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Abstract. We proposed a new public-key traitor tracing scheme with revocation capability using dynamic
shares and entity revocation techniques. Our scheme’s traitor tracing and revocation programs cohere
tightly. The size of the enabling block of our scheme is independent of the number of receivers. Each
receiver holds one decryption key only. The distinct feature of our scheme is that when traitors are
found, we can revoke their private keys (up to some threshold z) without updating the private keys
of other receivers. In particular, no revocation messages are broadcast and all receivers do nothing.
Previously proposed revocation schemes need update existing keys and entail large amount of broadcast
messages. Our traitor tracing algorithm works in a black-box way. It is conceptually simple and fully
k-resilient, that is, it can find all traitors if the number of them is k or less. The encryption algorithm
of our scheme is semantically secure assuming that the decisional Diffie-Hellman problem is hard.
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1. Introduction

A broadcast encryption scheme [9] involves a sender and multiple authorized
receivers. The sender has an encryption key and each receiver has a decryption
(private) key such that the sender can encrypt a message and broadcast the cipher-
text so that only the authorized receivers can decrypt the ciphertext. Broadcast
encryption schemes have wide applications in multicast services, such as on web
broadcast or pay-per-view systems, in which the system end broadcasts messages
to a set of privileged receivers through a broadcast channel.

Consider a situation that a content supplier distributes digital content to its sub-
scribers by a broadcast channel. To protect the data from eavesdropping, the con-
tent supplier encrypts the data and broadcasts the ciphertext such that only its
subscribers can decrypt the ciphertext. The content supplier gives each subscriber
a decoder (decoding box) for decrypting the ciphertext. Each decoder consists of
a tailored key and a decryption program. However, a traitor (malicious subscriber)
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may clone his decoder (and the private key in it) and sell the pirate decoders for
profits. The traitor may modify the private key and the decryption program in
the pirate decoder to avoid leaking his identity. Furthermore, some traitors may
together create new private keys and decryption programs. To deter the attack,
when a pirate decoder is confiscated, the content supplier wants to reveal the pri-
vate key in it and trace back to its original owners. A traitor tracing scheme is a
broadcast encryption scheme with capability of dealing with the above scenario [6].
To enhance protection further, the content supplier wants to revoke the private
keys of traitors without too much work, such as, updating each subscriber’s key.
We focus on providing revocation capability to public-key traitor tracing schemes.

A basic technique of broadcast encryption is as follows. First, the sender selects
a session key s to encrypt the message M as the cipher block C and embeds s in
the enabling block T ; then, the sender broadcasts 〈T ,C〉. Any decoder with a legal
private key can compute s from T and then uses s to compute M from C. A trai-
tor tracing scheme tries to identify traitors by finding the private keys in the con-
fiscated pirate decoder.

To revoke the keys of receivers, the sender broadcasts revocation messages
such that only non-revoked receivers can compute their new private keys and the
revoked receivers lose the decryption capability.

Efficiency consideration consists of the size of the private key that a receiver
holds, the size of the enabling block, the size of revocation messages, and com-
putation time of encryption, decryption and traitor tracing.

1.1. The Results

We propose a new public-key traitor tracing scheme with revocation capability
using the dynamic share and entity revocation techniques of [2]. Our scheme’s trai-
tor tracing and revocation programs cohere tightly1. The enabling block of our
scheme is independent of the number of receivers, but dependent on the collusion
and revocation thresholds, which are k and z, respectively. Each decoder stores
only one private key.

Our traitor tracing algorithm works in a black-box way. It is conceptually sim-
ple and fully k-resilient, that is, it can find all traitors if the number of them is k

or less. The encryption algorithm of our scheme is semantically secure against the
passive adversary assuming hardness of the decisional Diffie-Hellman problem.

The distinct feature of our scheme is that when the traitors are found, we can
revoke their private keys (up to z keys totally) without updating the keys of other
receivers. In particular, no revocation messages are broadcast and all receivers do
nothing. Furthermore, we can restore a revoked private key later. We can actually
increase the revocation capability beyond the threshold z with dynamic assignment
of shares into the enabling blocks. This property makes our scheme highly practi-
cal. The above method is suitable for fast revocation when the number of revoked
receivers does not exceed the revocation capability of the system. If we need
revoke more keys permanently, we can post some revocation messages on a bul-
letin board. Each non-revoked receiver can update its private key at its convenient
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time. To revoke mz receivers, the revocation messages are of size O(mz), which is
very efficient.

Our scheme is as efficient as Boneh and Franklin’s public-key traitor tracing
scheme in many aspects. For example, the encryption and decryption algorithms of
our scheme take O(z) modular exponentiations. Our black-box tracing algorithm
takes O(nk) time when k�n. Note that the encryption key of our scheme dynam-
ically depends on the revoked traitors, while that of Boneh and Franklin’s scheme
is fixed.

1.2. Related Work

The secret-key and coding approach has each decoder holding a set of keys (or
codewords) such that the keys in the pirate decoder can be identified by com-
binatorial methods [1,4,6,10,15,17–19]. There is a trade-off between the size of
the enabling block and the number of keys held by each decoder [5,14]. Gener-
ally speaking, if the number of receivers is large, say millions, the schemes become
impractical as one of the measures grows proportionally with the number of
receivers.

The public-key approach tries to have the size of the enabling block independent
of the number of receivers and each decoder holding one key only [3,12]. Kurosa-
wa and Desmedt [12] proposed a public-key traitor tracing scheme [12], on which
our scheme is based. But, their scheme does not incorporate the revocation capa-
bility. Boneh and Franklin’s traitor tracing scheme is algebraic with deterministic
tracing such that k or less traitors who create a single-key pirate decoder can be
traced efficiently. However, they have to embed a hidden trapdoor in the modulus
so that the discrete logarithm problem over Z∗

N2 can be solved in polynomial time.
As to other directions, Naor and Pinkas [15] proposed a threshold traitor trac-

ing scheme that can trace the private keys in a pirate decoder if the decoder’s
decrypting probability is over some threshold. Fiat and Tassa’s dynamic traitor
tracing scheme [8] uses the watermarking technique to trace traitors of a pirate
decoder by observing the watermarks output by the pirate decoder on the fly.

For revocation capability, the revocation scheme of Kumar et al. [11] is based on
cover-free sets. To revoke t receivers among n receivers, the scheme need broadcast
O(t log n) revocation messages. The tree-based revocation scheme of Wong et al.
[21] need broadcast O(2 log n) revocation messages. Naor and Pinkas [16] pro-
posed a threshold secret sharing method to provide revocation capability to broad-
cast encryption schemes. Its efficiency depends on the based broadcast encryption
schemes.

Our scheme is an independent work done by Yoshida and Fujiwara [22]. They
proposed a similar traitor tracing scheme that uses dynamic shares as well. In
comparison, our revocation methods are more flexible. We have a revocation
method that can revoke the number of traitors beyond the threshold set by the
system.

Recently, Kurosawa and Yoshida [13] proposed a linear code-based scheme that
generalizes the work of ours and that of Yoshida and Fujiwara [22].
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2. Preliminaries

In this section we review the idea of our scheme, the polynomial interpolation
method, the decisional Diffie-Hellman (DDH) problem and semantic security of an
encryption scheme.

Polynomial interpolation. Let f (x)=∑z
i=0 aix

i be a polynomial of degree z≥ 1.
Assume that each user i is given a share (xi, f (xi)). Then, a group of z+1 users,
say users 0,1, . . . , z, can compute the polynomial f (x) by Lagrange’s interpolation
method, or equivalently solving the system of equations:
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Let XA=F denote the above system of equations. If det(X) �=0, we can solve all
coefficients of f (x) by A=X−1F . The constant term a0 is equal to the first row
vector of X−1 multiplying F , which is

z∑

t=0



f (xt ) ·
∏

0≤j �=t≤z

xj

xj −xt



 ,

where λt =
∏

0≤j �=t≤z

xj

xj −xt
,0≤ t ≤z, are Lagrange coefficients. Furthermore, for the

exponent case, if we are given (x0, g
rf (x0)), (x1, g

rf (x1)), . . . , (xz, g
rf (xz)), we can

compute

gra0 =
z∏

t=0

(grf (xt ))λt .

for arbitrary r. On the other hand, if det(X)= 0, we cannot get any information
about a0 or gra0 .

In traitor tracing, a set of legal users may combine their shares linearly to form
a new “share”, which is the main threat that haunts some public-key based trai-
tor tracing schemes [12]. For example, the legal users z+ i and z+j , i �=j ≥1, can
combine their shares to form a new “share”

(a +b, axz+i +bxz+j , . . . , axz
z+i +bxz

z+j , af (xz+i )+bf (xz+j )). (1)

By the new share and the shares (x0, f (x0)), (x1, f (x1)), . . . , (xz−1, f (xz−1)), one
can compute a0 by solving the system of equations:
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We observe that if a pirate P gets a share by linear combination of m shares of
traitors j1, j2, . . . , jm,m ≤ z, then P and the traitors together cannot compute a0
or gra0 . We base our traitor tracing algorithm on this observation. In our system,
we give each user i a share (xi, f (xi)). If we suspect that users j1, j2, . . . , jm,m≤z,
are traitors, we broadcast the cipher block E′(s,M) and the enabling block

〈sgra0 , gr , (xj1 , g
rf (xj1 )), . . . , (xjm, grf (xjm)), (l1, g

rf (l1)), . . . , (lz−m,grf (lz−m))〉,

where l1, l2, . . . , lz−m are arbitrarily chosen and different from xj1 , xj2 , . . . , xjm .
A user who is not a traitor can compute gra0 and thus s. We confirm that
j1, j2, . . . , jm are traitors if they together cannot decrypt the cipher block properly.

Decisional Diffie-Hellman problem. Let Gq be a group of a large prime order q.
Consider the following two distribution ensembles R and D:

– R = (g1, g2, u1, u2)∈G4
q , where g1 and g2 are generators of Gq ;

– D = (g1, g2, u1, u2), where g1 and g2 are generators of Gq and u1 =gr
1 and u2 =

gr
2 for r ∈Zq .

The DDH problem is to distinguish the distribution ensembles R and D. That is,
we would like to find a probabilistic polynomial-time algorithm A such that, for
some positive constant c and all sufficiently large complexity parameter n,

|Pr[A(Rn)=1]−Pr[A(Dn)=1] |≥1/nc,

where Rn and Dn are the size-n distributions of R and D, respectively.
Semantic security against passive adversary. Let PK be the public key of the

encryption scheme and m0 and m1 be any two messages. The encryption scheme
is semantic secure against passive adversary if there no probabilistic polynomial-
time algorithm A that takes as input PK, m0, m1 and ciphertext c, and deter-
mines c’s source with a successful probability significantly better than 0.5, where
c is encrypted from m0 and m1 with equal probability. That is, for any probabilis-
tic polynomial-time algorithm A, any k > 0, and large enough security parameter
n, we have

Pr
b∈{0,1},c=E(PK,mb)

[A(PK,m0,m1, c)=b]≤0.5+1/nk.

3. Definitions

A traitor tracing scheme consists of the following functions.

– System setup. The sender sets up system algorithms and parameters.

– Registration. After system setup, a receiver can register to the system and gets
a decoder that contains a private key specific to the decoder. A decoder with a
legal private key can decode the ciphertext broadcast by the sender.
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– Encryption. When the sender wants to send M, it uses the secret-key cipher E′
and a session key s to encrypt M as a cipher block C =E′(s,M) and embeds s

into the enabling block T .

– Decryption. A decoder consists of a decryption program and a private key such
that it can decrypt 〈T ,C〉 to get the message M.

– Traitor tracing. The sender wants to determine the original owner of the pri-
vate key in a pirate decoder. It may be that some legal receivers conspire to
compute some key that is not legal, but able to decrypt the ciphertext, maybe
with a different decryption program. The traitor tracing algorithm need reveal at
least one conspirator’s identity. If traitor tracing is done by observing the input-
output relation of the decoder, it is called black-box tracing.
A traitor tracing scheme is k-resilient if it can find at least one traitor among
the k or less traitors who create the pirate decoder. It is fully k-resilient if it can
find all of them.

Note. In order to simplify presentation, we omit the security parameter (or com-
plexity measure) n from the related parameters. For example, when we say a prob-
ability ε is negligible, we mean that for any positive constant c, ε =ε(n)<1/nc for
large enough n. A probability δ is overwhelming if δ = 1 − ε for some negligible
probability ε.

4. The Public-Key Traitor Tracing Scheme

In this section we present our traitor tracing scheme. Let k be the maximum num-
ber of colluded receivers (traitors) and z be the revocation threshold, i.e., at most
z private keys of traitors can be revoked. We set z≥2k.

System setup. Let Gq be a group of a large prime order q. The sender selects
a degree-z polynomial f (x) = ∑z

t=0 atx
t (mod q) with coefficients over Zq . The

sender’s secret key is f (x) and his public key is

〈g, ga0 , gf (1), . . . , gf (z)〉,

by which a receiver can verify his private key.
Registration. When a receiver i, i > z, registers, the sender gives the receiver i

a decoder with the share (private key) (i, f (i)). The receiver i verifies his key by
checking

ga0 =
z∏

t=0

gf (xt )λt ,

where x0 =1, x1 =2, . . . , xz−1 =z, xz = i. If it is so, the receiver i gets a decoder with
the private key (i, f (i)).

Hereafter, we call (j, f (j)) an unused share if it has not been assigned to any
receiver. Sometimes, we refer “j” as a share.
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Encryption. The sender randomly selects z unused shares

(j1, f (j1)), (j2, f (j2)), . . . , (jz, f (jz))

a random number r ∈Zq , and a session key s. The sender computes the enabling
block

T =〈sgra0 , gr , (j1, g
rf (j1)), (j2, g

rf (j2)), . . . , (jz, g
rf (jz))〉,

and broadcasts 〈T ,E′(s,M)〉, where E′ is a secret-key cipher, such as DES.
Decryption. When receiving 〈T ,E′(s,M)〉, the receiver i computes s by

sgra0/[(gr)f (i)λz ·
z−1∏

t=0

(grf (xt ))λt ]= sgra0/gr(
∑z−1

t=0 f (xt )λt+f (i)λz)

= sgra0/gra0 = s,

where x0 = j1, x1 = j2, . . . , xz−1 = jz and xz = i. He then uses s to decrypt E′(s,M)

to obtain M.
Traitor tracing. We present two black box traitor tracing algorithms. Assume

that n receivers {t1, t2, . . . , tn}, n≤k, use their shares to create the confiscated pirate
decoder.

Our first black-box traitor tracing algorithm T1 is shown in Figure 1. For each
receiver set {c1, c2, . . . , cm}, m≤k, we use their shares to create an enabling block

〈sgra0 , gr , (c1, g
rf (c1)), . . . , (cm, grf (cm)), (j1, g

rf (j1)), . . . , (jz−m,grf (jz−m))〉,

where j1, j2, . . . , jz−m are unused shares. As long as {t1, t2, . . . , tn}⊆{c1, c2, . . . , cm},
the pirate decoder is not able to decode the enabling block to get s assuming that

Figure 1. Traitor tracing algorithm T1
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computing the discrete logarithm over Gq is hard. For this case, {c1, c2, . . . , cm} is
a possible traitor set. Then, the smallest possible traitor set is {t1, t2, . . . , tn}.

Our second traitor tracing algorithm T2 works for the case that the pirate
decoder’s key is a linear combination of shares of t1, t2, . . . , tn. Let �v be such
a linear combination, as in equation (1). T2 uses the opposite direction, that is,
the pirate decoder can compute s from the enabling block. For each receiver set
{c1, c2, . . . , cm}, m≤ k, we find a degree-z polynomial h(x)=∑z

t=0 btx
t that passes

points (c1, f (c1)), (c2, f (c2)), . . . , (cm, f (cm)). Polynomials h(x) and f (x) have m

common points on c1, c2, . . . , cm only. We use h(x) to create a test enabling block

T =〈sgrb0 , gr , (j1, g
rh(j1)), (j2, g

rh(j2)), . . . , (jz, g
rh(jz))〉.

and feed it to the pirate decoder, where ji �∈ {c1, c2, . . . , cm}, 1≤ i ≤ z. If some ti is
not in {c1, c2, . . . , cm}, the pirate decoder cannot compute correct s from T since
�v consists of information from a share that is not from h(x). If {t1, t2, . . . , tn} ⊆
{c1, c2, . . . , cm}, the pirate decoder can compute s from T since �v is made of the
information from shares of h(x). For this case, {c1, c2, . . . , cm} is a possible trai-
tor set. Then, the smallest possible traitor set is {t1, t2, . . . , tn}. The traitor tracing
algorithm T2 is shown in Figure 2.

It may be that the pirate decoder tells difference between the test enabling block
and the real one and refuses to respond. Therefore, we cannot identify the traitors.
We show that the test enabling block and the real one are computationally indis-
tinguishable. Therefore, this traitor tracing strategy works.

Lemma 4.1. For degree-z polynomials f (x) and h(x), the distributions of the
enabling blocks constructed by f (x) and h(x) are computationally indistinguishable
assuming that the DDH problem is hard.

Figure 2. Traitor tracing algorithm T2
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Proof. Note that the distinguisher does not know f (x) and h(x). Let g be a fixed
generator of Gq and a ∈R S denote that a is chosen from the set S uniformly and
independently. Consider the following 3 distributions:

1. D1 =〈S, gr , (c1, g
r
1), (c2, g

r
2), . . . , (cz, g

r
z)〉, where r ∈R Zq , S ∈R Gq , ci ∈R Gq , gi =

gf (ci ). This is the enabling block constructed by f (x).

2. R =〈S, gr , (c1, u1), (c2, u2), . . . , (cz, uz)〉, where r ∈R Zq , S ∈R Gq , ci ∈R Gq , ui ∈R

Gq , 1≤ i ≤ z.

3. D2 =〈S, gr , (c1, h
r
1), (c2, h

r
2), . . . , (cz, h

r
z)〉, where r ∈R Zq , S ∈R Gq , ci ∈R Gq , hi =

gh(ci ). This is the enabling block constructed by h(x).

By the DDH assumption, there are no polynomial-time algorithms to distin-
guish between D1 and R (and R and D2). Therefore, D1 and D2 are computation-
ally indistinguishable.

Complexity. It takes O(z) modular exponentiations to create an enabling block.
This can be pre-computed by the sender. It takes also O(z) modular exponentia-
tions to decrypt an enabling block by each receiver. The traitor tracing algorithm
runs in O(Cn

k ) modular exponentiations, where n is the number of receivers. When
n�k, the runtime is about O(nk).

Each receiver holds only one private key. The size of an enabling block is O(z),
which is independent of the number of receivers.

4.1. Revocation of Traitors

After a pirate decoder is confiscated and the traitors are revealed, we would like
to revoke the private keys of the traitors since thousands of copies of the pirate
decoder may be sold.

Assume that C = {c1, c2, . . . , cm}, m ≤ z, is the set of found traitors. We can
revoke their shares without updating the private keys of receivers. To send out M

to receivers, instead of randomly choosing m unused shares for the enabling block,
the sender fixes the first m shares as

(c1, g
rf (c1)), (c2, g

rf (c2)), . . . , (cm, grf (cm))

and randomly chooses z−m unused shares

(j1, g
rf (j1)), (j2, g

rf (j2)), . . . , (jz−m,grf (jz−m)).

to form the enabling block. The revoked traitors cannot decrypt the enabling block
since their shares are in the enabling block. We can revoke at most z traitors
totally before updating the shares of receivers.

We can see that to revoke receivers, the sender need not broadcast any revoca-
tion message and the receivers do nothing.
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4.2. Restoration of a Revoked Key

If for some reason we would like to restore the decryption privilege of a revoked
receiver, we simply do not use his share in the enabling block. The restored key
can decrypt the broadcast ciphertext again.

4.3. Revocation Beyond the Threshold

It is possible to revoke more than z traitors. Assume that each pirate decoder con-
tains only one pirate share. The idea is that if a pirate decoder can get at most c%
of M, the partial part of M is useless [1]. For example, if a pirate decoder can only
decrypt 95% of a movie, the traitor is revoked de facto.

Assume that C = {c1, c2, . . . , cm}, m > z, is the set of found traitors. To broad-
cast M to non-revoked receivers, we partition M as M1||M2|| · · · ||Ml . For each Mi ,
1≤ i ≤ l, we construct an enabling block Ti with shares

(ci1 , g
rf (ci1 )), (ci2 , g

rf (ci2 )), . . . , (cir , g
rf (ciz )),

where ci1 , ci2 , . . . , ciz are chosen from C.
With appropriately chosen l and c, each traitor in C can decrypt at most c% of

M. If ci appears in (1−c%)l enabling blocks, the traitor ci can decrypt c% of M.
Therefore, we have lz/m ≥ (1 − c%)l, where lz is the total number of shares that
may appear in the enabling blocks. We have m ≤ z/(1 − c%). In particular, when
c%=95%, we can increase the revocation capability by 20 folds by partitioning M

into 20 blocks. That is, each revoked share appears in one enabling block. If we
partition M into 20t blocks and put each revoked share into t enabling blocks, one
in every 20 blocks, a revoked traitor cannot decrypt one block in every 20 blocks.

4.4. Further Revocation

If we want to permanently revoke more keys beyond the revocation capability of
the system, we can update the private keys of non-revoked receivers. Though, this
work may be costly. The idea is to update the system’s polynomial f (x) as f ′(x)=
f (x) + h(x), where h(x) is also a degree-z polynomial. Then, each non-revoked
receiver gets its new private key (i, f ′(i)) as follows. Assume that there is a public
bulletin board and c1, c2, . . . , cmz are the receivers to be revoked.

1. The sender selects degree-z polynomials hj (x), 0 ≤ j ≤m− 1, and sets the sys-
tem’s polynomial as f ′(x)=f (x)+∑m−1

j=0 hj (x).

2. The sender publishes the enabling blocks Tj , 0≤ j ≤m−1,

〈sj grj a0 , grj , (cjz+1, g
rf (cjz+1)), (cjz+2, g

rf (cjz+2)), . . . , (cjz+z, g
rf (cjz+z))〉

in the bulletin board, where sj =hj (x).
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3. Each non-revoked receiver i computes hj (x), 1 ≤ j ≤ m − 1, from the enabling
blocks in the bulletin board and computes its new private key f ′(i) = f (i) +∑m−1

j=0 hj (i).

We can see that the revoked receiver ci cannot compute h
i/z�−1(x),1 ≤ i ≤mz.
Therefore, it cannot update its private key from (i, f (ci)) to (i, f ′(ci)). Thus, it is
revoked permanently.

The total messages in the bulletin board is of length O(mz).

4.5. Speedup of Tracing

Since the runtime of the traitor tracing algorithm is O(Cn
k ), when n or k is large,

the algorithm is not efficient. In practice, we would like to have a more efficient
traitor tracing algorithm.

A practical solution to this problem is to group receivers into classes C1,C2, . . . ,

Cr . Each class Ci consists of a reasonable number of receivers. For each class Ci ,
the sender uses a different polynomial fi(x) as the secret key. A receiver j in class
Ci is given the share (j, fi(j)). The sender encrypts message M using the secret
key fi(x). The decryption and tracing algorithms are the same as the original ones
except that the keys are different for different classes.

Grouping receivers can make our revocation mechanism more practical. It will
be less frequent to revoke the receivers in a class since a class consists of less
receivers. Even if the sender wants to revoke more than z receivers in a class, only
the private keys of the non-revoked receivers in the class have to be updated.

5. Security Analysis

We consider both semantic security and security against the z-coalition attack, in
which any coalition of z or less legal receivers cannot compute a legal private key
for decryption.

Before we proceed, we first address the framing problem [3]. We show that it is
not possible for two disjoint sets of k receivers to construct the same “new” share
by linear combination. Therefore, framing is not possible by linear combination of
shares in our scheme.

Lemma 5.1. Let C ={c1, c2, . . . , ck} and D ={d1, d2, . . . , dk} be two disjoint receiver
sets. All linear combination of shares of C and those of D are different except the
zero point.

Proof. We can represent a share i as a z+2-dimensional vector

vi = (1, i, i2, . . . , iz, f (i)).

Since it is a point of a degree-z polynomial, any z+1 different shares are linearly
independent. If one can use the shares of C and the shares of D to construct the
same non-zero share by linear combination, we have
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k∑

i=1

aivci
=

k∑

i=1

bivdi
�=0.

Therefore, we have

k∑

i=1

aivci
−

k∑

i=1

bivdi
=0.

This is a contradiction since not all ai ’s and bi ’s are zero and C ∪ D is linearly
independent.

The encryption algorithm of our scheme is semantically secure against a pas-
sive adversary if the DDH problem in Gq is hard (or computationally infeasible).
Recall that D =〈g1, g2, gr

1, gr
2〉 and R =〈g1, g2, ga

1 , gb
2〉, where g1, g2 are genera-

tors and a, b and r are randomly chosen over Zq .

Theorem 5.2. (Semantic security) Assume that the DDH problem is hard. The
encryption algorithm of our traitor tracing scheme is semantically secure against the
passive adversary.

Proof. Suppose that our encryption algorithm is not semantically secure against
the passive adversary. We show that there is a probabilistic polynomial-time algo-
rithm B that distinguishes between D and R with a non-negligible advantage ε.

Assume that adversary A attacks our encryption algorithm successfully in terms
of semantic security. A has two procedures A1 and A2. Given the public key
〈g, ga0 , gf (1), . . . , gf (z)〉 of the sender, A1 finds two session keys s0 and s1 in Gq

such that A2 can distinguish them by observing the enabling block.
Let 〈g1, g2, u1, u2〉 be an input of the DDH problem. The following algorithm

B shall decide whether 〈g1, g2, u1, u2〉 is from D or R.

1. Randomly choose ai ∈Zq , 1≤ i ≤ z, and let f ′(x)=∑z
t=1 atx

t . Let g =g1, ga0 =
g2, gf (1) = g2g

f ′(1)

1 ,. . . , gf (z) = g2g
f ′(z)
1 , where f (x) = f ′(x) + a0. Note that we

don’t know a0.

2. Feed the public key 〈g, ga0 , gf (1), . . . , gf (z)〉 to A1. A1 returns s0 and s1 in Gq .

3. Randomly select d ∈{0,1} and encrypt sd as

C =〈sdu2, u1, (j1, u2u
f ′(j1)

1 ), . . . , (jz, u2u
f ′(jz)

1 )〉
where j1, j2, . . . , jz are randomly chosen.

4. Feed C to A2 and get a return d ′. Then, the algorithm outputs 1 if and only if
d =d ′.

If 〈g1, g2, u1, u2〉 is from D, g=g1, g2 =ga0 , u1 =gr, u2 =gr
2 =gra0 and u2u

f ′(ji )

1 =
grf (ji ) for 1 ≤ i ≤ z. Thus, C is the encryption of sd and Pr[B(g1, g2, u1, u2)= 1] =
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Pr[A2(C)=d]=1/2+ε. Otherwise, since u1 =ga
1 and u2 =gb

2 , the distribution of C

is the same for d =0 and d =1. Thus, Pr[B(g1, g2, u1, u2)=1]=Pr[A2(C)=d]=1/2.
Therefore, B distinguishes D from R with a non-negligible advantage ε.

The encryption algorithm of our scheme is secure against z-coalition assuming
that computing the discrete logarithm is hard.

Theorem 5.3. Assume that computing the discrete logarithm over Gq is hard. No
coalition of z or less legal receivers can compute the private key of another legal
receiver with a non-negligible probability.

Proof. Assume that the probabilistic polynomial-time algorithm A can compute
a new share (private key) (xu, f (xu)) from the given public key 〈g, ga0 ,gf (1), gf (2),
. . . , gf (z)〉 and z shares (x1, f (x1)),. . . , (xz, f (xz)) with a non-negligible probabil-
ity ε. We construct another probabilistic polynomial-time algorithm B to compute
the discrete logarithm over Gq with an overwhelming probability.

Let (p, g, y) be the input of the discrete logarithm problem. The following algo-
rithm B′ computes logg y (mod p) with a non-negligible probability. Let y = ga0

and f (x) be the degree-z polynomial passing (0, a0) and (xi, f (xi)),1 ≤ i ≤ z.
Note that we don’t a0 yet. By Lagrange’s interpolation method, we can compute
gf (i),1≤ i ≤z, from ga0 and gf (xi ), 1≤ i ≤z. We feed the public key 〈g, ga0 , gf (1),
gf (2),. . . , gf (z)〉 and z shares (x1, f (x1)),. . . , (xz, f (xz)) to A and shall get a new
share (xu, f (xu)) with a non-negligible probability. With the given z shares and
(xu, f (xu)), we can compute f (0)=a0.

By applying the randomized technique to B′ for a polynomial number of times,
we get B.

6. Discussion

We can drop the sender’s public key from our traitor tracing schemes if verification
of private keys by receivers is not necessary. This is indeed the case for practicality.
Thus, only the sender can send messages to the receivers. Since the enabling blocks
are computationally indistinguishable from each other due to the DDH assump-
tion, our scheme should be more secure.

For practicality, we can set z = k. In this case, there may be framing problem.
The probability that a set of k receivers can frame a specific set of k receivers is
1/q. Assume that there are m=10,000,000 receivers and k is set as 20. Then, the
probability that a set of k receivers can frame some set of k receivers is ≤Cm

k /q ≈
mk/q ≈1/(10)168, for q being 1024-bit long.

7. Conclusion

In this work we have proposed a new public-key traitor tracing scheme with revo-
cation capability using dynamic shares. Its distinct feature of revoking private keys
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makes the protocol highly practical. The scheme’s traitor tracing algorithm is fully
k-resilient and conceptually simple. The size of the enabling block is independent
of the number of receivers.

Our scheme is semantically secure against the passive adversary assuming that
the DDH problem is hard. We also present a variant scheme that is semantically
secure against the adaptive chosen ciphertext attack assuming that the DDH prob-
lem is hard.
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Notes

1. A preliminary version appeared in PKC 2001 [20].
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