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Abstract

Due to the tremendous growth in the number of digital videos, the development of video
retrieval algorithms that can perform efficient and effective retrieval task is indispensable. In this
paper, we propose a high-level motion activity descriptor, object-based transformed 2D-histo-
gram (T2D-histogram), which exploits both spatial and temporal features to characterize video
sequences in a semantics-based manner. The discrete cosine transform (DCT) is applied to con-
vert the object-based 2D-histogram sequences from the time domain to the frequency domain.
Using this transform, the original high-dimensional time domain features used to represent suc-
cessive frames are significantly reduced to a set of low-dimensional features in frequency
domain. The energy concentration property of DCT allows us to use only a few DCT coeffi-
cients to effectively capture the variations of moving objects. Having the efficient scheme for
video representation, one can perform video retrieval in an accurate and efficient way.
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1. Introduction

The tremendous growth in the number of digital videos has become the main driv-
ing force for developing automatic video retrieval techniques. Among different types
of tools that can push the advancement of retrieval techniques, an efficient automatic
content analyzer that can help execute correct browsing, searching, and filtering of
videos is a must. To achieve this goal, one has to make use of high-level semantic
features to represent video contents. The need of representing high-level semantic
features has motivated the emergence of MPEG-7, formally called the multimedia
content description interface (Sikora, 2001). However, the methods that produce
the specific features and the corresponding similarity measures represent the non-
normative part of MPEG-7 and are still open for research and future innovation.

Usually, the high-level semantic features of video sequences can be inferred from
low-level features. The low-level features can be color distribution, texture composi-
tion, motion intensity, and motion distribution. Among different types of features
that can be extracted from a video, motion is considered as a very significant one
due to its temporal nature. In the literature, Divakaran et al. (2000) used a region-
based histogram to compute the spatial distribution of moving regions. The run-
length descriptor in MPEG-7 (Jeannin and Divakaran, 2001) is used to reflect
whether moving regions occurred in a frame. Aghbari et al. (1998) proposed a mo-
tion-location-based method to extract motion features from divided sub-fields. Peker
et al. (2000) calculated the average motion vectors of a P-frames and those of a video
sequence to be the overall motion features. In addition to the above mentioned local
motion features, Wang et al. (2000) and Tang et al. (2000) proposed to use some glo-
bal motion features to describe video content.

In contrast to the motion-based features of individual frames, another group of
researchers proposed to use spatio-temporal features between successive frames be-
cause these types of features are more abundant in the amount of information. Wang
et al. (2001) extracted features of color, edge andmotion, and zmeasured the similarity
between temporal patterns using the method of dynamic programming. Lin et al.
(2001) characterized the temporal content variation in a shot using two descrip-
tors—dominant color histograms of group of frames and spatial structure histograms
of individual frames. Cheung and Zakhor (2001) utilized the HSV color histogram to
represent the key-frames of video clips and designed a video signature clustering algo-
rithm for detecting similarities between videos. Agnihotri andDimitrova (2000) repre-
sented video segments by color super-histograms, which are used to compute color
histograms for individual shots. Other works that fall into this category can be found
in (Manjunath et al., 2001; Mohan, 1998; Roach et al., 2001; Yeung and Liu, 1995;
Zhao et al., 2001).

There are several drawbacks associatedwith the key-frame-basedmatching process.
First, the features selected fromkey-frames usually suffer from the high-dimensionality
problem. Second, the features chosen from a key-frame is in fact local features. For a
matching process that is targeting atmeasuring the similarity among a great number of
video clips, the key-frame-based matching method is not really feasible because the
information used to characterize the relationships among consecutive frames is not
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taken into account. To overcome these drawbacks, we propose an object-basedmotion
activity descriptor, which can exploit the spatio-temporal information of a video clip in
the matching process. Basically, the proposed spatio-temporal features can support
high-level semantic-based retrieval of videos in a very efficient manner. We make use
of some spatio-temporal relationships amongmovingobjects and thenuse them to sup-
port the retrieval task. In the retrieval process, we use the discrete cosine transform
(DCT) to reduce the dimensionality of the extracted high-dimensional feature. Using
DCT, we can maintain the local topology of a high-dimensional feature. In addition,
the energy concentration property ofDCT allows us to use only a fewDCT coefficients
to represent themoving objects and their variations. Therefore, the transformation can
make an accurate and efficient retrieval process possible.

The rest of the paper is organized as follows. Section 2 presents an overview of the
proposed scheme. Section 3 illustrates the methods used to characterize video seg-
ments. Section 4 describes the representation and matching of video sequences. Sec-
tion 5 presents the experimental results. Section 6 draws conclusions and suggests
avenues for future work.
2. Overview of the proposed scheme

In this section, we shall provide an overview of the proposed video retrieval sys-
tem. Fig. 1 shows the flowchart of the proposed system. MPEG videos are efficiently
Fig. 1. An overview of extracting the proposed T2D-histogram descriptor—compressed videos are parsed
semantically and represented by reduced low-dimensional DCT coefficients.



D.-Y. Chen et al. / J. Vis. Commun. Image R. 16 (2005) 212–232 215
segmented into shots using our previously proposed GOP-based video segmentation
algorithm (Lee et al., 2001). This video segmentation algorithm checks video streams
GOP-by-GOP rather than frame-by-frame. The actual shot boundaries are then
determined at the frame level. After the process of shot segmentation, the next step
is to execute an algorithm, which can generate an object-based motion activity
description. The motion activity descriptor is able to describe moving objects in com-
pressed videos. The features used by this motion descriptor are statistically com-
puted by spatial and temporal distributions along the horizontal and vertical
directions, respectively. The function of the descriptor is basically an encoder, which
can encode video contents into high-level relational features. In order for maintaining
high-computational efficiency, we chooseP-frames formotion activity analysis. Under
these circumstances, a video clip can be represented by a set of motion activity descrip-
tions of consecutive frames in the time domain. However, it is impractical to search a
large video database using the time domain features. Therefore, we propose to apply
DCT on the target frames and make them become lower dimensional in the frequency
domain. Finally, we conduct an indexing process on the transformedDCT coefficients.
Aswementioned before, due to the energy concentration property ofDCT,we are able
to represent the original moving objects in a most accurate and efficient way.
3. Characterization of video segments

In this section, we shall describe how to characterize a video segment so that it can
be used to perform efficient video retrieval. We shall describe how to detect moving
objects in a video segment in Section 3.1 and then discuss how to describe motion
activity of a video segment in Section 3.2.

3.1. Moving object detection

For computational efficiency, motion information in P-frames is used for the
detection of moving objects. In general, consecutive P-frames separated by two or
three B-frames are still similar and would not vary too much. Therefore, it is reason-
able to use P-frames as targets for moving objects detection. On the other hand,
since the motion vectors estimated in MPEG-2 videos may not be 100% correct,
one has to remove the noisy part before they can be used. For those motion vectors
that are small in magnitude, we consider they are noises and should be removed. For
the sake of computation speed, the average of motion vectors in those inter-coded
macroblocks is computed and selected as the threshold for noise removal. After
noisy motion vectors are filtered out, the motion vectors with similar magnitude
and direction are clustered into a group by applying a region growing process with
an morphological operator of 2 · 2 macroblocks. Thus, moving areas with size smal-
ler than 4 macroblocks would be recognized as noises and be removed. Fig. 2 illus-
trates some examples of moving object detection in MPEG videos.

In our previous works (Chen and Lee, 2001; Chen et al., 2002), we have suc-
cessfully detected moving objects in several kinds of videos such as tennis, traffic



Fig. 2. Demonstration of moving object detection: (A) anchor person, (B) football, (C) walking person,
and (D) tennis competition.
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monitoring, news, and football. Moving objects can be detected with an over 90%
success rate when the camera is stationary. When the camera moves, camera mo-
tion such as pan or tilt should be estimated in advance before detecting moving
objects. In our previous work, the precision is about 83% when the camera
moves. However, the recall is still higher than 90%. Examples of moving object
detection using our previous algorithm are demonstrated in Fig. 2. Video shots
shown in Figs. 2A–C are extracted from an MPEG-7 testing dataset, and the shot
of tennis competition in Fig. 2D is recorded from the Star-Sports TV-channel.
Based on the results shown in Fig. 2, it is obvious that all moving objects are
successfully detected.

3.2. Describing motion activity in a video segment

In this section, we shall elaborate how to describe object-based motion activity in
a video segment. After moving objects are detected, the spatial distribution of them
is characterized using the statistics derived from the 2D-histogram. A 2D-histogram
for each P-frames consists of an X-histogram and a Y-histogram. The horizontal axis
of the X-histogram (Y-histogram) is the quantized X-coordinate (Y-coordinate) in a
frame. The X- and Y-coordinates are quantized into b bins, which should be moder-
ate and be adaptive to various content types of MPEG videos. Thus, b should be
related to the frame resolution and the threshold of object size-based noise filtering,
and is defined by

b ¼ min
Rrowffiffiffi

S
p ;

Rcolumnffiffiffi
S

p
� �

; ð1Þ



Fig. 3. Demonstration of the computation of 2D-histogram.
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where Rrow · Rcolumn is the resolution of frame size in terms of macroblocks and S is
the size of morphological operator in noise filtering. The decision of b will be verified
by the simulated results in Section 5.3. Initially, the object size is estimated before bin
assignment. If an object is larger than the predefined unit size (frame-size/b2), then it
is normalized and accumulated according to the following equation:

BinX
i;j ¼

XObj

r¼1

AccXi;j;r; ð2Þ

where

AccXi;j;r ¼
1 if object size 6 1

b2
frame size;

size of object c
frame size

� b2 otherwise;

(

whereBinX
i;j denotes the jth bin of anX-histogram in-frame i, AccXi;j;r means the accumu-

lated value of the jth bin of object r in-frame i for anX-histogram, and Obj is the num-
ber of objects in-frame i. Fig. 3 shows how a 2D-histogram is computed, with the
number of histogram bins set to four. In the example, two objects with sizes of three
units and four units are present in the frame.Toobtain theX-histogram, the size of each
object is assigned to a histogrambin based on its centroid (indicated by the symbol ‘‘*’’)
on the horizontal axis. For example, the football player of size three is assigned to Bin 1
and the basketball player of size four is assigned to Bin 3 in theX-histogram. Similarly,
in the Y-histogram, Bin 2 is increased by 3 and that of Bin1 is increased by 4.

Using the proposed 2D-histogram, the spatial distributions among moving ob-
jects are approximately described since each moving object is assigned to the histo-
gram bin based on its centroid. Objects that belong to the same coordinate interval
are grouped into the same bin, and thus the distance between object groups can be
specified as the distance between the associated bins.
4. Video sequence matching

After video segments are characterized by the descriptor of object-based 2D-his-
togram, temporal relationships among the moving objects have to be described.
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To characterize the temporal relationships among moving objects, a few DCT coef-
ficients of the transformed time sequence are used to represent the variations of ori-
ginal objects among consecutive frames. A brief review of DCT will be elaborated in
Section 4.1. Section 4.2 will describe how to represent a video sequence. The similar-
ity metric that can be used to measure the degree of similarity will be discussed in
Section 4.3.
4.1. Discrete cosine transform

The discrete cosine transform (DCT) is a powerful tool that has been extensively
used in many data compression applications. The DCT of a finite length sequence
often has its coefficients more highly concentrated at low indices than other trans-
forms do (Oppenheim and Schafer, 1999). It has been proven in Shi and Sun
(2000) that the approximation capability of DCT is much better than that of other
approximation methods. Therefore, we shall use the DCT to characterize the tempo-
ral variations among moving objects in a video sequence.

4.2. Representation of video sequences

In this section, we shall describe how to characterize the temporal variations
among moving objects exploiting the DCT. The algorithm that can be exploited
to generate video sequence representation is as follows:

Video sequence representation algorithm

Input: Consecutive P-frames {P1,P2,P3, . . . , PN}
Output: Sequences of representative DCT coefficients [Zf, j], where f 2 [1,a] and
j 2 [1,b]
Procedure:
F
1.

D
m
F
C
S
F
C
v
F

or each P-frames Pi,

etect moving objects by clustering macroblocks that have similar motion vector
agnitudes and similar motion directions.
2.
 or each object Obji, r, where i and r denote the rth object in the ith P-frames;

ompute the centroid and the object size in the unit of macroblocks.
3.
 et the number of histogram bins to b.

4.
 or each P-frames Pi,
ompute the X-histogram and the Y-histogram according to the horizontal and
ertical position of the objects, respectively.
5.
 or each sequence of histogram bins ½BinZt;j�, where t 2 [1,N], j 2 [1,b], and
2 {X,Y}

ompute the transformed sequence [Zf, j] using the discrete cosine transform
Z

C

Zf ;j ¼ Cðf Þ
XN
t¼1

Binz
t;j cos

ð2t þ 1Þfp
2N

� �
; where f 2 ½1;N �:
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6.
Fig
rep
Set the number of DCT coefficients to a.

F
7.

S
s
G

.
r

or b transformed sequences [Zf, j] of DCT coefficients,

elect the DC coefficient and (a � 1) AC coefficients to represent a transformed
equence.
8.
 enerate the b reduced low-dimensional sequences [Zf, j], where f 2 [1,a] and
j 2 [1,b].
Fig. 4 is the graphical representation of the above algorithm. For each P-frames,
the feature of the object-based motion activity is described by a 2D-histogram, in
which the spatial distribution of moving objects in horizontal and vertical direction
are characterized by the bin values of the X-histogram and the Y-histogram, respec-
tively. Therefore, a video sequence can be represented by a sequence of 2D-histo-
gram with 2Nb dimensions, where N is the number of P-frames in a video
sequence and b is the number of bins in X-histogram and Y-histogram. To reduce
the dimensionality of the feature space, DCT is exploited to transform the 2D-histo-
gram of the original video sequence into the frequency domain. The value of the jth
4. Video sequences are characterized by the object-based T2D-histogram descriptor and further
esented by reduced low-dimensional DCT coefficients.



220 D.-Y. Chen et al. / J. Vis. Commun. Image R. 16 (2005) 212–232
bin BinX
i;j of X-histogram (BinY

i;j of Y-histogram) in the ith P-frames is considered to
be a signal in time i, and thus the corresponding jth X-histogram bin in the consec-
utive N P-frames is regarded as a time signal xj ¼ ½BinX

t;j� (yj ¼ ½BinY
t;j� of the Y-his-

togram), where t = 1, 2, 3, . . . ,N. The N-point DCT of a signal xj is defined as a
sequence X = [Xf, j], f = 1, 2, 3, . . . ,N as follows:

X f ;j ¼ Cðf Þ
XN
t¼1

BinX
t;j cos

ð2t þ 1Þfp
2N

� �
;

Cð0Þ ¼
ffiffiffiffi
1

N

r
and Cðf Þ ¼

ffiffiffiffi
2

N

r
; f ¼ 1; 2; . . . ;N � 1;

ð3Þ

where N is the number of P-frames and j 2 [1,b]. Eq. (3) indicates that a video se-
quence is represented by b sequences of DCT coefficients restricted by the number
of bins in the histogram. It means that temporal variations among original objects
in the successive P-frames are characterized by b sequences of DCT coefficients in
frequency domain.

It is well known that the first few low-frequency AC terms together with the DC
term will suffice for the need. Therefore, for easy computation we only choose these
terms to represent a video sequence instead of selecting all coefficients. However, to
select an appropriate amount of AC coefficients is always a crucial issue. Since the
selection of coefficients is an ill-posed problem, we shall discuss this problem in
the experiments.

4.3. Choice of similarity measure

A very important property of Parseval�s theorem is that the Euclidean distance
between DCT transformed signals is able to maintain the local topology. Therefore,
for matching between video sequences we employ the modified Euclidean distance as
the metric. Let ½W X

f � and ½HX
f � be two finite point sets of X-histogram (½W Y

f � and ½HY
f �

of the Y-histogram). Then the modified Euclidean distance between two video se-
quences w and h is defined as

DistX ðw; hÞ ¼ Min
DistX ðW ;HÞ;DistX ðW ; shrð1;HÞÞ;
DistX ðW ; shrð2;HÞÞ; . . . ;DistX ðW ; shrðb� 1;HÞÞ

� �

DistY ðw; hÞ ¼ Min
DistY ðW ;HÞ;DistY ðW ; shrð1;HÞÞ;
DistY ðW ; shrð2;HÞÞ; . . . ;DistY ðW ; shrðb� 1;HÞÞ

� �
;

ð4Þ

where DistX ðW ;HÞ ¼
Pb

j¼1

Pa
f¼1ðW X

f ;j � HX
f ;jÞ

2
; DistY ðW ;HÞ ¼

Pb
j¼1

Pa
f¼1ðW Y

f ;j�
HY

f ;jÞ
2 and W and H are the transformed signals of w and h, respectively. In Eq.

(4), j denotes the jth histogram bin, f represents the fth coefficient and a denotes
the number of selected DCT coefficients. shr (n,H) is a bin-rotating function which
rotates the b histogram bins to the right n times in a cyclic way. For example,
shr (1,H) shifts the first (b � 1) bins one time to the right and the last bin rotates
from the bth bin to the 1st bin. Using the distance metric with function shr (n,H),
two video sequences will be regarded as similar when they are spatially and tempo-
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rally similar. If the function shr (n,H) were not employed in the distance function, a
shot A with objects poisoned in the left and a shot B with objects positioned in the
right would be regarded as dissimilar because the peak bins of shots A and B are in
the left and right, respectively, and thereby the distance between A and B would be
very large.

To further address the overall moving trend of objects within a video sequence,
DistX (w,h) and DistY (w,h) are weighted adaptively based on the average motion vec-
tor magnitudes derived from the x- and y-directions. Under these circumstances, the
total distance Disttotal (w,h) between two video sequences w and h can be defined as

Disttotalðw; hÞ ¼ WTH �DistX ðw; hÞ þ WT V �DistY ðw; hÞ; ð5Þ

WTH ¼ 1

N

XN
i¼1

MV i;H

MV i;H þMV i;V
; WT V ¼ 1� WTH ;

whereWTH is the weight of the X-histogram (WTV of Y-histogram), N is the number
of P-frames, and MVi,H and MVi,V are the average motion vector magnitudes of the
X- and Y-component, respectively, of the inter-coded macroblocks in the ith P-
frames. The reason why the analysis on object motion is split into two independent
directions is as follows. It is well known that a camera would normally pan or tilt to
catch moving objects in a scene. This act will in fact result in the situation that the
global motion is mainly horizontal (vertical) when most active regions move in the
horizontal (vertical) direction. Therefore, it is feasible to use the dominant moving
trend to measure the video similarity. For example, we can discriminate between
baseball and football videos using the above mentioned similarity metric because
most players in a baseball game run vertically and the camera tilts to track them
or the baseball, while players in a football game primarily run horizontally and
the camera pans to track significant events.
5. Experimental results and discussions

To show the effectiveness of the proposed method, we simulated the color video
sequence matching algorithm by MPEG-7 test dataset (ISO/IEC JTC1/SC29/
WG11/N2466, 1998), which includes various programs such as documentaries, news,
sports, entertainment, education, scenery, interview, etc., and consists of 1173 shots.
In the test dataset, the degree of strength of the motions in these shots ranged from
low, medium to high, and the size of moving objects were classified as either small,
medium or large. The anchorperson shots and interview shots (API shots) are typical
low activity shots with small-range motions of mouth and head. The close-up track-
ing shots (CUT shots) are medium or large activity shots with medium or large-area
moving foreground objects. The walking person shots (WP shots) are typical med-
ium activity shots with medium or large motion areas. The aims of the experiments
were to (1) evaluate the retrieval performance using different number of DCT coef-
ficients; (2) analyze the degree of accuracy when distinct number of histogram bins
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was used in the retrieval process; and (3) evaluate the retrieval performance of the
proposed object-based motion activity descriptor. To evaluate the performance of
the above three issues, precision and recall were used as the metrics to measure
the performance of the proposed retrieval system. Recall and precision were defined
as follows:

Recall ¼ kRetrieveðqÞ \RelevantðqÞk
kRelevantðqÞk ;

Precision ¼ kRetrieveðqÞ \RelevantðqÞk
kRetrieveðqÞk ; ð6Þ

where ‘‘Retrieve (q)’’ means the retrieved video sequences that corresponded to a
query sequence q; ‘‘Relevant (q)’’ denotes all video sequences in the database that
were relevant to a query sequence q and iÆi indicates the cardinality of the set. Recall
was defined as the ratio of the number of retrieved relevant video sequences to the
total number of relevant video sequences in the video database, and Precision was
defined as the ratio of the number of retrieved relevant video sequences to the total
number of retrieved video sequences. In the following subsections, we shall elaborate
on how to determine some important thresholds that will be used in the experiments
and report the retrieval performance of the proposed system.

5.1. Selecting appropriate number of DCT coefficients

In the experiments, we used four shot classes to test the performance of our algo-
rithms. Among these test videos, the shots of the close-up tracking (CUT) and the
walking person (WP) were with high degree of motion. The shots covered in the bicy-
cle racing (BR) and the anchor person (API) were with medium degree of motion
and low degree of motion, respectively. Figs. 5A–D show the examples of these four
shot types, with key-frames sampled per 40 frames. To evaluate the effect when dif-
ferent number of DCT coefficients was used in the retrieval process, the number of
DCT coefficients, a, including the DC and the first (a � 1) AC coefficients, was var-
ied and tested under the condition that the number of histogram bins, b, was set to 8.
b was set to 8 because in the test dataset the resolution of frame size in terms of mac-
roblocks was 20 · 15 in SIF 320 · 240 format. The descriptors D, the X-histogram,
the Y-histogram, the 2D-histogram and the weighted 2D-histogram were indepen-
dently used.

Figs. 6A–D show the retrieval performance using four different types of shots,
CUT, BR, WP, and API, respectively. The four curves shown in the figures corre-
sponded to four descriptors, which had distinct number of DCT coefficients
(a = 1, 2, 3, and 5). The horizontal axis denotes recall and the vertical axis denotes
precision. Table 1 compared the performance among distinct settings of a. ‘‘Rank’’
refers to the order of retrieval performance of recall–precision pairs and the first two
ranks were listed for each descriptor measured by using different setting of a. The
retrieval performance in the recall–precision pair with a = 2 in the CU and BR shots
was better than that obtained with other settings. Although the setting of a = 1
yielded better retrieval than a = 2 in the WP shot, the performance obtained by set-



Fig. 5. Examples of the close-up tracking (CUT), bicycle racing (BR), walking person (WP), and anchor
person and interview (API) shots.
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ting a = 2 was still in the second best. For the API shots, the setting a = 5 was the
best in terms of retrieval and the settings a = 3 and a = 2 were the second best as
shown in Figs. 6A and B and C and D, respectively.

To evaluate the overall performance obtained using different numbers of DCT
coefficients, the retrieval performance P kNDC

for different a was determined by

P kNDC
¼

XjDj
i¼1

XjClipsj
j¼1

q

RankkNDC
i;j

; ð7Þ

where ‘‘NDC’’ denotes the ‘‘Number of DCT Coefficients’’; q is the total number of
different a settings in the experiment and RankkNDC

i;j is the ranking of the retrieval per-
formance for the shot of type j with a = kNDC, using descriptor i. When P kNDC

was
larger, the performance obtained with a = kNDC was better. From the curves shown
in Figs. 6A–D, it is clear that P2 can be computed and its value was larger than other
P values. This outcome means when a = 2, the retrieval result was the best. Hence,
the experimental results imply that two DCT coefficients are enough for similarity
measurement of video segments. This indicates the DC coefficient and the lowest-fre-
quency AC coefficient will suffice.



Fig. 6. Average retrieval performance with different descriptors (b = 8, a 2 [1,5]): (A) X-histogram,
(B) Y-histogram, (C) 2D-histogram, and (D) weighted 2D-histogram.

Table 1
Performance using distinct a and four feature descriptors (b = 8)

Descriptor Shot type

Close-up
tracking (CUT)

Bicycle
racing (BR)

Walking
person (WP)

Anchor
person (API)

X-histogram Rank #1 2 2 1 5
Rank #2 3 3 2 3

Y-histogram Rank #1 2 2 1 5
Rank #2 1 3 2 3

2D-histogram Rank #1 2 2 1 5
Rank #2 3 3 2 2

Weighted 2D-histogram Rank #1 2 2 1 5
Rank #2 3 3 2 2
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5.2. Choosing an appropriate motion activity descriptor

To determine an appropriate motion activity descriptor, we changed the value of
b from 4 to 10, each time with an increment of 2. Figs. 7A–D show, respectively, the
performance of the recall–precision pair corresponding to b = 4, 6, 8, and 10. Table 2
illustrates the performance calculated by using four different number of histogram



Fig. 7. Average retrieval performance (a = 2) with different number of bins (b): (A) b = 4, (B) b = 6,
(C) b = 8, and (D) b = 10.

Table 2
The performance obtained of four descriptors with different b (a = 2)

b Setting Shot type

Close-up
tracking (CUT)

Bicycle
racing (BR)

Walking
person (WP)

Anchor
person (API)

b = 4 Rank #1 X X W-2D W-2D
Rank #2 W-2D W-2D X 2D

b = 6 Rank #1 W-2D Y X W-2D
Rank #2 X W-2D W-2D 2D

b = 8 Rank #1 X W-2D W-2D W-2D
Rank #2 W-2D 2D 2D 2D

b = 10 Rank #1 W-2D W-2D W-2D X
Rank #2 2D 2D 2D 2-2D

X, X-histogram; Y, Y-histogram; 2D, 2D-histogram; and W-2D, Weighted 2D-histogram.
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bins (b = 4, 6, 8, and 10). In most cases, the descriptor adopted weighted 2D-histo-
gram outperformed other types of descriptors. To quantitatively compute the perfor-
mance, we used a metric, P kD , to measure the retrieval results
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P kD ¼
Xjbj
i¼1

XjClipsj
j¼1

j D j
RankkD

i;j

; ð8Þ

where |b| denotes the total number of distinct settings of b; |D| represents the number
of testing descriptors; RankkD

i;j is the retrieval performance raking of the shot of type j
with the ith b parameter setting and the descriptor D = kD. Based on the results cal-
culated by Eq. (8), we chose the weighted 2D-histogram descriptor as the motion
activity descriptor for all the experiments conducted in this work.

5.3. Determining the best number of histogram bins

In this section, we shall verify the decision of the number of histogram bins b.
Therefore, we evaluated the performance by using different number of histogram
bins, which ranged from 4, 6, 8 to 10. The recall–precision pair corresponding to
each b setting was depicted in Fig. 8, and the ranking of retrieval performance for
each shot type was illustrated in Table 3.

It is obvious that the retrieval performance at b = 8 decided by Eq. (1) was better
than other settings and the worst case was when b = 4. The experimental results
Fig. 8. Average retrieval performance with parameters: a = 2, D: weighted 2D-histogram, b 2 {4, 6,
8, 10}.

Table 3
Comparison of performance using different numbers of histogram bins (b)

Performance Shot type

Close-up
tracking (CUT)

Bicycle
racing (BR)

Walking
person (WP)

Anchor
person (API)

Rank #1 6 8 8 8
Rank #2 10 10 10 10
Rank #3 8 6 6 6
Rank #4 4 4 4 4
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reveal that the number of histogram bins should be moderate, because fewer histo-
gram bins correspond to a less precise description of the variation in spatial distribu-
tion. In contrast, when the number of histogram bins was too large, the descriptor
would be extremely responsive to the slight changes. Under this circumstance, the
distance obtained from excessive number of bins between two similar shots is rela-
tively high such that these two shots would be regarded as dissimilar.

5.4. Evaluation of retrieval performance

After the number of DCT coefficients, the number of histogram bins and the
descriptor type are determined, we shall evaluate the overall retrieving accuracy
of the proposed system. The ground truth and the overall performance corre-
sponding to the four shot classes are shown in Table 4. In the experiment, each
shot in these four classes was used as a query shot. The top 30 similar shots were
returned as a query result for evaluating retrieval performance. Finally, the
respective average recall and precision for each class were computed. The recall
of these four kinds of shots exceeded 80% in which the recall of BR, CUT,
and API were higher than 86%. The worst result was obtained by testing the
API shots, with the precision of 78%. On the other hand, although the precision
of the API shots was under 80%, the precision of the CUT, BR, and WP all ex-
ceeded 80%. From Table 4, the overall average recall and average precision were
86 and 81%, respectively.

For performance comparison, we have performed the same experiments using the
algorithms of motion-based run-length descriptor (RLD) and shot activity histo-
gram (SAH) provided by MPEG-7 (ISO/IEC JTC1/SC29/WG11/N4547, 2001).
Fig. 9 shows the precision versus recall performance of RLD, SAH, and T2D-histo-
gram. The T2D-histogram descriptor had performance gain over RLD of 45% in
API shots, 30% in the CUT shots, 34% in the WP shots, and 35% in the BR shots.
Also, the T2D-histogram had performance gain over SAH of 11% in the API shots,
7% in the CUT shots, 20% in the WP shots, and 21% in the BR shots. In average, the
T2D-histogram descriptor had 37% and 15% performance gains over the RLD and
SAH, respectively. The experimental results using extensive test videos show that the
proposed T2D-histogram outperforms RLD and SAH in MPEG-7 in the perfor-
mance of video similarity retrieval.
Table 4
Retrieval performance using the T2D-histogram descriptor

Performance Clips

Close-up
tracking (CUT)

Bicycle
racing (BR)

Walking
person (WP)

Anchor
person (API)

Ground-truth video shots 162 47 239 152
Recall 88% 87% 80% 86%
Precision 80% 84% 81% 78%

Average recall 86% Average precision 81%



Fig. 9. Retrieval performance of the four shot classes: (A) API shots, (B) CUT shots, (C) WP shots,
(D) BR shots, and (E) average.
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Examples of the query results were demonstrated in Figs. 10–13, in which the top
20 similar shots for CUT, BR, WP, and API shots were listed, respectively. In Fig.
10, most retrieved shots included large objects with significant motion belonged to
the CUT shots. However, due to camera motion, some shots were mistakenly de-
tected. For example, the full-court shots of the football game like (4), (8), and (12)
of Fig. 10 were retrieved due to the panning effect of the camera. As to the relevant
shots, it is worth noticing that the major objects in these shots, such as (3), (18), and
(19) of Fig. 10, had similar size with the object covered in the query although they
had different colors. The reason why these shots could still be detected was due to
their similarity with the objects in the query visually and semantically. When com-
paring with color-based methods such as color histogram, these shots with distinct
dominant colors but semantically related cannot be retrieved.



Fig. 10. Demonstration of the query result for a CUT shot.

Fig. 11. Demonstration of the query result for a BR shot.
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In Fig. 11, the retrieval performance of the BR shot was quite good and most
retrieved video segments were similar to the query due to the particular motion of
the rider(s). In Fig. 12, most retrieved video segments had a few medium-size moving



Fig. 12. Demonstration of the query result for a WP shot.

Fig. 13. Demonstration of the query result for an API shot.
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objects. Some video segments were mistakenly detected, such as (10) and (14) of Fig.
12. These shots were retrieved due to the reason that the complex background was
detected as several medium-size objects with a moving camera. In Fig. 13, most
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retrieved video segments included one large object with low motion, and so interview
shots were also retrieved such as the shots (6), (8), (13), (16), and (20) of Fig. 13. An
example of false detection can be found in (12) of Fig. 13, wherein some medium-size
objects moved near to each other and so were incorrectly detected as a single large
moving object.
6. Conclusions

A novel framework of high-level video representation for video sequence match-
ing has been proposed in this work. The proposed framework has two special fea-
tures: (1) the proposed descriptor of object-based T2D-histogram has exploited
both spatial and temporal features of moving objects and characterized video
sequences in a semantics-based manner; (2) the dimensionality of feature space
has been reduced using DCT while characterizing the temporal variations among
moving objects. Experimental results obtained using the extensive test dataset of
MPEG-7 have demonstrated that a few DCT coefficients could suffice for represent-
ing a video sequence and also shown that the proposed T2D-histogram descriptor
was quite robust. Using this novel motion activity descriptor of object-based T2D-
histogram, one can perform video retrieval in an accurate and efficient way.
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