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Abstract In this paper, the flow structures of a confined
flow over a transversely oscillating rectangular cylinder
are investigated numerically. The flow characteristics are
dynamic and are classified as a moving boundary
problem. An arbitrary Lagrangian-Eulerian (ALE)
kinematic description method is used to describe the
flow field and a Galerkin finite element formulation with
moving meshes is employed to solve the governing
equations. The effects of the oscillating speed, frequency
and aspect ratio on the flow field are examined. The
initiation and subsequent developments of the vortex
shedding are investigated in details. The results indicate
that the vortices shedding from the rectangular cylinder
are entrained by the motion of the rectangular cylinder,
and the interactions between the oscillating rectangular
cylinder and shedding vortices dominate the state of the
wake. The vortex shedding frequency is gradually
changed to match the rectangular cylinder oscillating
frequency, and the flow field may approach a periodic
motion with time. The mechanisms of the vortex shed-
ding from an oscillating rectangular cylinder are differ-
ent from those of an oscillating circular cylinder.

List of symbols

A aspect ratio ðA ¼ w2=h2Þ
Ac dimensionless oscillating amplitude of the rect-

angular cylinder
f dimensional vortex shedding frequency ðs�1Þ
h dimensional height of the channel (m)

H dimensionless height of the channel ðH ¼ h=h2Þ
n normal vector of coordinates
ne number of elements
p dimensional pressure (N �m�2)
p1 referential pressure (N �m�2)
P dimensionless pressure ðP ¼ ðp � p1Þ=qu2

0Þ
Re Reynolds number ðRe ¼ u0h2=mÞ
St Strouhal number ðSt ¼ fh2=u0Þ
t dimensional time (s)
u, v dimensional velocities in x and y directions

(m � s�1)
U, V dimensionless velocities in X and Y directions

ðU ¼ u=u0; V ¼ m=u0Þ
u0 dimensional velocity of the inlet fluid (m � s�1)
û, v̂ dimensional mesh velocity in x and y directions

(m � s�1)
Û , V̂ dimensionless mesh velocity in X and Y directions

ðÛ ¼ û=u0; V̂ ¼ v̂=u0Þ
vc dimensional oscillating velocity of the rectangular

cylinder (m � s�1)
Vc dimensionless oscillating velocity of the rectan-

gular cylinder ðVc ¼ vc=u0Þ
vm dimensional maximum oscillating speed of the

rectangular cylinder (m � s�1)
Vm dimensionless maximum oscillating speed of the

rectangular cylinder ðVm ¼ vm=u0Þ
w dimensional length of the channel (m)
W dimensionless length of the channel ðW ¼ w=h2Þ
w2 dimensional width of the rectangular cylinder (m)
W2 dimensionless width of the rectangular cylinder

ðW2 ¼ w2=h2Þ
x, y dimensional Cartesian coordinates (m)
X, Y dimensionless Cartesian coordinates ðX ¼ x=h2;

Y ¼ y=h2Þ
Greek symbols

k penalty parameter
m kinematic viscosity (m2 � s�1)
q density (kg �m�3)
s dimensionless time ðs ¼ tu0=h2Þ
sp dimensionless time of one cycle
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x dimensional oscillating frequency of the rectan-
gular cylinder ðs�1Þ

X dimensionless oscillating frequency of the rect-
angular cylinder ðX ¼ xh2=u0Þ

W dimensionless stream function

Superscripts

(e) element
m iteration number
T transpose matrix

Other

½ � matrix
f g column vector
h i row vector
j j absolute value

1 Introduction

Investigations of characteristics of a flow passing struc-
tures are mainly focused on the vortex shedding and
flow-induced vibration, which can alter the frequency
and intensity of the forces acting on structures. These
characteristics are very important to engineering appli-
cations.

Several numerical and experimental studies had been
done to study an unsteady flow induced by a stationary
circular cylinder or an oscillating circular cylinder [1–8].
The attentions of these studies were focused on the
mechanisms of vortex shedding, vortex shedding
frequency or Strouhal number, and lock-in state. The
results showed that Strouhal number was about 0:2 over
a range of the Reynolds number varying from 2 · 102 to
104 for a stationary circular cylinder.

Instead of the circular cylinder mentioned above,
rectangular cylinder also is a typical structure used in
engineering applications. Some numerical and experi-
mental studies have been conducted on this subject to
investigate the variations of the flow structures [9–15].
These studies primarily concerned with the unsteady
characteristics of the vortex shedding frequency or
Strouhal number of the flow structures as the fluid flows
over a stationary rectangular cylinder. The results
demonstrated that the blockage ratio, aspect ratio and
attack angle of the rectangular cylinder were the major
effective factors of the flow characteristics.

Must studies mentioned above focused on a station-
ary rectangular cylinder or an oscillating flow. However,
to the knowledge of the author, the vortex shedding flow
from an oscillating rectangular cylinder in a flow is
seldom investigated. This could be applied in moving
machine, eddy promoter, flow-control problems, and so
on. Therefore, the purpose of the present study is to
investigate numerically the variations of flow structures
induced by a transversely oscillating rectangular cylinder
in a channel flow.

Because of the interaction between the flow and
oscillating rectangular cylinder, the variations of the

flow field become time-dependent state and are classified
as a type of moving boundary problems. In the past, a
structure oscillating or moving in a flow was conve-
niently analyzed using a non-inertial reference frame,
which is moving with the structure. However, as the
structure oscillates or moves in the flow, the structure
will press the fluid near the structure, and the fluid near
the structure will simultaneously replenish the vacant
space induced by the movement of the structure. The
non-inertial reference frame could not describe these
flows realistically.

For simulating the problem mentioned above more
realistically, the moving interfaces between the fluid and
oscillating structure have to be considered. Thus, either
the Lagrangian or Eulerian method is hardly utilized to
analyze this problem solely. An arbitrary Lagrangian–
Eulerian (ALE) kinematic description method [16],
which combines the characteristics of the Lagrangian
and Eulerian methods, is an appropriate method to
describe this problem. In the ALE method, the compu-
tational meshes may move with the fluid (Lagrangian),
be held fixed (Eulerian), or be moved in a prescribed
way. The detail of the kinematic theory of the ALE
method is delineated in Hughes et al. [17], Donea et al.
[18], Kawahara and Ramaswamy [19], and Ramaswamy
[20].

Consequently, in this paper, the ALE kinematic
description method is utilized to analyze numerically the
flow structures induced by an oscillating rectangular
cylinder. A Galerkin finite element method and a
backward difference scheme, dealing with the time dif-
ferential terms, are applied to solve the governing
equations. The initiation and subsequent developments
of the vortex shedding are investigated in detail. The
variations in the oscillating speed, frequency and aspect
ratio are considered.

2 Physical model

The physical model is showed in Fig. 1. A two-dimen-
sional channel with height h and length w is used to
simulate this problem. A rectangular cylinder with width
w2 and height h2 is set within this channel. The distance
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Fig. 1 Physical model
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from the inlet of the channel to the rectangular cylinder
is w1. The inlet velocity u0 of the fluid is uniform. Ini-
tially ðt ¼ 0Þ, the rectangular cylinder is stationary at the
position of the center of the channel and the fluid flows
steadily. The distance from the wall of the channel to the
rectangular cylinder is h1. As the time t > 0, the rect-
angular cylinder is forced to oscillate in the transverse
direction. The behavior of the oscillating rectangular
cylinder and flow is then coupled, and the variations of
the flow field become time-dependent state and are
classified as a moving boundary problem. Thus, it is best
to use the ALE method to analyze this problem.

For analyzing conveniently, the rectangular cylinder
is assumed to oscillate with a velocity vm cosð2pxtÞin the
transverse direction, where x and vc are the oscillating
frequency and maximum oscillating speed of the rect-
angular cylinder, respectively. Furthermore, the follow-
ing assumptions are made.

(1) The flow field is two-dimensional, incompressible
and laminar.

(2) The fluid properties are constant and the effect of the
gravity is neglected.

(3) The no-slip condition is held on the interfaces
between the fluid and rectangular cylinder.

Based upon the characteristic scales of h2, u0, and
qu20, the dimensionless variables are defined as follows:

X ¼ x
h2
; Y ¼ y

h2
; U ¼ u

u0
; V ¼ v

u0
;

Û ¼ û
u0
; V̂ ¼ v̂

u0
; V m ¼

vm

u0
; X ¼ xh2

u0
; ð1Þ

P ¼ p � p1
qu20

; s ¼ tu0

h2
Re ¼ u0h2

m
;

where û and v̂ are the mesh velocities in the x and y
directions, respectively.

According to the above assumptions and dimen-
sionless variables, the dimensionless ALE governing
equations are expressed as the following equations:

continuity equation

oU
oX
þ oV

oY
¼ 0; ð2Þ

momentum equations

oU
os
þ ðU � ÛÞ oU

oX
þ ðV � V̂ Þ oU

oY

¼ � oP
oX
þ 1

Re

o2U
oX 2
þ o2U

oY 2

� �
; ð3Þ

oV
os
þ ðU � ÛÞ oV

oX
þ ðV � V̂ Þ oV

oY

¼ � oP
oY
þ 1

Re

o2V
oX 2
þ o2V

oY 2

� �
: ð4Þ

As the time s > 0, the boundary conditions are as
follows:

on the fluid inlet surface AB

U ¼ 1; V ¼ 0; ð5Þ
on the walls of the channel BC and AD

U ¼ V ¼ 0; ð6Þ
on the fluid outlet surface CD

oU=on ¼ oV =on ¼ 0; ð7Þ
on the interfaces between the fluid and rectangular cyl-
inder

U ¼ 0; V ¼ Vm cosð2pXsÞ: ð8Þ

3 Numerical method

The governing equations and boundary conditions are
solved through the Galerkin finite element formulation
with moving meshes. A backward scheme is adopted to
deal with the time differential terms of the governing
equations. The pressure is eliminated from the governing
equations using the penalty function method [21]. The
velocity terms are approximated by quadrilateral ele-
ments and nine-node quadratic Lagrangian interpola-
tion function, and the shape function is utilized as the
weighting function. The Newton-Raphson iteration
algorithm is utilized to simplify the nonlinear terms in
the momentum equations. The discretization processes
of the governing equations are similar to the one used in
Hueber et al. [22]. Then, the momentum equations (3)
and (4) can be expressed as the following matrix form:

Xne

1

A½ �ðeÞþ K½ �ðeÞþk L½ �ðeÞ
� �

qf gðeÞsþDs

¼
Xne

1

ff gðeÞ; ð9Þ

where

ð qf gðeÞsþDsÞ
T ¼ hU1;U2; . . . ;U9;V1;V2; . . . ;V9imþ1sþDs; ð10Þ

A½ �ðeÞ includes the (m)th iteration values of U and V at
time sþ Ds,

K½ �ðeÞ includes the shape function, mesh velocity, and
time differential terms,

L½ �ðeÞ includes the penalty function terms,
ff gðeÞ includes the known values of U and V at time s

and (m)th iteration values of U and V at time
sþ Ds.

In Eq. (9), a Gaussian quadrature procedure is conve-
niently used to execute the numerical integration. The
terms with the penalty parameter k are integrated by a
2� 2 Gaussian quadrature, and the other terms are
integrated by a 3� 3 Gaussian quadrature [21, 22]. The
value of penalty parameter k used in this study is 106.
The frontal method solver [23, 24] is applied to solve
equation (9).
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Because of the rectangular cylinder oscillating in the
transverse direction only, the mesh velocity in the X
direction is assigned to be zero, i.e., Û ¼ 0. As for the
mesh velocity in the Y direction, V̂ , it is assumed to be
linearly distributed and inversely proportional to the
distance between the nodes of the computational ele-
ments and the rectangular cylinder.

A brief outline of the solution procedures are de-
scribed as follows:

(1) Determine the optimal mesh distribution and num-
ber of the elements and nodes.

(2) Solve the values of the U and V at the steady state
ðs ¼ 0:0Þ and regard them as the initial values.

(3) Determine the time step Ds and the mesh velocities.
(4) Update the coordinates of the nodes and examine

the determinant of the Jacobian transformation
matrix to ensure that the one-to-one mapping is
satisfied during the Gaussian quadrature numerical
integration.

(5) Solve equation (9), until the following criteria for
convergence are satisfied:

/mþ1 � /m

/mþ1

����
����
sþDs

< 10�3; where / ¼ U;V ð11Þ

(6) Continue the next time step calculation until peri-
odic solutions are obtained.

The numerical scheme and code are developed by the
author and have been validated in the previous studies
[25, 26].

4 Results and discussion

For satisfying the boundary conditions at the inlet and
outlet of the channel mentioned earlier, the lengths from
the inlet and outlet to the rectangular cylinder are
determined by numerical tests and equal to 8:0 and 21:0,
respectively. At the time s ¼ 0, the rectangular cylinder
is at the position of the center of the channel. The effects
of the oscillating frequency X, maximum oscillating
speed Vm and aspect ratio A of the rectangular cylinder
on the flow characteristics under Re ¼ 500 are studied in
details. Table 1 shows the parameter combination for
each case. In addition, the dimensionless vortex shed-
ding frequency, i.e., Strouhal number St, is defined as
St ¼ f h2=u0, where f is the vortex shedding frequency.

4.1 Mesh tests

Initially, a mesh-independence study is conducted to
choose the proper computational meshes for the follow-
ing numerical calculations. Three different nonuniform
distributed elements, which provide fine elements near
the rectangular cylinder and walls and sparse elements in
the far field, are carried out for the mesh tests. The results
of the velocities U and V distributions along the line MN
as indicated in Fig. 1 at the steady state under Re = 500
and A ¼ 1.0 situation are shown in Fig. 2. Based upon

Table 1 Computed Parameter combinations

Vm sp X Ac A

case 1 0.333 6.0 0.167 1=p 1.0
case 2 0.5 4.0 0.25 1=p 1.0
case 3 1.0 2.0 0.5 1=p 1.0
case 4 0.333 6.0 0.167 1=p 2.0
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Fig. 2 Comparison of the velocity profiles along the line MN at the
steady state of Re = 500 , and A ¼ 1:0 situation for various
computational elements
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Fig. 3 The distribution of
streamlines at the steady state of
Re = 500 and A ¼ 1:0
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Fig. 4a–h The transient develop-
ments of the streamlines for case
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the results, the computational mesh with 74� 54 ele-
ments is used for all the following cases. Besides, a
backward scheme is adopted to deal with the time dif-
ferential terms of the governing equations. The time step
Ds ¼ 5:0� 10�3 is chosen for all cases in this study.

Furthermore, the residual of the continuity equation

Re sidual ¼ oU
oX
þ oV

oY
ð12Þ

is used to check for each element at each time step and to
ensure that the mass conservation law is satisfied. In the
computing processes, the residual of the continuity
equation for each element is smaller than 5:0� 10�7 and
the total residual of the continuity equation over the
computational domain is smaller than 1:0� 10�4.

The attention of this study is focused on the varia-
tions of the flow structures in the wake because of the
interaction between the oscillating rectangular cylinder
and flow. The dimensionless stream function W is
defined as

U ¼ oW
oY

and V ¼ � oW
oX

: ð13Þ

For indicating the variations of the flow patterns in
more details, except Fig. 3, which displays the overall
computational domain, only the streamlines in the

vicinity of the rectangular cylinder are presented. Be-
sides, the arrow in the subsequent figures indicates the
moving direction of the rectangular cylinder.

4.2 Effects of an oscillating rectangular cylinder
on flow structures

Figure 3 shows the streamlines at the steady state (s ¼ 0
and Vm ¼ 0) under Re ¼ 500 and A ¼ 1:0 situation. The
rectangular cylinder is stationary and the flow is steady.
The flow around the rectangular cylinder separates from
the leading edges of the rectangular cylinder and large
recirculation zones are observed behind the rectangular
cylinder.

Figure 4 shows the transient developments of the
streamlines for case 1. Initially ðs ¼ 0Þ, the rectangular
cylinder is stationary at the center of the channel and the
flow is steady. As the time s > 0, the rectangular cylinder
is forced to oscillate with a velocity Vm cosð2pXsÞ, where
Vm ¼ 0:333 and X ¼ 0:167. At first, the rectangular cyl-
inder moves upward, as shown in Fig. 4a. The fluid near
the top surface of the rectangular cylinder is pressed by
the top surface of the rectangular cylinder. Thus, the
separation of flow from the leading edge of the top
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surface of the rectangular cylinder is no longer to occur.
In the meantime, the fluid near the bottom surface of the
rectangular cylinder replenishes the vacant space in-
duced by the movement of the rectangular cylinder be-
cause of the continuity of the flow. As a result, a new
recirculation zone is observed around the bottom sur-
face of the rectangular cylinder. Afterwards, the rect-
angular cylinder moves upward continuously until it
reaches the maximum upper amplitude. The new recir-
culation zone around the bottom surface of the rectan-
gular cylinder enlarges gradually and pushes the original
large recirculation zones behind the rectangular cylinder,
as shown in Fig. 4b.

The rectangular cylinder turns downward immedi-
ately as it reaches the maximum upper amplitude. As
shown in Fig. 4c, d, the rectangular cylinder is on the
way to move downward. The fluid near the top surface
of the rectangular cylinder simultaneously replenishes
the vacant space induced by the movement of the rect-
angular cylinder. Consequently, a new recirculation zone
is formed around the top surface of the rectangular
cylinder. Conversely, the fluid near the bottom surface
of the rectangular cylinder is pressed by the bottom
surface of the rectangular cylinder. As a result, the ori-
ginal recirculation zone around the bottom surface of
the rectangular cylinder is pressed by the bottom surface
of the rectangular cylinder and merged into the original
large recirculation zones behind the rectangular cylinder.
Afterwards, the rectangular cylinder moves downward
continuously, and the new recirculation zone around the
top surface of the rectangular cylinder enlarges gradu-
ally. As shown in Fig. 4e, the new recirculation zone
around the top surface of the rectangular cylinder
pushes the original large recirculation zones behind the

rectangular cylinder away from the rectangular cylinder
to become a shedding vortex.

As the rectangular cylinder reaches the maximum
downward amplitude, the rectangular cylinder returns
immediately. As shown in Fig. 4f, the rectangular cyl-
inder is on the way to move upward. The recirculation
zone around the top surface of the rectangular cylinder
is pressed by the top surface of the rectangular cylinder,
and then shed from the top surface of the rectangular
cylinder. Furthermore, the recirculation zone around the
bottom surface of the rectangular cylinder enlarges
gradually and pushes the original large recirculation
zones behind the rectangular cylinder to the down-
stream. Because of the oscillating motion of the rect-
angular cylinder and the vortices shedding, it is difficult
for large recirculation zones behind the rectangular
cylinder to maintain their original state. Thus, the ori-
ginal large recirculation zones behind the rectangular
cylinder split into small vortices.

As the time increases, because the rectangular cylin-
der is in an oscillating motion, new recirculation zones
are alternately formed and shed from the top and bot-
tom surfaces of the rectangular cylinder, as shown in
Figs. 4g, h. Because of the drastic swinging of the flow
and the addition of vortex number in the region behind
the rectangular cylinder, the vortices are contracted and
entrained in the flow gradually, and the flow becomes a
wavy flow. The interaction between the oscillating rect-
angular cylinder and shedding vortices dominates the
state of the wake. The mechanisms of the vortex shed-
ding and flow behavior are quit different from those of
an oscillating circular cylinder, which the vortices shed
from the rear region of the circular cylinder [27].

Figures 4i , n show the variations of the flow patterns
during one cycle of the oscillation motion of the rect-
angular cylinder as the flow field reaches a periodic state.
The flow pattern at the time s ¼ 54:0 (Fig. 4i) is identical
with that at the time s ¼ 60:0 (Fig. 4n), which means
that the variations of the flow field approach a periodic
motion with time. Strouhal number, St, is equal to 0.167,
which is identical to the oscillation frequency of the
rectangular cylinder. In other words, the vortex shed-
ding frequency is gradually changed to match the
oscillation frequency of the rectangular cylinder and the
flow field is in the lock-in state.

Figure 5 shows the time history of the velocity V at a
position of X ¼ 10:0 and Y at the center of the rear
surface of the rectangular cylinder. After the time
s > 36:0, the variations of the velocity V become a
periodic function with time and Strouhal number is
about 0:167, which is consistent with that mentioned
above.

4.3 Effects of the maximum oscillating
speed on flow structures

The transient developments of the streamlines for case 2
are shown in Fig. 6. In this case, the oscillating speed of
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V

Fig. 5 The time history of the velocity V at a position near the rear
surface of the rectangular cylinder for case 1
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the rectangular cylinder is faster than that of case 1.
Basically, the variations of the flow field and the mech-
anisms of the vortex shedding from the rectangular
cylinder are similar to case 1. The vortices shedding from
the rectangular cylinder are entrained by the motion of
the rectangular cylinder. Because the oscillating speed is
larger in this case, the speed of vortices shedding from
the rectangular cylinder is faster than that of case 1, and
several small vortices are observed apparently behind
the rectangular cylinder in the cyclic motion. These
phenomena are somewhat different from those of case 1.
The flow pattern at the time s ¼ 52:0 (Fig. 6a) is iden-
tical to the one at the time s ¼ 56:0 (Fig. 6d), and
Strouhal number is equal to 0:25, which is identical to
the oscillation frequency of the rectangular cylinder.

Figure 7 shows the time history of the velocity V at
the position in the same as case 1. The results show that
after the time s > 48:0 the variations of the velocity V
become a periodic function with time. The time for the
flow to reach a periodic state is slower than that of
case 1. The reason is suggested as that the oscillating
speed of the rectangular cylinder is faster than that of
case 1, the variations of the flow field are more drastic in
this case. The flow region affected by the oscillating
rectangular cylinder in the traversing direction is smaller
than that of case 1.

Figure 8 indicates the transient developments of the
streamlines for case 3 as the flow had become a periodic
motion with time. Because the oscillating speed of the
rectangular cylinder is too large, recirculation zones
around the top and bottom surfaces of the rectangular
cylinder are immediately pressed by the rectangular
cylinder and shed from the rectangular cylinder as these
recirculation zones are formed. This behavior causes
that the flow patterns behind the rectangular cylinder
are virtually like no wake. The vortex shedding

frequency is synchronized with the oscillation frequency
of the rectangular cylinder. Strouhal number, which is
equal to 0.5, is identical to the oscillation frequency of
the rectangular cylinder.

4.4 Effects of the aspect ratio of the rectangular
cylinder on flow structures

Figure 9 indicates the transient developments of the
streamlines for case 4. The aspect ratio A is equal to 2:0
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Fig. 6a–d The transient develop-
ments of the streamlines for case
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in this case. In general, the variations of flow structures
are similar to those of case 1. The increase in aspect ratio
causes the effects of the oscillating rectangular cylinder

on the flow to extend further downstream, and the flow
region affected by the oscillating rectangular cylinder in
the traversing direction is larger than that of case 1.
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(a) (b)Fig. 8a, b The transient devel-
opments of the streamlines for
case 3 a s ¼ 36:0, b s ¼ 38:0

5Y 5Y

5Y 5Y

5Y 5Y

5Y 5Y

X
0

10

X

0

10

X

0

10

X

0

10

X
0

10

X

0

10

X

0

10

X

0

10

5 10 15 20

5 10 15 20

5 10 15 20

5 10 15 20

5 10 15 20 5 10 15 20

5 10 15 20 5 10 15 20

(h)(d)

(c)

(b) (f)

(e)(a)

(g)

Fig. 9a–h The transient develop-
ments of the streamlines for case
4 a s ¼ 12:0, b s ¼ 15:0, c
s ¼ 18:0, d s ¼ 30:0, e s ¼ 48:0,
f s ¼ 49:0, g s ¼ 52:0, h s ¼ 54:0

350



5 Conclusions

Flow characteristics of a rectangular cylinder oscillating
in a channel flow are numerically investigated. Some
conclusions are summarized as follows:

1. The interaction between the oscillating rectangular
cylinder and vortices shedding from the rectangular
cylinder dominates the state of the wake.

2. The vortices shedding from the rectangular cylinder
are entrained by the motion of the rectangular cyl-
inder. After an initial stage, the flow field becomes a
periodic motion with time and the vortex shedding
frequency is gradually changed to match the rectan-
gular cylinder oscillation frequency. These phenom-
ena are similar to the entrainment processes stated in
Blackburn and Henderson [8] and the flow is in the
lock-in state. This is quit different from an oscillating
circular cylinder, which Strouhal number is equal to
the oscillating frequency of the circular cylinder when
only the oscillating frequency of the circular cylinder
is near the nature frequency [28].

3. As the oscillating speed of the rectangular cylinder is
too large, recirculation zones around the top and
bottom surfaces of the rectangular cylinder are
immediately pressed by the rectangular cylinder and
shed from the rectangular cylinder as they are
formed, and the flow patterns behind the rectangular
cylinder are virtually like no wake.

4. The increase in the aspect ratio causes the effect of the
oscillating rectangular cylinder on the flow to be
more apparent.
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