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Abstract

This paper proposes a fuzzy-identification-based adaptive control scheme for the chaotic dynamic systems using
backstepping control approach, which is referenced as adaptive fuzzy backstepping control (AFBC). The proposed
AFBC offers a design approach to drive the chaotic trajectory to track a desired trajectory, and it is comprised
of a fuzzy backstepping controller and a robust controller. The fuzzy backstepping controller containing a fuzzy
estimation system is the principal controller, and the robust controller is designed to dispel the effect of minimum
approximation error introduced by the fuzzy estimation system. Moreover, the Taylor linearization technique is
employed to derive the linearized model of the fuzzy estimation system so that all the parameters in the fuzzy
system could be updated according. The adaptation laws of the control system are derived in the sense of Lyapunov
function and Barbalat’s lemma, thus the stability of the system can be guaranteed. For comparison, the partial- and
full-tuned cases for the parameters in the fuzzy system are simulated. Finally, simulation results verify that the
proposed AFBC system can achieve favorable tracking performance for the chaotic system with regard to parameter
variations and unknown dynamic function.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Adaptive control; Backstepping control; Chaotic system; Fuzzy system

1. Introduction

Fuzzy system has supplanted a conventional technology in some scientific applications and engineering
systems, especially in control systems[11]. The fuzzy system consists of a set of fuzzy if–then rules.
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Though it is one of the most effective methods using expert knowledge, it has not been viewed as a rigorous
approach due to the lack of formal synthesis techniques that can guarantee global stability of the fuzzy sys-
tems.To tackle this problem, some researchers have focused on the use of the Lyapunov synthesis approach
to construct a stable adaptive fuzzy controller. The key element of the adaptive fuzzy control is the merger
of adaptive systems with fuzzy approximation theory, where the fuzzy system can approximate the un-
known plants. Based on the universal approximation theory[24], the adaptive fuzzy control design method
can provide stabilizing controllers in the Lyapunov sense.An important class of the adaptive fuzzy control
is constructed using a radial basis function neural network. Most of these approaches only tune the conse-
quent part of the rule sets; however, the membership functions are fixed[4,13,17,20,24]. Recently, some
algorithms are derived to tune the membership functions and the rule sets simultaneously based on the
Taylor series[7,12,14,25]or the genetic algorithm[9,15].

In the past decade, research on backstepping control has increased[2,3,10,21–23,26]. The backstep-
ping control is a systematic and recursive design methodology for nonlinear systems. The backstepping
approach offers a choice to accommodate the unmodelled nonlinear effects and parameter uncertainties.
The idea of backstepping design is to select recursively some appropriate functions of state variables as
pseudo-control inputs for lower dimension subsystems of the overall system. Each backstepping stage
results in a new pseudo-control design, expressed in terms of the pseudo-control design from preceding
design stages. The procedure terminates a feedback design for the true control input which achieves
the original design objective by virtue of a final Lyapunov function which is formed by summing the
Lyapunov functions associated with each individual design stage[10].

The chaotic dynamic systems can be observed in many nonlinear circuits and mechanical systems.
Recently, control of the chaotic dynamic system has become a significant research topic in the physics,
mathematics and engineering communities[1,5,6,8,16,19]; however, some of them cannot achieve fa-
vorable control performance and some of them require overly complex design procedures. To overcome
these drawbacks, this paper develops an adaptive fuzzy backstepping control (AFBC) system, which
creates a bridge between backstepping control approach and adaptive fuzzy control design, to control the
chaotic dynamic systems. The developed AFBC system is implemented without using any knowledge of
the chaotic dynamic system, and it is comprised of a fuzzy backstepping controller and a robust controller.
The fuzzy backstepping controller containing a fuzzy estimation system is designed in the sense of the
backstepping control, and the robust controller is designed to dispel the effect of approximation error
introduced by the fuzzy estimation system. The adaptive laws of the AFBC system are derived in the
sense of Lyapunov function and Barbalat’s lemma; thus the stability of the system can be guaranteed. The
developed tuning algorithms of the fuzzy estimator can on-line tune all the parameters of the fuzzy sys-
tem (e.g., centers and widths of membership function and consequent parts of the rules set) based on the
Taylor linearization technique to reduce the approximation error and to improve the tracking performance.
Finally, simulation results are provided to verify the effectiveness of the developed AFBC scheme for the
chaotic dynamic system with regard to plant parameter variations and unknown dynamic functions.

2. Problem formulation of chaotic dynamic systems

Chaotic systems have been studied and known to exhibit complex dynamical behavior. The interest in
chaotic systems lies mostly upon their complex, unpredictable behavior, and extreme sensitivity to initial
conditions as well as parameter variations. Consider a second-order chaotic system such as well known
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Duffing’s equation describing a special nonlinear circuit or a pendulum moving in a viscous medium
under control[1,8,16]

ẍ(t) = −pẋ(t) − p1x(t) − p2x
3(t) + q cos(wt) + u(t) = f (x, ẋ) + u(t), (1)

wheret is the time variable,w is the frequency,f (x, ẋ) = −pẋ(t) − p1x(t) − p2x
3(t) + q cos(wt) is

the system dynamic function,u(t) is the control effort andp, p1, p2 andq are real constants. Depending
on the choice of these constants, it is known that the solutions of system (1) may exhibit periodic, almost
periodic and chaotic behavior[1]. For observing the chaotic unpredictable behavior, the open-loop system
behavior withu(t) = 0 was simulated withp = 0.4, p1 = −1.1, p2 = 1.0 andw = 18. The phase
plane plots from an initial condition point (0,0) are shown in Figs. 1(a) and (b) forq = 2.10 and 7.00,
respectively. It is shown that the uncontrolled chaotic dynamic system has different chaotic trajectories
for differentq values. The control objective is to find a control law so that the chaotic trajectory can track
the desired periodic orbit.

3. Description of fuzzy systems

There are four principal parts in fuzzy systems: fuzzifier, fuzzy rule base, fuzzy inference engine and
defuzzifier. Assume that there areN rules in the fuzzy rule base in the following form[11]:

Rulej : IF x1 is F
j
1 and . . . xn is F

j
n THEN y is Gj, (2)

wherex = [x1 x2 . . . xn]T ∈ Rn andyare the input and output variables of the fuzzy system, respectively;
andF

j
l , l = 1, 2, . . . , n andGj are the linguistic terms characterized by their corresponding fuzzy

membership functions of the fuzzy sets�
F

j
l

(xl) and�Gj (y), respectively. In this study, the membership

function �
F

j
l

(xl) is chosen as a Gaussian function, and the membership function�Gj (y) is chosen as

a singleton. The fuzzy system is constructed with a singleton fuzzification, a product inference and a
weighted sum defuzzification. The neural network scheme of the fuzzy system withn inputs,N rules
(hidden units) and one output is shown in Fig. 2. The fuzzy system performs the mappings according to
[12,24]

y =
N∑

j=1

wj�j (�j , ‖x − cj‖), (3)

wherecj and�j are the center and width vectors of the Gaussian membership, respectively; andwj is the
connection weight between the hidden layer and output layer. The Gaussian membership�j represents as

�j (�j , ‖x − cj‖) =
n∏

i=1

exp[−(xi − ci
j )

2/�i2

j ], (4)

wherecj = [c1
j c2

j . . . cn
j ]T ∈ Rn and�j = [�1

j �2
j . . . �n

j ]T ∈ Rn. For ease of notation, define the

vectorsw = [w1 w2 . . . wN ]T ∈ RN , c = [cT
1 cT

2 . . . cT
N ]T ∈ RnN and� = [�T

1 �T
2 . . . �T

N ]T ∈ RnN ,
then the output of the fuzzy system can be represented as[7,24,25]

y(x, c, �, w) = wT�(x, c, �), (5)
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Fig. 1. Typical chaotic orbits of the chaotic dynamic system.

where�(x, c, �) = [�1(�1, ‖x−c1‖) �2(�2, ‖x−c2‖) . . . �N(�N, ‖x−cN‖)]T. It has been proven that
there exists a fuzzy system of (5) such that it can uniformly approximate a nonlinear even time-varying
function�. By the universal approximation theorem, there exists an ideal fuzzy systemy∗ such that[24]

� = y∗(x, c∗, �∗, w∗) + � = w∗T�(x, c∗, �∗) + �, (6)

where� denotes the approximation error and is assumed to be bounded by|�|��∗, in which �∗ is a
positive constant; andw∗, c∗ and�∗ are the optimal parameter vectors ofw, c and�, respectively. There
should exist constants̄w, c̄ and�̄ satisfying‖w∗‖�w̄, ‖c∗‖� c̄ and‖�∗‖� �̄. In fact, the optimal param-
eter vectors that are needed to best approximate a given nonlinear function� are difficult to determine.
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Fig. 2. The structure of fuzzy system using a radial basis function neural network.

Thus, an estimation function is defined as

ŷ(x, ĉ, �̂, ŵ) = ŵT�(x, ĉ, �̂), (7)

whereŵ, ĉ and�̂ are the estimated vectors ofw∗, c∗ and�∗, respectively. For notational convenience,
denote�∗ = �(x, c∗, �∗) and�̂ = �(x, ĉ, �̂). Define the estimated errorỹ as

ỹ = � − ŷ = y∗ − ŷ + � = w̃T�̂ + ŵT�̃ + w̃T�̃ + �, (8)

wherew̃ = w∗ − ŵ and�̃ = �∗ − �̂. In the following, some tuning laws will be derived to on-line tune
the parameters of the fuzzy system to achieve favorable estimation of the nonlinear function. To achieve
this goal, the Taylor expansion linearization technique is employed to transform the nonlinear function
into a partially linear form[7,12], i.e.

�̃ = �
′
c|c=ĉc̃ + �

′
�|�=�̂�̃ + h(x, c̃, �̃), (9)

wherec̃ = c∗ − ĉ; �̃ = �∗ − �̂; h(x, c̃, �̃) denotes the sum of high-order arguments in the Taylor’s serious
expansion; and�

′
c|c=ĉ and�

′
�|�=�̂ are derivatives of� with respect toc and� at(ĉ, �̂), respectively, that

are expressed as

�
′
ĉ = �

′
c|c=ĉ = [�′

c1(�̂1, ‖x − ĉ1‖) �
′
c2(�̂2, ‖x − ĉ2‖) . . . �

′
cN(�̂N, ‖x − ĉN‖)]T, (10)

�
′
�̂ = �

′
�|�=�̂ = [�′

�1(�̂1, ‖x − ĉ1‖) �
′
�2(�̂2, ‖x − ĉ2‖) . . . �

′
�N(�̂N, ‖x − ĉN‖)]T (11)

with �
′
cj = ��j /�cj and�

′
�j = ��j /��j . The high-order termh(x, c̃, �̃) is bounded by

‖h(x, c̃, �̃)‖ = ‖�̃ − �
′
cc̃ − �

′
��̃‖

� ‖�̃‖ + ‖�
′
c‖‖c̃‖ + ‖�

′
�‖‖�̃‖

� k1 + k2‖c̃‖ + k3‖�̃‖, (12)

where‖�̃‖�k1, ‖�
′
c‖�k2, ‖�

′
�‖�k3 andk1, k2 andk3 are some bounded positive constants due to

the fact that Gaussian function and its derivative are always bounded by constants[7]. And thew̃, c̃ and
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�̃ should be also bounded as

‖w̃‖ = ‖w∗ − ŵ‖�‖w∗‖ + ‖ŵ‖�w̄ + ‖ŵ‖, (13)

‖c̃‖ = ‖c∗ − ĉ‖�‖c∗‖ + ‖ĉ‖� c̄ + ‖ĉ‖, (14)

‖�̃‖ = ‖�∗ − �̂‖�‖�∗‖ + ‖�̂‖� �̄ + ‖�̂‖. (15)

Substituting (9) into (8), gives

ỹ = w̃T�̂ + ŵT(�
′
ĉc̃ + �

′
�̂�̃ + h) + w̃T�̃ + �

= w̃T�̂ + c̃T�
′T
ĉ ŵ + �̃T�

′T
�̂ ŵ + ŵTh + w̃T�̃ + �

= w̃T�̂ + c̃T�
′T
ĉ ŵ + �̃T�

′T
�̂ ŵ + �, (16)

whereŵT�
′
ĉc̃ = c̃T�

′T
ĉ ŵ andŵT�

′
�̂�̃ = �̃T�

′T
�̂ ŵ are used since they are scales; and the sum of matching

error� ≡ ŵTh + w̃T�̃ + �. Then the term� should be bounded as

|�| = |w∗Th + w̃T�
′
ĉc̃ + w̃T�

′
�̂�̃ + �|

� (k1 + k2‖c̃‖ + k3‖�̃‖)w̄ + k2‖c̃‖(w̄ + ‖ŵ‖) + k3‖�̃‖(w̄ + ‖ŵ‖) + �∗

� [k1 + k2(c̄ + ‖ĉ‖) + k3(�̄ + ‖�̂‖)]w̄ + k2(c̄ + ‖ĉ‖)(w̄ + ‖ŵ‖)
+k3(�̄ + ‖�̂‖)(w̄ + ‖ŵ‖) + �∗

= (k1 + 2k2c̄ + 2k3�̄)w̄ + �∗ + (k2c̄ + k3�̄)‖ŵ‖ + 2k2w̄‖ĉ‖ + 2k3w̄‖�̂‖
+k2‖ŵ‖ · ‖ĉ‖ + k3‖ŵ‖ · ‖�̂‖

= [�1, �2, �3, �4, �5, �6] · [1, ‖ŵ‖, ‖ĉ‖, ‖�̂‖, ‖ŵ‖ · ‖ĉ‖, ‖ŵ‖ · ‖�̂‖]T
= �T�, (17)

where�1 = (k1+2k2c̄+2k3�̄)w̄+�∗, �2 = k2c̄+k3�̄, �3 = 2k2w̄, �4 = 2k3w̄, �5 = k2, �6 = k3 and
� = [1, ‖ŵ‖, ‖ĉ‖, ‖�̂‖, ‖ŵ‖ · ‖ĉ‖, ‖ŵ‖ · ‖�̂‖]T. Since� is a bounded vector, if� can be guaranteed to be
bounded (This will be proven in the following section.) then the term� can be bounded by|�|�E where
E is a positive constant; however, the error boundE is difficult to determine for practical applications.

4. Ideal backstepping control and adaptive fuzzy backstepping control

4.1. Design of ideal backstepping controller

Assume that the parameters of the system (1) are known, the design of ideal backstepping control for
the chaotic dynamic system is described step-by-step as follows:

Step1: Define the tracking error

e1(t) = x(t) − xc(t), (18)

wherexc(t) is the command trajectory; and the derivative of tracking error is defined as

ė1(t) = ẋ(t) − ẋc(t). (19)
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The ẋ(t) can be viewed as a virtual control in the equation. Define the following stabilizing function

	(t) = −
1e1(t) + ẋc(t), (20)

where
1 is a positive constant.
Step2: Define

e2(t) = ẋ(t) − 	(t) (21)

then the derivative ofe2(t) is expressed as

ė2(t) = ẍ(t) − 	̇(t) = ẍ(t) − (−
1ė1(t) + ẍc(t)) = ë1(t) + 
1ė1(t). (22)

Step3: If the dynamic system is known, an ideal backstepping controller can be obtained as

uib(t) = ẍc(t) − f (x, ẋ) − 
1ė1(t) − 
2e2(t) − e1(t), (23)

where
2 is a positive constant. Substituting (23) into (1), it is obtained that

ė2(t) = −
2e2(t) − e1(t). (24)

Step4: Define the Lyapunov function as

V1(e1(t), e2(t)) = e2
1(t)

2
+ e2

2(t)

2
. (25)

Differentiating (25) with respect to time and using (19), (22) and (24), it is obtained that

V̇1(e1(t), e2(t)) = e1(t)ė1(t) + e2(t)ė2(t)

= e1(t)(e2(t) − 
1e1(t)) + e2(t)(−
2e2(t) − e1(t))

= −
1e
2
1(t) − 
2e

2
2(t)�0. (26)

SinceV̇1(e1(t), e2(t))�0, that isV1(e1(t), e2(t))�V1(e1(0), e2(0)), it implies thate1(t) ande2(t) are
bounded. Now define the following term:

�(t) = 
1e
2
1(t) + 
2e

2
2(t) = −V̇1(e1(t), e2(t)), (27)

then ∫ t

0
�(
) d
 = V1(e1(0), e2(0)) − V1(e1(t), e2(t)). (28)

BecauseV1(e1(0), e2(0)) is bounded andV1(e1(t), e2(t)) is nonincreasing and bounded, the following
result can be obtained

lim
t→∞

∫ t

0
�(
) d
 < ∞. (29)

Also �̇(t) is bounded, so by Barbalat’s Lemma[18], it can be shown that limt→∞ �(t) = 0. This implies
thate1(t) ande2(t) converge to zero ast → ∞. Therefore, the ideal backstepping controller in (23) will
asymptotically stabilize the system.
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Fig. 3. The block diagram of the adaptive fuzzy backstepping control chaotic system.

4.2. Design of adaptive fuzzy backstepping controller

Since the system dynamic functionf (x, ẋ) may be unknown or perturbed in practical application,
the ideal backstepping controller (23) cannot be precisely obtained. Thus, an AFBC system is proposed
as shown in Fig. 3. In the AFBC system, the fuzzy system is designed to estimate the system dynamic
function. The design of AFBC for the chaotic dynamic system is described step-by-step as follows:

Step1: Define the tracking errore1(t) as (18), a stabilizing function	(t) as (20) ande2(t) as (21).
Step2: The control law of the AFBC is developed in the following equation:

uab(t) = ua(t) + ub(t), (30)

where

ua(t) = ẍc(t) − f̂ − 
1ė1(t) − 
2e2(t) − e1(t), (31)

ub(t) = −Ê sgn(e2(t)). (32)

In the fuzzy backstepping controllerua, the system dynamicf is estimated by a fuzzy system̂f described
in Section 3; and in the robust controllerub, Ê is an estimated error bound ofE. Substituting (30) into
(1), it can be obtained that

ė2(t) = f − f̂ − 
2e2(t) − e1(t) − Ê sgn(e2(t)). (33)

By defining the approximation error as (16), Eq. (33) can be rewritten as

ė2 = w̃T�̂ + c̃T�
′T
ĉ ŵ + �̃T�

′T
�̂ ŵ + � − 
2e2 − e1 − Ê sgn(e2(t)). (34)
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Step3: Define the Lyapunov function as

V2(e1(t), e2(t), Ẽ(t), w̃, c̃, �̃) = e2
1(t)

2
+ e2

2(t)

2
+ Ẽ2(t)

2�1
+ w̃Tw̃

2�2
+ c̃Tc̃

2�3
+ �̃T�̃

2�4
, (35)

whereẼ(t) ≡ E − Ê(t); and�1, �2, �3 and�4 are positive constants. Differentiating (35) with respect to
time and using (33) and (34), it is obtained that

V̇2 = e1(t)ė1(t) + e2(t)ė2(t) + Ẽ(t)
˙̃
E(t)

�1
+ w̃T ˙̃w

�2
+ c̃T ˙̃c

�3
+ �̃T ˙̃�

�4

= e1(t)(e2(t) − 
1e1(t)) + e2(t)(w̃T�̂ + c̃T�
′T
ĉ ŵ + �̃T�

′T
�̂ ŵ + � − 
2e2 − e1 − Ê sgn(e2(t)))

+ Ẽ(t)
˙̃
E(t)

�1
+ w̃T ˙̃w

�2
+ c̃T ˙̃c

�3
+ �̃T ˙̃�

�4

= −
1e
2
1(t) − 
2e

2
2(t) + w̃T(e2�̂ + ˙̃w/�2) + c̃T(e2�

′T
ĉ ŵ + ˙̃c/�3) + �̃T(e2�

′T
�̂ ŵ + ˙̃�/�4)

+�e2(t) − Ê|e2(t)| + Ẽ(t)
˙̃
E(t)

�1
. (36)

If the adaptive laws of the error bound and the fuzzy estimator are chosen as

˙̂
E(t) = − ˙̃

E(t) = �1|e2(t)|, (37)

˙̂w = − ˙̃w = �2e2(t)�̂, (38)

˙̂c = −˙̃c = �3e2(t)�
′T
ĉ ŵ, (39)

˙̂� = −˙̃� = �4e2(t)�
′T
�̂ ŵ, (40)

then (36) can be rewritten as

V̇2 = −
1e
2
1(t) − 
2e

2
2(t) + �e2(t) − E|e2(t)|

� −
1e
2
1(t) − 
2e

2
2(t) − (E − |�|)|e2(t)|

� −
1e
2
1(t) − 
2e

2
2(t)�0. (41)

Similar to the discussion of (26), it can be concluded thatẼ, w̃, c̃ and �̃ are bounded ande1 ande2
converge to zero ast → ∞. This also guarantees thatŵ, ĉ and�̂ are bounded and then the vector� in
(17) is bounded.

5. Simulation results

Since the dynamic characteristics of the chaotic system are nonlinear and the precise model is difficult
to obtain, the AFBC system has been proposed for the chaotic control system to track a desired periodic
orbit. It should be emphasized that the derivation of AFBC does not need to know the dynamic function
of the controlled system. The block diagram of the AFBC chaotic feedback control system is shown in
Fig. 3, wherexc is the trajectory command andx is the system trajectory state. A fuzzy estimator with
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Fig. 4. The simulation results of partial-tuned AFBC for the chaotic system withq = 2.10.

5 fuzzy rules is utilized to on-line estimate the system dynamics. For comparison, two fuzzy estimation
cases are revealed. One is the partial-tuned case, in which the Gaussian membership functions are fixed
and only the output connectionswj are tuned. The other one is the full-tuned case, in which the Gaussian
membership functions�j and the output connectionswj are all tuned. For the partial-tuned case the
Gaussian membership functions are given withcj = [−2, −1, 0, 1, 2]T and�j = [0.8, 0.8, 0.8, 0.8, 0.8]T;
and the output connections are initiated from zeros. For full-tuned case, the parameters of the fuzzy esti-
mator are all initiated from zeros and are learned by the adaptive laws (38)–(40) and the approximator error
bound is learned by the estimation algorithm (37). For both cases, the control parameters are selected as
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Fig. 5. The simulation results of partial-tuned AFBC for the chaotic system withq = 7.00.


1=
2=1,�1=0.1 and�2=�3=�4=50. These parameters are chosen to achieve favorable transient control
performance considering the requirement of asymptotic stability and the possible operating conditions.
The simulation results of the AFBC chaotic systems forq = 2.10 and 7.00 are shown. For partial-tuned
case, the simulation results are shown in Figs. 4 and 5. The tracking responses ofx1 are shown in
Figs. 4(a) and 5(a); the tracking responses ofx2 are shown in Figs. 4(b) and 5(b); the associated
control efforts are shown in Figs. 4(c) and 5(c), and the learned output connectionsŵj are shown in
Figs. 4(d) and 5(d). For full-tuned case, the simulation results are shown in Figs. 6 and 7. The tracking
responses ofx1 are shown in Figs. 6(a) and 7(a); the tracking responses ofx2 are shown in Figs. 6(b)
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Fig. 6. The simulation results of full-tuned AFBC for the chaotic system withq = 2.10.

Fig. 7. The simulation results of full-tuned AFBC for the chaotic system withq = 7.00.
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Fig. 8. Performance index of partial-tuned and full-tuned AFBC schemes.

and 7(b); the associated control efforts are shown in Figs. 6(c) and 7(c), the learned output connections
ŵj are shown in Figs. 6(d) and 7(d), the learned Gaussian membership functions forx1 are shown in
Figs. 6(e) and 7(e), and the learned Gaussian membership functions forx2 are shown in Figs. 6(f) and
7(f). These results show that the proposed AFBC design method can achieve favorable tracking perfor-
mance; and the full-tuned case achieves better tracking performance than the partial-tuned case by paying
the price of computational load for more parameter adaptive laws. A performance indexI is defined as

I =
√

e2
1(t) + ė2

1(t). The performance indexI of partial-tuned and full-tuned AFBC withq = 2.10 and
7.00 are shown in Fig. 8. It is shown that the performance index of the proposed full-tuned algorithm is
smaller than that of the partial-tuned algorithm.
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6. Conclusions

Since the dynamic characteristics of the chaotic system are nonlinear and the precise model is difficult
to obtain, an AFBC system has been proposed for the chaotic dynamic system control to track a desired
periodic orbit. The developed AFBC system is comprised of a fuzzy backstepping controller with a fuzzy
estimation system and a robust controller. The fuzzy estimation system is used to estimate the system
dynamic function. The adaptive laws for the bound of matching error and the parameter adjustment of
fuzzy system are synthesized using the Lyapunov function and Barbalat’s lemma, so that the stability of
the control system can be guaranteed. The developed updating laws of the fuzzy estimator can on-line
tune all the parameters of the fuzzy system based on the Taylor linearization technique. Finally, simulation
results verified that the developed control algorithm can achieve favorable tracking performance.
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