
ELSEVIER

An International Journal
Available online at www.sciencedirect.com computers &

.c,=.o= ~ ° , . = o T . mathematics
with applicaUona

Computers and Mathematics with Applications 49 (2005) 703-714
www.elsevier.com/locate/camwa

Simple Authenticated Key Agreement
and Protected

Password Change Protocol

T I N G - Y I C H A N G AND W E I - P A N G Y A N G
Department of Computer and Information Science, National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, R.O.C.

M I N - S H I A N G HWANG*
Department of Management Information System, National Chung Hsing University

250 Kuo Kuang Road, 402 Taichung, Taiwan, R.O.C.
mshwang©nchu, edu. tw

(Received January 2003; revised and accepted November 2004)

A b s t r a c t - - I n this article, we shall present an authenticated key agreement protocol which is a
modified and faster version of the Yeh-Sun scheme. Compared with the latest Kobara-Imai scheme,
our scheme takes fewer steps and less computation cost. Besides, we shall also propose a protected
password change protocol that allows users to change their own passwords freely. (~) 2005 Elsevier
Ltd. All rights reserved.

Keywords - -Cryp tography , Password authentication, Key exchange, Key agreement.

1. I N T R O D U C T I O N

The rapid progress of networks facilitates more and more computers to connect together to
exchange large amounts of information and share system resources. A session key is established
to provide confidentiality of communication over an open network. The famous Diffie-Hellman
key agreement scheme [1] is used to establ ish a session key between two par t ies over an insecure

network. However, the scheme is vulnerable to the man- in-middle a t t ack because the adversary

can impersona te p a r t y A to pa r ty B and vice versa. In this case, user au thent ica t ion plays an

impor t an t role in making the Diffie-Hellman scheme more secure.

In 1998, Law et el. [2] proposed the M Q V protocol, which is p ro tec ted under the public key

infras t ructure (PKI) . Smar t [3] and Yi [4] further proposed ident i ty -based au thent ica ted key

agreement protocols based on Welt pair ing to ob ta in lower communica t ion overhead and less
computa t ion complexity.

However, the involved cert if ication management , c ryp tography calculat ion, and the addi t ional

communica t ion overhead caused by the digi tal s ignature. Because of the convenience of pass-

This research was partially supported by the National Science Council, Taiwan, R.O.C., under Contract No. NSC
90-2213-E-324-004.
*Author to whom all correspondence should be addressed.

0898-1221/05/$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. Typeset by .4A,/S-~_X
doi: 10.1016/j.camwa.2004.11.007

704 TING-YI CHANC et al.

words such as natural language phrases that people can recognize without any assisting devices,
password authentication schemes are simple and practical solutions to user identification.

By using a preshared password technique along with the Diffie-Hellman scheme, Seo and
Sweeney [5] proposed a simple authenticated key agreement (SAKA) protocol without any sym-
metric cryptosystems (such as DES [6,7], Rijndael [8], and others [9]) or asymmetric cryptosys-
terns (such as RSA [10,11], E1Camal [12,13], etc.). Two parties online can use a preshared
password technique to authenticate each other and apply the Diffie-Hellman scheme to establish
a session key. Unfortunately, passwords are weak as secrets because they come from a rather lim-
ited set of possibilities; they are vulnerable to the password guessing attacks (dictionary attacks).
Sun [14], Tseng [15], and Lu et al. [16] separately showed that the Seo-Sweeney SAKA scheme is
insecure under the threat of the replay attack and off-line password guessing attack. At the same
time, Lin et al. [17] and Tseng [15] separately proposed an improvement on the Seo-Sweeney
SAKA scheme to withstand these attacks. However, Hsieh et al. [18] have pointed out that Lin
et al. 's is still vulnerable to the off-line password guessing attack. On the other hand, Ku and
Wang [19] have also shown that Tseng's scheme is vulnerable to the backward replay attack [20]
and modification attack, and they gave an improvement on Tseng's scheme in the meantime.

In 2004, Yang et al. [21] examined all SAKA-related schemes [5,15,17,19] and mounted a
modification attack on those schemes to successfully cheat the two parties into believing in the
wrong session key. Table 1 below is a summary table of the security of all those schemes.
Recently, Yeh and Sun [22], and Kobara and Imai [23] have also combined the preshared password
technique and the Diffie-Hellman scheme to achieve the same purpose the SAKA scheme intends
to, respectively. Both schemes can withstand those attacks shown in Table 1 and provide perfect
forward secrecy [24]. Lee et al. [25] further proposed the parallel version of the Yeh-Sun scheme.
Two parties in their scheme compute the message during the protocol simultaneously. In fact, the
scheme still need that one of two parties to send out the request message first and then another
one knows to prepare the reply message. Hence, the protocol is not real parallel.

In this paper, we shall present a simpler authenticated key agreement protocol by modifying
the Yeh-Sun scheme, and we shall also present a new protected password change protocol which
unlike the previously proposed schemes [5,15,17,19,22,23] where the parties cannot arbitrarily
change their own passwords, offers users the freedom of changing passwords at will. Moreover,
compared with the latest Kobara-Imai scheme, our key agreement protocol takes fewer steps and
less computation cost. Moreover, we not only give the heuristic security analysis, but also

Table 1. Summary of related schemes in SAKA.

Seo-Sweeney Tseng Line$ al. Ku-Wang
[5] [15] [17] [19]

Withstand Yes Yes Yes Yes
Man-In-Middle Attack

Withstand *No. [16,14] *No. [21] *No. [18] *No. [21]
Dictionary Attack

Withstand *No [15] Yes Yes Yes
Replay Attack

Withstand *No. [19] *No. [19] Yes Yes
Backward Replay Attack

Withstand *No. [21] *No. [19,21] *No. [21] *No. [21]
Modification Attack

Provide *No [14] Yes Yes *No. [21]
Perfect Forward Secrecy

*No [reference]: [reference] points out that the scheme cannot
withstand/achieve the attack/perfect forward secrecy.

Simple Authenticated Key Agreement 705

formally proven using Ballare, Poincheval and Rogaway's model (called BPR model for short)
[26]. The provable security is demonstrated by reduction (see [26] for more detailed description).

The remainder of this paper is organized as follows. In the next section, we will briefly review
the Kobara-Imai scheme. Then, our modified Yeh-Sun key agreement protocol and new protected
password change protocol will be presented in Section 3. The security of our schemes will be
analyzed in Section 4. After that, we will compare the performance of our key agreement protocol
with that of the Kobara-Imal scheme in Section 5. Finally, the concluding remarks will be made
in Section 6.

2. R E V I E W O F T H E K O B A R A - I M A I S C H E M E

The system publishes two large prime numbers p and q, such that q divides p - 1. Let gl and
g2 be two generators with order q in the Galois field CF(p) [23]. Assume that Alice and Bob
share a secret password (pw) and three predetermined distinct values Tag A = (id AII idB II 01),
Tag B = (ida II idB II 10) and TagAB = (ida II idB II 11), where idA and idB are separately
identities of Alice and Bob, and II denotes the concatenation. Their key agreement protocol
includes the following steps.

Step 1. Alice ~Bob: R A
pw Alice chooses a random number a C [1, q - 1], computes RA = g~ "g2 mod p, and

sends RA to Bob.
Step 2. Bob ~Alice: RB

pw Bob chooses a random number b C [1, q - 1], computes RB = g~ "g2 mod p, and
sends RB to Alice.

Alice and Bob use the received RB and RA to compute KA -= (RB • g2PW) a mod p and K s =
(RA • g~-pw)b mod p, respectively.

Step 3. Alice---*Bob: MACKA(TagA I] RA H RB)
Alice computes MACKA(TagA N RA H RB) and sends it to Bob, where MACK(.)
is a message authentication code [27] and the keying materials as its key K.

Step 4. Bob ~Alice: MACKB(Tags]1RA II RB)
Bob computes MACKB (Tag B 11 RA II RB) and sends it to Alice.

Alice and Bob respectively verify whether the received MACKs (Tag B I]RA I] RB) is equal to
MACKA(TagB [I RAN RB) and whether the received MACKa (Tag AII RA II RB) is equal to
MACKB (Tag A]1 RA]l RB) or not. If the equations hold, Alice and Bob agree on the common
session key Key = MACKA(TagAB IJ RAII RB) = MACK~(TagAB tl RAII Rs) , where KA =
K s = g~b rood p.

3. O U R P R O P O S E D S C H E M E S

In this section, we shall show our key agreement protocol and protected password change
protocol in such order in the following subsections.

3.1. Simple Authent icated Key Agreement Protocol

Here, the same parameters {p, q, pw} in the Kobara-Imal scheme are used, but there is only
one generator g with order q in GF(p) used in our schemes.

Step 1. Alice ~Bob: RA ® pw

Alice chooses a random number a C [1, q - 1], computes RA = ga mod p, and sends
RA ~) pw to Bob, where @ denotes the exclusive operator.

Step 2. Bob ~Alice: R B II H(KB, RA)
After receiving RA ~ pw, Bob recovers RA by computing (RA ~ pw) • pw. Then
Bob chooses a random number b E [1 , q - 1], computes RB = gb modp, KB =

706 TING-YI CHANG et al.

RbA = gab mod p, and sends RB H H(KB, RA) to Alice, where H(.) is a secure
one-way hash function.

Step 3. A l i ce ~Bob: H(KA, RB)
After receiving RB II H(KB, RA), Alice computes KA = RaB -~ gab m o d p and
verifies whether the received H(KB, RA) is equal to H(KA, RA) or not. If it is,
Alice computes H(KA, RB) and sends it to Bob.

After receiving H(KA, RB), Bob verifies whether it is equal to H(KB, RB) or not. If it is, Alice
and Bob agree on the common session key Key = H(KA) = H(KB) = H(g ab mod p).

The difference between the original Yeh-Sun scheme and our proposed scheme is that Bob
sends RB II H(KB, RA) to Alice in our scheme, while the message is RB @ pw II H(KB, RA) in
the Yeh-Sun scheme. Since only Bob, who knows pw, has the ability to recover RA and then
compute the valid H(KB,RA) and send it to Alice in Step 2, RB need not do any XOR with
pw; it can be directly sent to Alice. Hence, Bob's computational complexity can be reduced
by one XOR operation, and Alice's computational complexity can also be reduced by one XOR
operation (She does not compute (RB @ pw) @ pw to recover RB.) in our scheme.

3.2. Protected Password Change Protocol

Assume that Alice wants to change her old password pw to a new password new pw, she needs
to follow these steps.

Step 1". Alice----~Bob: RA @ pw II RA ® newpw
Alice chooses a random number a 6 [1, q - 1], computes RA = g~ rood p and sends

R A ~)pw]1RA @ newpw to Bob.

Step 2*. Bob---+Alice: RB]] H(Ks, RA)
After receiving RA@pw II RA@newpw, Bob recovers RA by computing (RA®pw)@
pw and uses the recovered RA to obtain new pw by computing (RA @new pw)@ RA.
Then Bob chooses a random number b C [1, q - 1], computes RB = gb mod p and
KB = R b = gab mod p, and sends RB]l H(KB, RA) t o Alice.

Step 3*. Alice---~Bob: H(KA, RB) @ newpw
After receiving RB II H(KB, RA), Alice computes KA = R~B = gab mod p and
verifies whether the received H(KB, RA) is equal to H(KA, RA) or not. If it holds,
Alice computes H(KA, RB) @ new pw and sends it to Bob.

After receiving H(KA,RB)~ newpw, Bob uses the recovered newpw in Step 2* to obtain
H(KA, RB) by computing (H(KA, RB) @ new pw) @ new pw. Then he verifies whether the recov-
ered H(KA, RB) is equal to H(KB, RB) or not. If it is, Alice and Bob have successfully changed
their old password (pw) to the new password (new pw).

4 . S E C U R I T Y A N A L Y S I S

In this section, we show the heuristic security analysis and the provable security analysis in
the following sections, respectively.

4.1. Heuristic Security Analysis

Several possible attacks will be raised and fought against to demonstrate the security of our
schemes. Here, we assume that Eve is an adversary. Our security definitions are as follows.

DEFINITION i. Computational Diffie-Hellman assumption is that giving ga mod p and gb mod p
to compute gab rood p is hard.

DEFINITION 2. The computational assumption of a one-way hash function Y = H(X) is that
giving Y to compute X is hard.

Simple Authenticated Key Agreement 707

MAN-IN-MIDDLE ATTACK ANALYSIS. Obviously, the password pw shared between Alice and
Bob is used against the main-in-middle attack. Without knowing pw, Eve has no ability to
interpose in the line and impersonate Bob to Alice and Alice to Bob.

PASSWORD GUESSING ATTACK ANALYSIS. The on-line password guessing attack can be pre-
vented easily by limiting the number of failed runs. On the other hand, the off-line password
guessing attack is also favored by the attacker. Eve tries to find out the weak password by
repeatedly guessing a possible password and verifying the correctness of the guess via obtained
information in an off-line manner. From the key agreement protocol, Eve gets the knowledge of
RAG pw, RB I[H(KB, RA), and H(KA, RB) separately in Steps 1, 2, and 3. She first guesses a
password pw / and then finds RA ---- RA O pw • pw t. Assume that the length of RA is 1024 bits
and pw is 20 bytes. The probability of guessing RA and pw is less than 1/2 l°24 x 1/22°'s. Then
Eve has to break the Diffle-Hellman assumption to find KB (= KA) and use it to verify her guess
password. For the same reason, without knowing R A and KA(-~ KB), Eve cannot guess newpw
from RA (~ newpw in Step 1" and H(KA,RB) ®newpw in Step 3 ' .

REPLAY ATTACK ANALYSIS. Eve intercepts RA(~)pw when it is sent by Alice in Step 1 and uses it
to masquerade as Alice next time. However, Eve cannot compute a correct H(KA, RB) to Bob in
Step 3 because she has no pw to obtain RA and then compute a from RA = ga mod p by solving
the discrete logarithm problem. On the other hand, if Eve intercepts RB II H(KB, RA) when it
is sent by Bob in Step 2 and uses it to masquerade as Bob, obviously, R A generated by Alice is
different for each protocol, so Eve still cannot replay RB II H(KB, RA) to Alice. For the same
reason, the protected password change protocol can also withstand the replay attack. Because
some messages sent between the two parties are the same in [5,15], the schemes are vulnerable to
the replay attack and backward replay attack. Nevertheless, the messages sent by Alice and Bob
are different in both of our schemes, and therefore, Eve cannot intercept any message between
them and then replay it to the other side.

MODIFICATION ATTACK ANALYSIS. Eve tries to modify the messages transferred between Al-
ice and Bob and makes them believe in a wrong session key. Unlike 8AKA-related schemes
[5,15,17,19], our schemes have the XOR operation and a one-way hash function to protect the
messages transferred between Alice and Bob. Eve cannot replace the original value sent by Alice
with a new one and then use its inversion to make Bob return to the original value. Therefore,
Yang et al.'s modification attack [21] cannot threaten the security of our key agreement protocol.
In our protected password change protocol, Eve modifies RA ~new pw to a random number RE in
Step 1". After receiving RAG pw II RE, Bob recovers RA and uses it to obtain the new password
RE @ RA and sends RB]1 H(KB, RA) to Alice in Step 2*. Then Alice first verifies the received
H(Ks, RA) and sends H(KA, RB) G new pw to Bob in Step 3*. Then Bob uses the recovered
new password RE @ RA to compute H(KA,RB) ~ newpw G (RE • RA) and compare it with
H(KB, Rs). Obviously, H(KA, RB) ®newpw ® (RE ~ RA) is not equal to H(KB, RB). Bob will
reject the password changing request unless Eve can compute H(KA, RB) @ (RE @ RA) and send
it to Bob in Step 3*. However, she has no ability to obtain KA and RA.

According to the above analyses, our schemes can withstand all those attacks shown in Table 1.
Moreover, even when the password is compromised in our scheme, Eve may reveal RA = ga rood p
and R B : gb rood p, but she still cannot reveal the old session key Key = H(g ab mod p). On the
other hand, a stolen session key does not help an adversary to carry out a brute-force guessing
attack on the password because KA and KB are under the protection of the one-way hash function
H(.). In a word, our new scheme lives up to the requirement of perfect forward secrecy.

4.2. P r o v a b l e S e c u r i t y Ana lys i s

In this section, we shall employ and simplify the BPR model (see [26] for a more detailed
description) to formally prove the security of SAKA and PPC in the random oracle model (ideal
hash model).

708 TING-YI CHANG et al.

4.2.1. M o d e l

The model is principally used formally as follows.

1. DEFINE THE CHARACTERISTICS OF PARTICIPATING ENTITIES.

PROTOCOL PARTICIPANTS. A party may have several instances, called oracles, involved in dis-
tinct concurrent executions of the protocols. We denote some instance i with an identifier A as
1-ih.

LONG-LIVED KEYS. Two parties A and B share a common password pw. We call pw long-lived
key and assume that the password is chosen independently and uniformly at random from the
set {1 , . . . , N}, where N is a constant, independent of the security parameter.

SESSION IDENTITY AND PARTNER IDENTITY. The session identity SID is used to uniquely name
the ensuing session. SID(II~) is the concatenation of all flows with the oracle II~. PID(II~) = B,
denoted as H~4 , is the communication with another participant B. Both SID and PID are publicly
available.

ACCEPTING AND TERMINATING. There are two states, ACC(II~) and TERM(H~), for an oracle
II~4. ACC(H~) = true denotes that II~4 has enough information to compute a session key (SK).
At any time an oracle can accept messages right away. As soon as II~ is accepted, SK(II~),
SID(H~4) and PID(H~) are defined. When an oracle sends or receives the last message of the
protocol, receives an invalid message, or misses an expected message, the state of TERM(II~) is
set to true. As long as II:4 is terminated, no message will be sent out.

2. DEFINE AN ADVERSARY'S CAPABILITIES.

The adversary ,4 has an endless supply of oracles and models various queries to them. Each
query models a capability of the adversary, such as forward secrecy, know-key security, etc. The
six queries and their responses are listed below.

• Send(II~, m): This query models A sending a message m to H~4. A gets back from his
query the response which II~ would have generated in processing message m and updates
SID, PID, and its state. A in the form Send(II~,start) initiates an execution of the
protocol.

• Execute(II~, H~): This query modelsA obtaining an honest execution of the SAKA pro-
tocol in the middle of two oracles II~ and IIJB . Execute(H~, His) models ,4 obtaining an
honest execution of the protocols between two oracles H~ and H~. This query may at
first seem useless since A already can carry out an honest execution among oracles. Yet,
the query is essential for properly dealing with password guessing attacks.

• Reveal(II~): This query models .Aobtaining a session key (SK) with an unconditional
return by H~4. The query is for dealing with know-key security. The Reveal query is only
available if the state ACC(H~) = true.

• Corrupt(A): This query models A obtaining along-lived key pw with an unconditional
return byA. The query is for dealing with forward secrecy.

Initialize(1 k, lZ), where 1 and k are security parameters and 1 < k

Select p, q primes with length [p[= k, [q[= l, and q] p - 1; this defines group G;

Choose random generator g ~-- G;

Choose a hash function H(.) : {0, 1}* ~ {0,1} t

Publish parpmeters q,p, g, H(.);

< pw > A , n ~ { 1 , . . . , N }

Figure 1. Specification of protocol initialization.

Simple Authenticated Key Agreement 709

Execution (II ~ A, HJB)

1. Send1 (IIJA,start)

< a >R+_R._ Zq; RA = ga modp; msg__outl +-- RA • pw; stateJA +--< a, RA >;

return msg__out 1

2. Send2 (II~,mj)
< M1 >+- ml; RA +-- M1 ® pw; < h >+_R__R Zq; R B : gh modp; KB = (R A) h modp

msg_ out2 +--< RB II H(Kb, R - A) >; stateJB +---< Rb, KB >;

return msg__out2

3. Send3 (II{,m2)

< RB, M2 >+- m2; < a, RA >+-- stateJn; KA ---- (R B) a modp;

if H(KA, RA = M2

msg_ out3 +- H(KA, RB);

SK(HJA) +--H(KA); SID(1-IJA) +--< msg__outl, m2,msg outa >;

PID(1-IJA) +--B; ACC(1-I~A) +--true;TERM(IIiA) +--true

else msg__out3 +- *;

4. Send4 (II j , m3)

< M3 >+- m3; < RB, KB >+-- stateJA;

if H(KB, RB) = Ms

SK(H j) +-- H(Kb); SID(II~) ~-< ml ,msg out2 >;

PID(IIJB) +-- A; ACC(II~ +- true; TERM(II~) +-- true

return null

Figure 2. Specification of protocol SAKA.

• Hash(m): In the ideal hash model, A gets hashresults by making queries to a random
oracle. After receiving this query, the random oracle will check whether m has been
queried. If so, it returns the result previously generated to ,4; otherwise it generates a
random number r and sends it to A, and stores (m, r) into the H-table, which is a record
set used to record all previous hash queries.

• Test(II~): This query models the semantiesecurity of the session key (SK) (the indistin-
guishability between the real session key and a random string). During an execution of
the protocol, J[can make any of the above queries, and at once, asks for a test query.
Then, H~ flips a coin b and returns SK if b -- 1 or a random string with length ISKI if
b = 0. The query is only available if II~ is fresh. .4 outputs a bit b I and wins the game
of breaking the protocol if b = b'.

3. FORMAL SPECIFICATION OF THE PROPOSED PROTOCOLS.

Figure 1 shows the initialization of both protocols. Figures 2 and 3 separately show how
instances in the SAKA and PPC protocols behave in response to messages (runs the SAKA and
PPC protocols).

Before putting the protocols to work, each oracle sets ACC(II~) +-- TERM(YI~) +-- false; and
SK(II~z) +-- SID(II~}) +-- PID(II~) ~ null;.

4.2.2. Definit ions of security

This section defines what constitutes the breaking of our SAKA and PPC protocols. To begin
with, let's set the formal notions of security as follows.

710 TXNG-YI CHANG et al.

Execution(II~A, HJB)

1. Send1 (H~'A, start)

< a >R+_R._ Zq; RA = g~ modp; msg__outl *--< RA ~ pw II RA • new pw >;

state~ *---< a, RA >;

return msg__out 1

2. Send2 (IIJB,ml)

< M1,M2 >+--ml;RA ~ - M l @ p w ; n e w p w e - M 2 0 R A ; < b > ~ R Zq;

Rg = gb modp; Ka = (RA)bmodp; msg out2 ~ R s II H(KB,RA) >;

state~ ~--< new pw, RB,KB >;
return msg out2

3. Send3(Hi4 , m2)

< a, RA >~- state~; < RB, M3 >*-- M2; KA -~ (RB) a modp;

if H(KA, RA) = M3

msg._out3 e- H(KA, RB) • newpw;

SK(H~4) ~-H(KA); SID(II~)*--msg_outl , m2,msg_ out3 >;

PID(II~) *-- B; ACC(H~) ~- true; TERM(II~) ~- true

elsemsg out3*-*;

a. Send4(II~, m3)
< M4 >~'-- m3; < newpw, R B , K B >+-- stateS;

if H (K s , Rs) = M4

SK(H~) ~ H(KB); SID(IIJB) ~ < ml,msg__out2, m3 >;

PID(H~) ~ A; ACC(H~) ~- true; TERM(Hg) *- true

return null

Figure 3. Specification of protocol PPC.

FRESHNESS. An oracle A is identified as fresh (or holds a fresh SK) if the following three condi-
tions are satisfied:

(1) II~4 has been accepted,
(2) no oracle has been asked for a corrupt query before II~ is accepted, and
(3) neither II~ nor its partner has been asked for a reveal query.

PARTNERING. In SAKA and PPC protocols, we say two oracles H i and HJB are partnered if the
following conditions are satisfied:

(1) II~ and rI~ have been accepted,
(2) SK(YI~) = SK(II/B),
(3) SID(H~) n SID(H~) # 0,
(4) PID(II~) = B and PID(H~) = A, and
(5) no other oracle accepts SK = SK(H~) = SK(II~).

A K E SECURITY (SESSION KEY SECURITY). We say ,4 has the probability Pr(w/n) to win a

game of breaking the session key security of SAKA and PPC if A makes a single test query to
a fresh oracle and correctly guesses the bit b used in the game. We separately denote the AKE
advantage of ,4 in attacking SAKA and PPC as AdvsAKEA(A) and AKE Advpp c (A); the advantages
are taken over all bit tosses. The advantage of A distinguishing the session key is given by

AKE AKE Advpp c (,4) 2Pr(win) - Protocols SAKA and PPC are AKE-secure if AdVSAKA (`4) = = 1.
AKE AKE AdVSAKA(.A) and Advpp C (,4) are negligible, respectively.

Simple Authenticated Key Agreement 711

COMPUTATIONAL DIFFIE-HELLMAN (CDH) ASSUMPTION. Let G = (g) be a cyclic of prime
order q and x, y chosen at random in Zq. Let B be a CDH attacker that given a challenge
¢ = (gX,gy), and let ¢ be the probability that B can output an element z in G such that
z = gZy. We denote this success probability as SuccCDH(B). The CDH problem is intractable if
SuccCDH(B) is negligible.

ADVERSARY'S RESOURCES. The security can be formulated as a function of the amount of
resources `4 obtains. The resources are as follows.

• t : time of computing;
• qsei, qex, qre, qco, qh: the number of sendi, execute, reveal, corrupt, and hash queries sepa-

rately made. Here, q~e is the total number of qsei.

4.2.3. S e cu r i t y p r o o f

THEOREM 4.1. Let A be an adversary against the AKE-security of the SAKA protocol within
a time bound t, after qse and qh. Then we have:

AKE qse qseqhSuccCDH(tl) qse AdVsAKA(t, qse, qh) <-- -~" + + "~ ,

where tl is the running time of Succ CDH.

PROOF. There are three ways that might lead to `4 successfully attacking the AKE-security of the
SAKA protocol. First, `4 might obtain the long-lived key and impersonate A or B by mounting
the password guessing attack. Second, `4 might directly obtain the session key by solving the
CDH problem. In the following, we shall analyze the probability of the two situations one by
one. To analyze a situation, the others are assumed to be under some known probability.

PASSWORD GUESSING ATTACKS. A and B separately chooses a C Zq and b C Zq at random,
which implies RA and RB are random numbers. Hence, A observes that the message (RA @ pw)
returned from send1 is independent of other messages. Therefore, the adversary gets no advantage
for the off-line password guessing attack. The probability of the on-line password guessing attack
making way is bounded by qse and N as follows:

<~ qse
- - N

The on-line guessing attack can be prevented by letting the server take the appropriate intervals
between trials. Furthermore, we also provide the PPC protocol to allow clients to change their
own passwords.

CDH ATTACK (SESSION KEY). B plays the role of a simulator for indistinguishability. It uses
the SAKA protocol to respond to all A's queries and deal with the CDH problem. B sets up
the long-lived key pw, picks a random number i from [1,qsel], and sets a counter cnt = 0.
When `4 makes send1, B answers according to the protocol to return msg_ouh to send1 and
increases cnt by 1. If cnt ¢ i, B answers with msg_out2 to send2. If cnt = i, B answers with
(gY H H(random I] g~)) by using the element g~ from the challenge ~b. When `4 makes senda, if
the input is the flow corresponding to challenge ¢, B answers with (H(random, gY)} by using the
element gY from the challenge ¢. If not, B answers with msg_outa to send3.

When `4 makes a reveal(H~) or reveal(H/B), B checks whether the oracle has been accepted
and is fresh. If so, B1 answers by using the session key SK. However, if the session key has
to be constructed from the challenge ~b, B halts. When .4 makes a corrupt(A), corrupt(B)
execute(H~, H/B), or hash(m), B answers in a straightforward way. When ,4 makes a single test
query, B answers in a straightforward way. However, if the session key has to be constructed
from the challenge ¢, B answers with a random string for the test(II~4) or test(H/B).

712 TING-YI CHANG et al.

This simulation is perfectly indistinguishable from any execution of the real SAKA protocol
except for one execution in which the challenge ¢ is involved. The probability a of B correctly
guessing the session key `4 will use test(H~) is the probability of c n t = i. Then, we have:

1 1

qsel qse

Assume that `4 has broken the CDH problem (.4, outputting b' after the test query, wins),
then at least one of the hash queries equals SK. The probability of B correctly choosing among
the possible hash queries is:

1

qh

From the above description, the probability SuccCDH(B) that B outputs z from the challenge
¢ is the probability s that .4 breaks the AKE-secure scheme multiplied by the probability a
that B1 correctly guesses the moment at which ,4 breaks the AKE-secure scheme multiplied by
the probability fl that B1 correctly chooses among the possible hash queries:

1 1
S u c c $ ° H (~ l) = ~ x ~ × Z _> e × - - × - - . (I)

qse qh

THEOREM 4.2. Let A be an adversary against the AKE-security of the PPC protocol within a
time bound t, after qse and qh. Then we have:

AKE q~e qseqhSucc~DH(tl) -b qse Advpp c (t, qse, qh) <-- - ~ + 2- 7 ,

where t 1 is the running time of SUCC CDH.

PaOOF. This proof is similar to the analysis of SAKA. We omit it here.

5. E F F I C I E N C Y A N D C O M P A R I S O N

In this section, we shall compare the computational complexity of our key agreement protocol
with that of the Kobara-Imai scheme. To analyze the computational complexity, we first define
the following notations.

TEXP the time for computing modular exponentiation.
TMUL the time for computing modular multiplication.
TMAC the time for computing the adopted MACK(.).

TH the t ime for computing the adopted H(.).
TXOR the time for computing the XOR operation of two numbers.

Assume that in the Diffie-Hellman scheme's computation gC rood p, the length of the prime
number p is 1024 bits, and the random number c is 160 bits. In our scheme, Alice computes
(RA = g~ mod p) @ pw and sends it to Bob; it means the largest number of bytes for pw can be

pw up to 128. Oppositely, when Alice computes g~ • g2 rood p and sends it to Bob, it means the
largest number of bytes for pw is 20 in the Kobara-Imai scheme. Hence, the selectivity of pw in
our scheme is more freedom (i.e., choose a sentence as a password).

Table 2. Computational complexity comparisons between our scheme and the Ko-
~ara-Imai scheme.

Our Scheme Kobara-Imai Scheme

Alice's computations 2TExP ÷ 3TH + 1TxoR 4TExP ~ 3TMAc -b 2TMuL

Bob's computations 2TExP q- 3TH Jr 1TxoR 4TExP -k 3TMAc -b 2TMuL
Steps required 3 4

Simple Authenticated Key Agreement 713

For simplicity, to compare the computational complexities of our scheme and the Kobara-
Imal scheme, we assume that the password length in both schemes is 20 bytes. To compute
gC mod p by repeatedly squaring and multiplying requires an average of 240 1024-bit modular
multiplications (i.e., 1TEXP = 240TMuL) [27]. According to Table 2, it is obvious that two
parties' computational complexities in our scheme are more economical than in the Kobara-Imai
scheme. Moreover, our scheme requires fewer steps to agree on a session key than the Kobara-

Imai scheme, and we provide a password changing protocol. On the other hand, Alice and Bob

should use predetermined values TagA, TagB, and TagAB to avoid the replay attack, backward

replay at tack (each message transferred is different) and generate a session key in the Kobara-

Imai scheme. In our scheme, the distinct values R A and R B can easily be used to make each

transferred message is different.

6. C O N C L U S I O N

In this article, we have proposed a slight improvement on the Yeh-Sun scheme to make it
more efficient. In additional, we have designed a protected change password protocol to allow
two parties to arbitrarily change their own password freely. Compared with other SAKA-related
schemes, our schemes not only can withstand those attacks shown in Table 1 but also is more
efficient.

R E F E R E N C E S
1. W. Diffie and M.E. Hellman, New directions in cryptography, IEEE Transactions on Information Theory

IT-22, 644-654, (Nov. 1076).
2. L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone, Security of authenticated multiple-key, Technical

Report CORR 9805, Department of C&O, University of Waterloo, (1998).
3. N. P. Smart, Identity-based authenticated key agreement protocol based on well pairing, Electronics Letters

38 (13), 630-632, (2002).
4. X. Yi, Efficient id-based key agreement from weft pairing, Electronics Letters 39 (2), 206-208, (2003).
5. D. Seo and P. Sweeney, Simple authenticated key agreement algorithm, IEE Electronics Letters 35 (13),

1073-1074, (1999).
6. National Bureau of Standard, Data Encryption Standard, NBS: FIPS, (1977).
7. M.E. Smid and D.K. Branstad, The data encryption standard: Past and future, Proc. of the IEEE 76,

550-559, (May 1988).
8. J. Daemen and V. Rijmen, Rijndael, the advanced encryption standard, Dr. Dobb's Journal 26 (3), 137-139,

(2001).
9. M.-S. Hwang, A new redundancy reducing cipher, International Journal of In]ormatica 11 (4), 435-440,

(2000).
10. C.-C. Chang and M.*S. Hwang, Parallel computation of the generating keys for RSA cryptosystems, IEE

Electronics Letters 82 (15), 1365-1366, (1996).
11. R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public key cryp-

tosystems, Communications of the A C M 21, 120-126, (Feb. 1978).
12. T. E1Gamal, A public-key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans-

actions on Information Theory IT-31,469-472, (July 1985).
13. M.-S. Hwang, C.-C. Chang and K.-F. Hwang, An E1Gamal-like cryptosystem for enciphering large messages,

IEEE Transactions on Knowledge and Data Engineering 14 (2), 445-446, (2002).
14. H. Sun, On the security of simple authenticated key agreement algorithm, In Proceedings of the Management

Theory Workshop'2000, (2000).
15. Y.-M. Tseng, Weakness in simple authenticated key agreement protocol, Electronics Letters 36 (1), 48-49,

(2000).
16. E.J.-L. Lu, C.-C. Lee and M.-S. Hwang, Cryptanalysis of some authenticated key agreement protocols,

International Journal of Computational and Numerical Analysis and Applications (to appear).
17. I.-C. Lin, C.-C. Chang and M.-S. Hwang, Security enhancement for the simple authentication key agree-

ment algorithm, In The Twenty-Fourth Annual International Computer Software and Applications Confer-
ence(COMPSAC)'2000, pp. 113-115, (2000).

18. B.-T. Hsieh, H.-M. Sun and T. Hwang, Cryptanalysis of enhancement for simple authenticated key agreement
algorithm, IEE Electronics Letters 38 (1), 20-21, (2002).

19. W.-C. Ku and S.-D. Wang, Cryptanalysis of modified authenticated key agreement protocol, IEE Electronics
Letters 36 (21), 1770-1771, (2000).

20. L. Gong, Variations on the themes of message freshness and replay, In Proc. IEEE Computer Security
Foundations Workshop VI, pp. 131-136, (1993).

714 TING-YI CHANG et al.

21. C.-C. Yang, T.-Y. Chang and M.-S. Hwang, Cryptanalysis of simple authenticated key agreement proto-
cols, IEICE Fundamentals on Electronics, Communications and Computer Sciences E87-A (8), 2174-2176,
(2004).

22. H.-T. Yeh and H.-M. Sun, Simple authenticated key agreement protocol resisant to password guessing attacks,
A CM S I G O P S Operating Systems Review 36 (4), 14-22, (2002).

23. K. Kobara and H. Imai, Pretty-simple password-authenticated key-exchange protocol proven to be secure in
the standard model, IEICE Transactions on Fundamentals E85-A (10), 2229-2237, (2002).

24. D.P. Jablon, Strong password only authenticated key exchange, Computer Communication Review 26, 5-26,
(Oct. 1996).

25. S.-W. Lee, W.-H. Kim, H.-S. Kim and K.-Y. Yoo, Parallizable simple authenticated key agreement protocol,
ACM SIGOPS Operating Systems Review 37 (3), 17-22, (2003).

26. M. Bellare, D. Pointcheval and P. Rogaway~ Authenticated key exchange secure against dictionary attack, In
Advances in Cryptology--EUROCRYPT'O0, pp. 122-138, (2000).

27. M. Naor and M. Yung, Universal one-way hash functions and their cryptographic applications, In Proc. of
the P1 st STOC, pp. 33-43, (1989).

28. N. Koblitz, A. Menezes and S.A. Vanstone, The state of elliptic curve cryptography, Designs, Codes and
Cryptography 9 (2/3), 173-193, (2000).

