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Abstract

Chaotic anticontrol and chaos synchronization of brushless DC motor system are studied in this paper. Nondi-

mensional dynamic equations of three time scale brushless DC motor system are presented. Using numerical

results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions can

be observed. Then, chaos synchronization of two identical systems via additional inputs and Lyapunov stability the-

ory are studied. And further, the parameter of the system is traced via adaptive control and random optimization

method.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Chaotic phenomena are observed in many physical systems widely. It is interesting of its apparent randomness and

unpredictable behavior due to sensitive initial conditions.

Chaos synchronization has been studied extensively during the past two decades [1–3]. Traditionally, synchroniza-

tion has been limited only for periodic signals. Now, chaotic signals can also be used for synchronization of either iden-

tical or different chaotic systems. Chaos synchronization has potential applications in such as construction of observer,

information processing, and secure communication.

In this paper, we will present the brushless DC motor system (BLDCM), which is transformed to a nondimension-

alized form at the beginning. Then, by applying the numerical results such as phase portrait, and bifurcation diagram, a

variety of the phenomena of the chaotic motion can be presented. Furthermore, we discuss chaos synchronization in

three aspects: the synchronization for systems with ‘‘unknown’’ parameters [6], the backstepping design [7], and the

Gerschgorin�s theorem method [8]. Finally, parameter identification via adaptive control [9] and random optimization

[10] are investigated.
0960-0779/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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2. Description of the three time scales brushless DC motor differential equations of motion

2.1. Description of brushless DC motor system and its differential equations of motion

The system considered here is shown in Fig. 1. The brushless DC motor (BLDCM) is an electromechanical system.

Its equations of electrical dynamics can be described by [4,5]
d

dt
iq ¼

1

Lq
½�Riq � nxðLdid � ktÞ þ vq� ð2:1:1Þ

d

dt
id ¼

1

Ld
½�Rid þ nLqxiq þ vd � ð2:1:2Þ
and the equation of mechanical dynamics part is
d

dt
x ¼ 1

J
½T ðI ,hÞ � T ‘ðtÞ� ð2:1:3Þ
where

Ld, Lq: the fictitious inductance on the direct-axis and quadrature-axis,

vd, vq: the direct-axis and quadrature-axis voltage,

id, iq: the direct-axis and quadrature-axis current,

n: number of permanent pole pairs,

x: the rotor angular speed,

R: winding resistance,

J: the inertia momentum,

kt ¼
ffiffi
3
2

q
ke: ke is the permanent-magnet flux constant,

h: the displacement variable,

I = [iq id]
T.

T‘(t) is the external torque caused by cogging and friction imposed on the shaft of the motor. If viscous damping is

considered, then the external torque is
T ‘ ¼ bxþ T L
Fig. 1. Typical brushless DC motor and its commutation.
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where

b: the viscous damping coefficient,

TL: the additional terms such as external load, cogging effects, Coulomb friction, etc.

and h is eliminated by transforming the motor dynamics to the rotating frame, the electromagnetic torque T(I,h) is
given by
T ðiq,idÞ ¼ n½ktiq þ ðLd � LqÞiqid �
So we can get
d

dt
x ¼ 1

J
½n½ktiq þ ðLd � LqÞiqid � þ

1

J
ðbxþ T LÞ ð2:1:4Þ
2.2. Three time scales representation of equations of motion and the computational analysis

In this section, Eqs. (2.1.1), (2.1.2) and (2.1.4) will be transformed to another statespace model and it can reduce the

number of system parameters [4]. The multiple time scales are s1, s2, and s3, where

s1 ¼
Lq

R
: the first electrical time constant

s2 ¼
Ld

R
: the second electrical time constant

s3 ¼
JR

k2t
: the mechanical time constant

After transforming, the equations of motion are
s1
d

dt
x1 ¼ V q � x1 � x2x3 � x3

s2
d

dt
x2 ¼ V d þ x1x3 � x2 ð2:2:1Þ

s3
d

dt
x3 ¼ rx1 þ qx1x2 � gx3 � eT L
where the nondimensional variables are
x1 ¼
Lq

kt
ffiffiffi
d

p iq, x2 ¼
Lq

ktd
id , x3 ¼

nLq

R
ffiffiffi
d

p x, V q ¼
Lq

ktR
ffiffiffi
d

p vq, V d ¼
Lq

ktRd
vd ,

r ¼ n2, q ¼ ð1� dÞn2, g ¼ Rb

k2t
, ~t ¼ t

s3
, eT L ¼ nLq

k2t
ffiffiffi
d

p T L, d ¼ Lq

Ld
:

The period of autonomous system is hardly found, so we will modify the choice of Poincaré section for different

inputs in the next section. Almost the same bifurcation diagrams are obtained, because we only adjust a few position

of x1 and x3 axes from the original system. In addition, three time scales BLDCM is nondimensionalized, that

means all inputs we added are dimensionless. If we change them to the original system, all inputs have their physical

meanings.

We will show the computational results such as phase portrait, bifurcation diagram and Lyapunov exponents. Fig. 2

shows the phase portrait of various g. The motion is periodic for g = 2.5, 2.36, and for g = 2.1, 1.6 the motion is chaotic,

and g = 2.34 is a critical value. Fig. 3 shows the bifurcation diagram and Lyapunov exponent. We observed that Lyapu-

nov exponents k > 0 which represent chaos in the figure.
3. Chaos synchronization of identical systems

In this section, we will show chaos synchronization by three different ways: the synchronization for systems with

‘‘unknown’’ parameters [6], the backstepping design [7], and the Gerschgorin�s theorem method [8].



Fig. 2. Phase portrait with different g.

Fig. 3. Bifurcation diagram and Lyapunov exponents for three time scales system.
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3.1. Synchronization of two identical systems with ‘‘unknown’’ parameters

We consider two identical three time scale BLDCM systems in this section. Both the parameters of the systems are

unknown. The drive system is described as
s1
d

dt
x1 ¼ V q � x1 � y1z1 � z1

s2
d

dt
y1 ¼ V d þ x1z1 � y1

s3
d

dt
z1 ¼ rx1 þ qx1y1 � gz1 � eT L

ð3:1:1Þ
and the response system
s1
d

dt
x2 ¼ V q � x2 � y2z2 � z2 þ u1

s2
d

dt
y2 ¼ V d þ x2z2 � y2 þ u2

s3
d

dt
z2 ¼ rx2 þ qx2y2 � gz2 � eT L þ u3

ð3:1:2Þ
where u1, u2, u3 are the controllers of the system. Subtracting Eq. (3.1.1) from Eq. (3.1.2), we can obtain the error dy-

namic equations
s1
d

dt
e1 ¼ e2e3 þ e2z1 þ e3y1 � e1 � e3 þ u1

s2
d

dt
e2 ¼ e1e3 þ e1z1 þ e3x1 � e2 þ u2 ð3:1:3Þ

s3
d

dt
e3 ¼ re1 � ge3 þ qðe1e2 þ e1y1 þ e2x1Þ þ u3
where e1 = x2�x1, e2 = y2�y1, e3 = z2�z1.

Then we choose the Lyapunov function of the form
V ðe1,e2,e3,~r,~qÞ ¼
1

2
e21 þ e22 þ e23 þ

1

s3
~r2 þ 1

s3
~q2

� �
> 0 ð3:1:4Þ
where ~r ¼ r� r̂, ~q ¼ q� q̂. r̂, q̂ are estimate values of the unknown parameters r, q, and ~r, ~q are the errors. So we

have the time derivative of V ðe1,e2,e3,~r,~qÞ
_V ðe1,e2,e3,~r,~qÞ ¼
e1
s1
ðe2e3 þ e2z1 þ e3y1 � e1 � e3 þ u1Þ þ

e2
s2
ðe1e3 þ e1z1 þ e3x1 � e2 þ u2Þ

þ e3
s3
ðre1 � ge3 þ qðe1e2 þ e1y1 þ e2x1Þ þ u3Þ þ

~r
s3

_~rþ ~q
s3

_~q ð3:1:5Þ
We choose
u1 ¼ �ðe2e3 þ e2z1 þ e3y1 � e3Þ

u2 ¼ �ðe1e3 þ e1z1 þ e3x1Þ

u3 ¼ �ðr̂e1 þ q̂ðe1e2 þ e1y1 þ e2x1ÞÞ
and _~r ¼ � _̂r ¼ �e1e3, _~q ¼ � _̂q ¼ �e3ðe1e2 þ e1y1 þ e2x1Þ, then Eq. (3.1.5) can be written as
_V ðe1,e2,e3Þ ¼ � 1

s1
e21 �

1

s2
e22 �

g
s3
e23 < 0, for s1,s2,s3,g > 0
In numerical simulation, we choose the parameters as Vq = 4.017, Vd = � 15.305, s1 = 6.45, s2 = 7.125, s3 = 1,eT L ¼ 2:678, g = 2.1, and the true values of ‘‘unknown’’ parameters are r = 16, q = 1.516 for chaos condition. The initial

conditions of the drive and response systems are x1(0) = y1 (0) = z1(0) = 1, x2(0) = y2(0) = z2(0) = 7, and estimate value
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of ‘‘unknown’’ parameters r̂ð0Þ ¼ 5, q̂ð0Þ ¼ 0:1, respectively. The results of synchronization are shown in Figs. 4–6,

that means two identical three scale BLDCM systems can be synchronized via adaptive control with some unknown

parameters.

3.2. Synchronization by backstepping design

We also use two identical three time scale BLDCM systems in this section. To synchronize two systems, the drive

system is described as Eq. (3.1.1), and the response system is
Fig. 4. Time histories of x1, x2, and their error.

Fig. 5. Time histories of y1, y2, and their error.



Fig. 6. Time histories of z1, z2, and their error.
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s1
d

dt
x2 ¼ V q � x2 � y2z2 � z2

s2
d

dt
y2 ¼ V d þ x2z2 � y2 þ u2

s3
d

dt
z2 ¼ rx2 þ qx2y2 � gz2 � eT L þ u3

ð3:2:1Þ
where u2, u3 are the controllers of the system. Subtracting Eq. (3.1.1) from Eq. (3.2.1), we can obtain the error dynamic

equations
s1
d

dt
e1 ¼ e2e3 þ e2z1 þ e3y1 � e1 � e3

s2
d

dt
e2 ¼ e1e3 þ e1z1 þ e3x1 � e2 þ u2 ð3:2:2Þ

s3
d

dt
e3 ¼ re1 � ge3 þ qðe1e2 þ e1y1 þ e2x1Þ þ u3
where e1 = x2�x1, e2 = y2�y1, e3 = z2�z1, namely, x2 = e1 + x1, y2 = e2 + y1, z2 = e3 + z1.

Now, variables x1, y1, z1 in the error dynamic equations (3.2.2) can be considered as input signals from the master

system. Without u2 and u3, the error dynamic equations (3.2.2) has an equilibrium point (0,0,0), which means some u2
and u3 would not change the equilibrium point if we select u2 and u3 carefully. So, the synchronization problem will

change to stabilization of the error dynamics.

First, we consider the stability of the first equation of Eq. (3.2.2)
s1
d

dt
e1 ¼ e2e3 þ e2z1 þ e3y1 � e1 � e3 ð3:2:3Þ
where e2 and e3 are controllers.

Then, by choosing a Lyapunov function
V 1ðe1Þ ¼
1

2
e21 > 0 ð3:2:4Þ
Its time derivative is
_V 1ðe1Þ ¼ � 1

s1
e21 þ

1

s1
e1½e2z1 þ ðe2 þ y1 � 1Þe3� ð3:2:5Þ
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Assuming controllers e2 = a1(e1), e3 = a2(e1), Eq. (3.2.5) can be written as
_V 1ðe1Þ ¼ � 1

s1
e21 þ

1

s1
e1½a1z1 þ ða1 þ y1 � 1Þa2� ð3:2:6Þ
If a1(e1) = a2(e2) = 0, Eq. (3.3.6) can be written as
_V 1ðe1Þ ¼ � 1

s1
e21 < 0
This means that the zero solution of Eq. (3.2.3) is asymptotically stable.

When e2 and e3 are considered as controllers, a1(e1) and a2(e1) are estimative functions.

Defining
w2 ¼ e2 � a1ðe1Þ
w3 ¼ e3 � a2ðe1Þ

ð3:2:7Þ
then we study the (e1,w2,w3) system
s1
d

dt
e1 ¼ w2w3 þ w2z1 þ w3y1 � e1 � w3

s2
d

dt
w2 ¼ e1w3 þ e1z1 þ w3x1 � w2 þ u2

s3
d

dt
w3 ¼ re1 � gw3 þ qðe1w2 þ e1y1 þ w2x1Þ þ u3

ð3:2:8Þ
We choose a Lyapunov function
V 2ðe1,w2,w3Þ ¼ V 1ðe1Þ þ
1

2
w2

2 þ
1

2
w2

3

Its time derivative is
_V 2ðe1,w2,w3Þ ¼
�1

s1
e21 þ

w2

s2
ðe1w3 þ e1z1 þ w3x1 � w2 þ u2Þ þ

w3

s3
ðre1 � gw3 þ qðe1w2 þ e1y1 þ w2x1Þ þ u3Þ ð3:2:9Þ
From here, we design the controllers
u2 ¼ �ðe1w3 þ e1z1 þ w3x1Þ
u3 ¼ �ðre1 þ qðe1w2 þ e1y1 þ w2x1ÞÞ
Then Eq. (3.2.9) can be written as
_V ðe1,w2,w3Þ ¼
�1

s1
e21 �

1

s2
w2

2 �
g
s3
w2

3 < 0 for s1,s2,s3,g > 0
That means the zero solution of Eq. (3.2.8) is asymptotically stable. By addition of u2 and u3, the equilibrium point

(0,0,0) of the error dynamics Eq. (3.2.8) is unchanged.

For numerical simulation, we choose the same parameters as in Section 3.1, and r = 16, q = 1.516 for chaos condi-

tion. The initial conditions of the drive and response systems are x1(0) = y1(0) = z1(0) = 1, x2(0) = y2(0) = z2(0) = 7,

respectively.

The results of synchronization are shown in Figs. 7–9, that means two identical three scales BLDCM systems can be

synchronized via backstepping design.
3.3. Synchronization by Gerschgorin’s theorem

We consider two identical three time scale BLDCM systems in this section. The drive system is described as

Eq. (3.1.1), and the slave system is described as Eq. (3.1.2).

To synchronizing two identical systems, we add three coupling terms for controllers, u1 = k1(x1 � x2),

u2 = k2(y1 � y2), u3 = k3(z1 � z2), and Eq. (3.1.2) can be described as



Fig. 7. Time histories of x1, x2, and their error.

Fig. 8. Time histories of y1, y2, and their error.
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s1
d

dt
x2 ¼ V q � x2 � y2z2 � z2 þ k1ðx1 � x2Þ

s2
d

dt
y2 ¼ V d þ x2z2 � y2 þ k2ðy1 � y2Þ

s3
d

dt
z2 ¼ rx2 þ qx2y2 � gz2 � eT L þ k3ðz1 � z2Þ

ð3:3:1Þ



Fig. 9. Time histories of z1, z2, and their error.
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The drive and response systems can be written as
_X 1 ¼ AX 1 þ gðX 1Þ
_X 2 ¼ AX 2 þ gðX 2Þ þ KðX 1 � X 2Þ

ð3:3:2Þ
where A 2 Rn·n is a constant matrix, g(X) is a nonlinear function, and u 2 Rn is the external input vector.

Assuming that
gðX1Þ � gðX2Þ ¼ MX1,X2
ðX1 � X2Þ ð3:3:3Þ
where the elements in MX1,X2
are dependent on X1 and X2.

From Eq. (3.3.2), we can obtain the error dynamic equation
_e ¼ ðA� KþMX1,X2
Þe, ð3:3:4Þ
where e = X1�X2.

We choose P = diag(p1,p2, . . . ,pn), a positive definite diagonal matrix and the Lyapunov function
V ¼ eTPe > 0:
Its derivative is
_V ¼ _eTPeþ eTP_e ¼ ½ðA� KÞeþ gðX1Þ � gðX2Þ�TPeþ eTP½ðA� KÞeþ gðX1Þ � gðX2Þ�

¼ eT½ðA� KþMX1,X2
ÞTPþ PðA� KþMX1,X2

Þ�e ¼ eTQe ð3:3:5Þ
where Q ¼ ðA� KþMX1,X2
ÞTPþ PðA� KþMX1,X2

Þ.
Rewrite Q as
Q ¼ ðA� KþMx,yÞTPþ PðA� KþMx,yÞ ¼ ½PðAþMx,yÞ þ ðAþMx,yÞTP� � ½PKþ KTP�
¼ ½�aij� � ½bij� ð3:3:6Þ
where [bij] = diag(2k1p1,2k2p2, . . . , 2kn pn).

Gerschgorin theorem guarantees that each eigenvalue of Q, when plotted in the complex plane, must lie on or within

Gerschgorin�s circle. The center of circle is �aii � 2kipi, the radii are ri, where ri ¼
Pn

j¼1,j6¼ij�aijj.
Since Q =QT, if all eigenvalues of Q are negative, _V would be negative definite. This means that the error dynamics

Eq. (3.3.4) would be asymptotically stable about (0,0,0). In the other word, two identical BLDCM systems would be

synchronized.
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To achieve synchronization, we assume all eigenvalues of Q are negative
ki 6 l < 0, i ¼ 1,2, . . . , n ð3:3:7Þ
where l is a negative constant.

From Gerschgorin theorem and Eq. (3.3.7), we can get that �aii � 2kipi þ ri 6 l, and the range of ki can be obtained.
ki P
1

2pi
ð�aii þ ri � lÞ, i ¼ 1,2, . . . , n ð3:3:8Þ
Choosing P = I, Eq. (3.3.8) can be rewritten as
ki P
1

2
ð�aii þ ri � lÞ, i ¼ 1,2, . . . , n ð3:3:9Þ
Considering two identical three time scale BLDCM systems, we can obtain
A ¼

�1
s1

0 �1
s1

0 �1
s2

0
r
s3

0 �g
s3

2
64

3
75, MX 1,X 2

¼
0 �1

s1
z2 �1

s1
y1

1
s2
z2 0 �1

s2
x1

0 �q
s3
x1

�q
s3
y2

2
64

3
75 ð3:3:10Þ

½aij� ¼ PðAþMÞ þ ðAþMÞTP ¼

�2
s1

�1
s1
þ 1

s2

� �
z2 �1

s1
ðy1 þ 1Þ þ 1

s3
r

�1
s1
þ 1

s2

� �
z2 �2

s2
1
s2
þ 1

s3

� �
x1

�1
s1
ðy1 þ 1Þ þ 1

s3
r 1

s2
þ 1

s3

� �
x1 2

s2
ðy2 � gÞ

2
66664

3
77775 ð3:3:11Þ
By choosing l = �1, we obtain the coupling strength as k1 = 24, k2 = 12.5, k3 = 6. The results are shown in Figs.

10–12, and the synchronization is achieved.
4. Parameter identification

We consider the parameters identification in this section. Two methods are presented: the adaptive control [9], and

the random optimization method [10].
Fig. 10. Time histories of x1, x2, and their error.



Fig. 11. Time histories of y1, y2, and their error.

Fig. 12. Time histories of z1, z2, and their error.
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4.1. Parameter identification by adaptive control

We discuss two identical BLDCM systems in this section. Both systems have the same unknown parameters, and one

parameter of the slave system is uncertain. Our object is to identify the uncertain parameter. The drive system is

described as
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s1
d

dt
x1 ¼ V q � x1 � y1z1 � z1

s2
d

dt
y1 ¼ V d þ x1z1 � y1

s3
d

dt
z1 ¼ rx1 þ qx1y1 � gz1 � eT L

ð4:1:1Þ
and the response system
s1
d

dt
x2 ¼ V q � x2 � y2z2 � z2 þ u1

s2
d

dt
y2 ¼ V d þ x2z2 � y2 þ u2

s3
d

dt
z2 ¼ rx2 þ qx2y2 � ghz2 � eT L þ u3

ð4:1:2Þ
where u1, u2, u3 are the controllers of the system, and gh is the only unknown parameter.

Before solving this problem, we consider a special case first. If the drive and response systems� parameters are the

same, that is gh = g, and the error equations are
s1
d

dt
e1 ¼ e2e3 þ e2z1 þ e3y1 � e1 � e3 þ u1

s2
d

dt
e2 ¼ e1e3 þ e1z1 þ e3x1 � e2 þ u2

s3
d

dt
e3 ¼ re1 � ge3 þ qðe1e2 þ e1y1 þ e2x1Þ þ u3

ð4:1:3Þ
where e1 = x2�x1, e2 = y2�y1, e3 = z2�z1.

Then we choose the Lyapunov function of the form
V 1ðe1,e2,e3Þ ¼
1

2
ðe21 þ e22 þ e23Þ > 0 ð4:1:4Þ
and we choose
u1 ¼ �ðe2e3 þ e2z1 þ e3y1 � e3Þ
u2 ¼ �ðe1e3 þ e1z1 þ e3x1Þ
u3 ¼ �½re1 þ qðe1e2 þ e1y1 þ e2x1Þ þ ð1� gÞe3�

ð4:1:5Þ
so we can get
_V 1ðe1,e2,e3Þ ¼
�1

s1
e21 �

1

s2
e22 �

g
s3
e23 < 0
Now if one of the response system parameters, gh will be gh = gh(t), the third equation of Eq. (4.1.5) will change to
u3 ¼ �½re1 þ qðe1e2 þ e1y1 þ e2x1Þ þ ð1� ghðtÞÞe3�
We choose the Lyapunov equation
V 2ðe1,e2,e3,~gÞ ¼
1

2
ðe21 þ e22 þ e23 þ ~g2Þ > 0
where ~g ¼ gh � g, and its derivative is
_V 2ðe1,e2,e3,~gÞ ¼
e1
s1
ðe2e3 þ e2z1 þ e3y1 � e1 � e3 þ u1Þ þ

e2
s2
ðe1e3 þ e1z1 þ e3x1 � e2 þ u2Þ

þ e3
s3
ðre1 � ghe3 þ qðe1e2 þ e1y1 þ e2x1Þ þ u3Þ þ ~g _gh

¼ �1

s1
e21 �

1

s2
e22 þ

e3
s3
ð�e3 � ~gzÞ þ ~g _gh ð4:1:6Þ
We take _gh ¼ 1
s3
ze3 þ ðgh � gÞ, and Eq. (4.1.6) can be described as
_V ðe1,e2,e3,~gÞ ¼
�1

s1
e21 �

1

s2
e22 �

1

s3
e23 � ~g2 < 0 for s1,s2,s3 > 0
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In numerical simulation, the initial conditions of the drive and response systems are x1(0) = y1(0) = z1(0) = 1,

x2(0) = y2(0) = z2(0) = 7, and gh(0) = 0, respectively. The result of parameter identification is shown in Fig. 13, and

chaos synchronization are shown in Figs. 14–16. With the specific controller and parameters estimate update law, a

parameter can be identified and two systems can be synchronized.

4.2. Parameter identification by random optimization

We consider two identical three time scale BLDCM systems in this section. Both systems have the same parameters,

but one of three parameters of the slave system are unknown. Our object is to identify the unknown parameters. The

drive system is described as
s1
d

dt
x1 ¼ V q � x1 � y1z1 � z1

s2
d

dt
y1 ¼ V d þ x1z1 � y1

s3
d

dt
z1 ¼ rx1 þ qx1y1 � gz1 � ~T L

ð4:2:1Þ
Fig. 13. Time histories of gh.

Fig. 14. Time histories of x1, x2, and their error.



Fig. 15. Time histories of y1, y2, and their error.

Fig. 16. Time histories of z1, z2, and their error.
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and the response system is
s1
d

dt
x2 ¼ V q � x2 � y2z2 � z2 þ u1 ¼ V q � x2 � y2z2 � z2 þ kðx1 � x2Þ

s2
d

dt
y2 ¼ V d þ x2z2 � y2

s3
d

dt
z2 ¼ r0x2 þ q0x2y2 � g0z2 � ~T L

ð4:2:2Þ
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Eqs. (4.2.1) and (4.2.2) can be written as
_x1 ¼ fðx,fpgÞ
_x2 ¼ fðy,fp0gÞ þ Kðx1 � x2Þ

ð4:2:3Þ
where {p} = {r,q,g}, {p 0} = {r 0,q 0,g 0} are parameter sets, and K ¼ ½ k 0 0 �.
Fig. 17. Difference with respect to the coupling strength k.

Fig. 18. Difference with respect to the parameter r 0 for different k.
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Define the difference by
U ¼
Z T

0:95T
jx1 � x2j2dt ð4:2:4Þ
where T is the simulation time.

With the same parameter sets, {p 0} = {p}, the synchronization can be achieved for k > kp. In numerical simulation,

we obtain that kp = 5.50. The numerical result is shown in Fig. 17.

The difference U can be considered as a function of one parameter of {p 0} and k. If k is sufficiently large and one of

{p 0} is close to that of {p}, the difference U would tend to zero. In the other words, with sufficiently large value of k, if U

is small, one of {p 0} would be close to that of {p}. In numerical simulation, we assume that only one parameter of {p 0} is

unknown. The result is shown in Figs. 18–20.

To identify the unknown parameters of the slave system, we use the random optimization method. The algorithm is

as follows.

First, choose a sufficiently large value of k. In our case, we choose k = 20. By estimating each initial value of {p 0}, we

can calculate the difference U.

Each parameter p 0 (one of r 0,q 0,g 0) in the parameter set {p 0} is randomly modified as
p0m ¼ p0 þ r ð4:2:5Þ
where r is a random number which obeys the Gaussian distribution with variance r = 0.01.

Substituting the modified parameter p0m into Eq. (4.2.3), we can obtain x02. The difference between two systems is
U 0 ¼
Z T

0:95T
jx1 � x02j

2
dt ð4:2:6Þ
Fig. 19. Difference with respect to the parameter g 0 for different k.



Fig. 20. Difference with respect to the parameter q 0 for different k.

Fig. 21. Time evolution of r 0 by random optimization process.
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If the difference U 0 is smaller than U, the parameter is changed from p 0 to p0m. On the other hand, if the difference U 0

is larger than U, the parameter is unchanged and kept to be p 0. The processes are repeated until the difference U tends to

zero.

In numerical simulation, we assume that only one parameter of {p 0} is unknown. Parameters identification can be

achieved. The result is shown in Figs. 21–23.



Fig. 23. Time evolution of q0 by random optimization process.

Fig. 22. Time evolution of g 0 by random optimization process.
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5. Conclusions

First, we present the brushless DC motor (BLDCM) system that is transformed to a nondimensionalized form, and

study the behavior of BLDCM via numerical simulation. After applying the numerical results such as phase portrait,

and bifurcation diagram, a variety of the phenomena of the chaotic motion can be presented. Then, we discuss chaos

synchronization in three aspects: the synchronization for systems with ‘‘unknown’’ parameters, the backstepping de-

sign, and the Gerschgorin�s theorem method, and that make two identical systems synchronized successfully. Finally,

parameter identification can be achieved via adaptive control and random optimization.
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