64)

�61 � �@
�2
 � 4�2 � 2�3; (4.65)

�62 � �2@
�1
 � 5�2 � 4�3 � �0

 : (4.66)

For the gauge transformation induced by the D2

zero-norm state in Eq. (4.48), for example, one can
use Eqs. (4.39), (4.40), (4.41), (4.42), (4.43), (4.44),
(4.45), and (4.46) with C � �i=16 to eliminate
Eqs. (4.60), (4.61), (4.62), (4.63), (4.64), (4.65),
and (4.66). One can then use the fact that back-
ground fields C	
�
 and C
 are gauge artifacts of
C
�� in the �-model calculation, and deduce from
Eqs. (4.56), (4.57), (4.58), and (4.59) the interpar-
ticle symmetry transformation

�C
�� �
1

2
@	
@��

	D2

�
 � 2�	
��

	D2

�
 ;

�C�
�
 � 9@�
�
	D2

�
 ;

(4.67)

where @��	D2

� � 0, 	@2 � 4
�	D2


� � 0. The other
three gauge transformations corresponding to three
other zero-norm states, the spin-two, D1, and scalar
can be similarly constructed from Eqs. (4.56),
(4.57), (4.58), (4.59), (4.60), (4.61), (4.62), (4.63),
(4.64), (4.65), and (4.66). One gets

�C
�� � @	
���
; @
�
� � 0;

	@2 � 4
�
� � 0;
(4.68)

�C
�� �
5

2
@	
@��

	D1

�
 � �	
��

	D1

�
 ;

@��	D1

� � 0; 	@2 � 4
�	D1


� � 0;

(4.69)
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�C
�� �
17

4
@
@�@���

9

2
�	
���
;

	@2 � 4
� � 0:
(4.70)

Equations (4.67), (4.68), (4.69), and (4.70) are ex-
actly the same as those calculated by the generalized
massive �-model approach of string theory [7].
We thus have shown in this section that off-shell
gauge transformations of WSFT are identical to the
on-shell stringy gauge symmetries generated by two
types of zero-norm states in the OCFQ string theory.
The high-energy limit of these stringy gauge sym-
metries generated by zero-norm states was recently
used to calculate the proportionality constants
among high-energy scattering amplitudes of differ-
ent string states conjectured by Gross [5]. Based on
the zero-norm state calculations in [1–3] and the
calculations in this section, we thus have related
gauge symmetry of WSFT [15] to the high-energy
stringy symmetry conjectured by Gross [4–6].
V. CONCLUSION

In this paper, we have calculated zero-norm states in the
OCFQ string theory, the light-cone DDF string theory, and
the off-shell BRST string theory. In the OCFQ string
theory, we have solved the Virasoro constraints for all
physical states (including zero-norm states) in the helicity
basis. Much attention is paid to discuss the interparticle
zero-norm state at the mass level m2 � 4. We found that
one can use polarization of either one of the two positive-
norm states to represent the polarization of the interparticle
zero-norm state. This justifies how one can have the inter-
particle symmetry transformation for the two massive
modes in the weak field massive �-model calculation
derived previously [7]. This interparticle symmetry trans-
formation, in contrast to the high-energy symmetry of
Gross [5], is valid to all energy.

In the light-cone DDF string theory, one can easily write
down the general formula for all zero-norm states in the
spectrum. We have identified type I and type II zero-norm
states up to the mass level m2 � 4: The analysis can be
easily generalized to any higher mass level as well.

Finally, we have calculated off-shell zero-norm states in
the WSFT. After imposing the no-ghost conditions, we can
recover two types of on-shell zero-norm states in the
OCFQ string theory. We then show that off-shell gauge
transformations of WSFT are identical to the on-shell
stringy gauge symmetries generated by two types of
zero-norm states in the generalized massive �-model ap-
proach of string theory. Based on these zero-norm state
calculations, we have thus related gauge symmetry of
WSFT [15] to the high-energy stringy symmetry of Gross
[5].



CHUAN-TSUNG CHAN, JEN-CHI LEE, AND YI-YANG PHYSICAL REVIEW D 71, 086005 (2005)
[1] C. T. Chan and J. C. Lee, Phys. Lett. B 611, 193
(2005).

[2] C. T. Chan and J. C. Lee, Nucl. Phys. B690, 3 (2004).
[3] C. T. Chan, P. M. Ho, and J. C. Lee, Nucl. Phys. B708, 99

(2005).
[4] D. J. Gross and P. Mende, Phys. Lett. B 197, 129 (1987);

Nucl. Phys. B303, 407 (1988).
[5] D. J. Gross, Phys. Rev. Lett. 60, 1229 (1988); Philos.

Trans. R. Soc. London A 329, 401 (1989).
[6] D. J. Gross and J. L. Manes, Nucl. Phys. B326, 73 (1989).

See Sec. 6 for details.
[7] J. C. Lee, Phys. Lett. B 241, 336 (1990); Phys. Rev. Lett.

64, 1636 (1990); J. C. Lee and B. Ovrut, Nucl. Phys. B336,
222 (1990).

[8] J. C. Lee, Prog. Theor. Phys. 91, 353 (1994); Phys. Lett. B
337, 69 (1994).

[9] T. D. Chung and J. C. Lee, Phys. Lett. B 350, 22 (1995);
Z. Phys. C 75, 555 (1997); J. C. Lee, Eur. Phys. J. C 1,
739 (1998).
086005
[10] J. Avan and A. Jevicki, Phys. Lett. B 266, 35 (1991); 272,
17 (1991); I. R. Klebanov and A. M. Polyakov, Mod. Phys.
Lett. A 6, 3273 (1991).

[11] For a review, see I. R. Klebanov and A. Pasquinucci, hep-
th/9210105, and references therein.

[12] E. Witten, Nucl. Phys. B373, 187 (1992); E.Witten and B.
Zwiebach, Nucl. Phys. B377, 55 (1992).

[13] J. C. Lee, hep-th/0302123.
[14] J. L. Manes and M. A. H. Vozmediano, Nucl. Phys. B326,

271 (1989).
[15] E. Witten, Nucl. Phys. B268, 253 (1986).
[16] H. C. Kao and J. C. Lee, Phys. Rev. D 67, 086003 (2003).
[17] E. Del Giudice, P. Di Vecchia, and S. Fubine, Ann. Phys.

(N.Y.) 70, 378 (1972); R. C. Brower and P. Goddard, Nucl.
Phys. B40, 437 (1972); R. C. Brower, Phys. Rev. D 6, 1655
(1972). Here we follow the discussion of Ref. [18].

[18] M. Green, J. H. Schwarz, and E. Witten, Superstring
Theory (Cambridge University Press, Cambridge, 1987),
Vol. I.
-14


