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Abstract

We derive stringy symmetries with conserved charges of arbitrarily high spins from the decoupling of two types of zero-
norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string. These symmetries are valid to all
energya’ and all loop orderg in string perturbation theory. The high-energy limit— oo of these stringy symmetries can
then be used to fix the proportionality constants between scattering amplitudes of different string states algeftamally
referring to Gross and Mende’s saddle point calculation of high-energy string-loop amplitudes. These proportionality constants
are, as conjectured by Gross, independent of the scatteringénglend the ordey of string perturbation theory. However,
we also discover somaew nonzero components of high-energy amplitudes not found previously by Gross and Manes. These
components are essential to preserve massive gauge invariances or decouple massive zero-norm states of string theory. A set
massive scattering amplitudes and their high energy limit are calculated explicitly to justify our results.
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In the traditional formulation of a local quantum ultraviolet structure of field theories which, in some
field theory, a symmetry principle was postulated, cases, makes them consistent or renormalizable quan-
which can be used to determine the interaction of the tum field theories when incorporating with quantum
theory, e.g., Yang—Mills theories and general relativity. mechanics. In these cases, the Ward identities, the di-
The idea of “symmetry dictates interaction” has thus rect consequence of symmetry on thgoint Green
become one of the fundamental philosophy to pur- functions of the theory, are intensively used to remove
sue new physics such as GUTs and supergravities forthe unwanted loop divergences in perturbation theory.
the last few decades. One of the most important con- In contrast to the local quantum field theory, string
sequences of these symmetries is the resulting softertheory is very different in this respect. In string the-

ory, on the contrary, it is the interaction, prescribed by

the very tight quantum consistency conditions due to
T E-mail addresses: ctchan@phys. cts.nthu.edu.(@.-T. Chan), the_ extendedness of string rather than point particle,
jcclee@cc.nctu.edu.t@d.-C. Lee). which determines the form of the symmetry. In fact,
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once we settle on the quantum theory of a free string, identity in gauge field theory. As the first test of these
the forms of the interactions and thus symmetries of stringy Ward identities, the high-energy linit — co
all string states are fixed by the quantum consistency of them are used to produce Grosg3} linear rela-
of the theory. For example, the massless gauge sym-tions among high-energy scattering amplitudes of dif-
metries of 10D heterotic strinld] were determined to  ferent string states with the same momenta. Moreover,
be SO(32) or E§ by the string one-loop consistency the proportionality constants between scattering am-
or modular invariance of the theory. Some stringy plitudes of different string states are calculated for the
Einstein—Yang—Mills type symmetries with symmetry second massive level algebraicalithout referring to
parameters containing both Einstein and Yang—Mills Gross and Mende’s saddle point calculation of high-
index were proposed in Ref2]. Being a consistent  energy string-loop amplitudes. Our calculation thus
quantum theory with no free parameter and an infinite serves as a consistent check of the saddle point tech-
number of states, it is conceivable that there exists an nique of string-loop diagram developed by Gross and
huge symmetry group or Ward identities, which are re- Mende[5]. We find that these high-energy proportion-
sponsible for the ultraviolet finiteness of string theory. ality constants are, as conjectured by Gri@#sinde-
To uncover the structure of this huge hidden symmetry pendent of scattering anglecm and the ordery of
group has become one of the most challenging prob- string perturbation theory. However, the proportional-
lem ever since the discovery of string theory. ity coefficients do depend on the scattering arnfgig

In 1988 Grosg3] made an important progress on through the dependence of momentunicat energy.
this subject (see alsfd] for the subsequent devel- Moreimportantly, we also discover some new nonzero
opments). With the calculation of high-energy limit components of high-energy amplitudes not found pre-
of closed string scattering amplitudes for an arbi- vioudy by Gross and Manes [6]. These components
trary string-loop ordeiG through the use of a semi- areessential to preserve massive gauge invariances or
classical, saddle point technique developed by Gross decouple massive zero-normstates of string theory. As
and Mendd5], he was able to derive an infinite num- an explicit example, we calculate the high energy limit
ber of linear relations among high-energy scattering of a set of massive scattering amplitudes of the second
amplitudes of different string states with the same mo- massive level derived if8] to justify our results. The
menta. These relations were shown to be valid order fact that zero-norm states imply inter-particle symme-
by order and were of thlentical form in string per- tries was demonstrated previously by two other inde-
turbation theory. As a result, the high-energy scatter- pendent approaches based on the massive worldsheet
ing amplitudes of all string states can be expressed in sigma-mode[9] and Witten’s string field theorf10].
terms of, say, the dilaton scattering amplitudes. A sim- To further uncover the group theoretical structure of
ilar result was obtained for the open string by Gross these stringy symmetries, it is important to explicitly
and Maneg6]. However, the physical origin of these calculate the complete set of zero-norm states with
symmetries and thus the meaning of proportionality arbitrarily high spins in the spectrum. Recently, a sim-
constants between the high-energy scattering ampli- plified method to generate zero-norm states in OCFQ
tudes of different string states were unknown to those bosonic string was proposddil]. General formulas
authors, and their values were not calculated. of some zero-norm tensor states at an arbitrary mass

In this Letter, we propose an infinite humber of level were given. Unfortunately, general formulas for
stringy Ward identities derived from the decoupling of the complete set of zero-norm states are still lacking
two types of zero-norm stat¢g] in the OCFQ string mostly due to the high dimensionality of spacetime
spectrum. These Ward identities are valicitioenergy D = 26. However, in the toy 2D string modgl2],
o’ and to all loop orders in string perturbation the- a general formula of zero-norm states with discrete
ory since zero-norm states should be decoupled from Polyakov’s momenta at an arbitrary mass level was
the correlation functions at each order of perturbation given in terms of Schur polynomial&3]. These zero-
theory by unitarity. The simplest example is the famil- norm states were shown to carry the spacetingg
iar masslessn-shell Ward identity of string QED. In charges. On the other hand, the complete spacetime
this sense, the stringy Ward identities we proposed in symmetry group of toy 2D string was known to be
this Letter serve as a natural generalization of Ward the samewv.,, and the corresponding., Ward iden-
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tities were powerful enough to determine the tachyon
scattering amplitudewithout any integration. These
observations in 2D and 26D string theories signal the
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26. The existence of type Il zero-norm states turns out
to be crucial for the discussion in the rest of this Let-
ter. The simplest zero-norm state«_1|0, k), k2 =0

importance of the existence of zero-norm states in the with polarizationk is the massless solution of E@),
OCFQ string spectrum, not shared by other quantiza- which reproduces the longitudinal photon discussed in

tion schemes of string theory, e.g., light-cone quanti-

zation. The advantage of using the decoupling of zero-

norm states to derive stringy Ward identities is that one
can avoid the difficult calculation of string-loop ampli-
tudes. Another one is that the resulting Ward identities
are valid taall energyw/, in contrast to the high-energy
a’ — oo result of Gross.

Let us begin with a brief review of QED Ward iden-
tity

Ky T2 (kkz k) =0, (1)

where7 is theoff-shell n-point Green function for
external photons of polarizations, ..., u, and mo-
mentaky, ..., k,. EQ. (1) means that the amplitude
vanishes if the polarization of one of the external pho-
tons is taken to be longitudinal. Note that Et) holds
even off-shell. This seemingly simple equation, which
originated fromU (1) gauge symmetry, turns out to
be one of the most far-reaching property of QED. In
the old covariant Gupta—Bleuler quantization of QED,
the polarization vectog, of photon is constrained by
the covariant gauge conditioh- ¢ = 0. One of the
three allowed physical polarizations, the longitudinal
onee =k, is zero-norm due to the massless condition
of on-shell photon. The theory thus ends up with only

Eq. (1). A simple prescription to systematically solve
Egs.(2) and (3)for an infinite number of zero-norm
states was given recently in R¢i1]. A more thor-
ough understanding of the solution of these equations
and their relation to spacetime,, symmetry of toy

D = 2 string was discussed in R¢13].

In the first quantized approach of string theory, the
string generalization of Eq1), or the stringyon-shell
Ward identities are proposed to be (for our purpose we
choose four-point amplitudes in this Letter)

Dgy,
Zc(ki)=gcz_xf%DXM

x exp(—za—n / % @gaﬂaaxﬂaﬂxﬂ)
4
X 1_[ V; (k,‘) = 0, (4)
i=1

where at least one of the 4 vertex operators corre-
sponds to the zero-norm state solution of E(&).

or (3). In EqQ. (4) g. is the closed string coupling
constant,\ is the volume of the group of diffeomor-
phisms and Weyl rescalings of the worldsheet metric,
andv; (k;) are the on-shell vertex operators with mo-
mentak;. The integral is over orientable open surfaces

two physical transverse propagating modes, and the of Euler numbery parametrized by moduki with
longitudinal degree of freedom turns out to serve as the punctures ag;. To illustrate the power of this seem-

U(1) symmetry parameter of the theory. In the OCFQ

ingly trivial equation, the four Ward identities of the

spectrum of open bosonic string theory, there exists a second massive level (spin-three) were calculated to

natural stringy generalization of this zero-norm longi-

tudinal degree of freedom. They are (we use the nota-

tion in Ref.[7])

Type I

L_1]x), whereLq|x)=Ls|x)=0, Lolx)=0; (2)

Type Il

<L_2 + ng_l) %), whereL|%) = L|X) =0,
(Lo+DIx) =0. 3)

While type | states have zero-norm at any spacetime

dimension, type Il states have zero-noonly at D =

be[8]
kO T + 20, TH =0, (5)
5
(Ekﬂkveg + nweg)zﬁ*“) + 9,6, T\
+ 60,7/ =0, (6)
1
<§kﬂkuek - znwek)TXw“*) + Ok, 0, T
— 60,7} =0, )
17 9
<Zklukuk)L + En/LUk)L)’];((MV)‘)
+ (977,uv + Z:I-kukv)/];((lw) + 25k/L/TXM =0, (8)
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where6,,, is transverse and traceless, atjdand 6 in Refs.[3,6] due to lack of the physical origin of the
are transverse vectors. In each equation, we have choproposed high-energy symmetries, one needs to calcu-
sen, sayp2(kz) to be the vertex operators constructed late high-energy limit of EQ5)—(8).

from zero-norm states arigl = k»,,. Note that Eq(7) We will calculate high energy limit of EqY5)—

is the inter-particle Ward identity corresponding to (8) without referring to the saddle point calculation
D5 vector zero-norm state obtained by antisymmetriz- in [3,5,6]. Let us define the normalized polarization
ing those terms which contairfjlaﬂz in the original vectorsep = miz(Ez, ko, 0) = 2—2 e = miz(kz, E», 0)

type | and type Il vector zero-norm states. We will andey = (0,0, 1) in the CM frame contained in the
use 1 and 2 for the incoming particles and 3 and 4 plane of scattering. They satisfy the completeness re-
for the scattered particles. In Eq$)—(8), 1, 3 and 4 lation n*V = Ea,ﬂege;n“ﬂ, wherep,v=0,1,2 and
can be any string states (including zero-norm states) «, 8 = P, L, T. Diagn*’ = (—1,1,1). One can now
and we have omitted their tensor indices for the cases transform allu, v coordinates in Eqg5)—(8)to coor-

of excited string states. For example, one can choosedinatesx, 8. For Eq.(5), we haved#’ = ellfez — e#e;
v1(k1) to be the vertex operator constructed from an- or 64V = eZeVT + e’T‘ez. In the high energyt — oo,
other zero-norm state which generates an inter-particle fixed angle¢cm limit, one identifiesep = ¢, and
Ward identity of the third massive level. The result- Eq. (5) gives (we drop loop ordex here to simplify

ing Ward identity of Eq.(7) then relates scattering the notation)

amplitudes of particles at different mass Ie\/é]és

64 4 4 2
in Egs. (5)—(8) are the second massive levglth or- Tiie = Terr + Ty — Ty =0, ©)
der string-loop amplitudes. For the string-tree level TL5L—>T3+T(2T) =0. (10)

x = 1 with three tachyonss 34, the three scatter-
ing amplitudesz;’s were explicitly calculated and the
Ward identities Eqs(5)—(8) were verified[8]. At this

In Egs.(9) and (10)we have assigned a relative energy
power for each amplitude. For eathcomponent, the
. A b S order isE? (the naive order of; -k is E2) and for each
pqmt, {T)gu , 7;((“ )’ 77.} Is identified to be thegm transversd’ component, the order iB (the naive or-
plitude triplet of Ehf) spin-three stat_e. In factz |vtk)can der ofer - k is E). This is due to the definitions ef;
be shown thatZ,”” and ;" are fixed by 7" ander above, wheree; got one energy power more
due to the stringy Ward identities, Eg&) and (6) thaner. Thus, for example, the naive order 8f;
constructed from the type | spin-two zero-norm state jg £6 However, by Eq(9), the E® term of the en-
and another vector zero-norm state obtained by sym- ergy expansion fofl;; is forced to be zero. As a
metrizing those terms which contairf’;a”, in the result, the leading order term @%,;; is at mostE4.
original type | and type Il vector zero-norm states. \yie have used 6> 4 in Eq.(9) to represent this energy
7! is obviously identified to be the scattering am-  reduction. Similar rule applies & ; 7 in Eq.(10). For
plitude of the antisymmetric spin-two state with the Eq.(6), we haves’* = eﬁ ore't — elT* and one gets, in
same momenta &“*". Eq.(7) thus relates the scat-  the high-energy limit,

tering amplitudes of two different string states at the 654 4 4 5

second massive level. Note that E¢®)—(8) are valid 1077 +Tprr + 1871y + 677 =0, (11)
order by order and arautomatically of the identical 1077 3 + T3 + 187(%” + 67+ =0. (12)
form in string perturbation theory. This is consistent ) _ “
with Gross's argument through the calculation of high- FOr theDz Ward identity, Eq(7), we havey™ = e; or
energy scattering amplitudes. However, it is important ¢ = e and one gets, in the high-energy limit,

to note t/hat Eqs(5)—(8) are, in contrast to the hlg/]h— TLGL—>L4 + TL4TT + 97&?]2 _ 3TLZ =0, (13)
energya’ — oo result of Gross, valid tall energya 5.3 3 3 1

and their coefficients do depend on the center of mass ZcLr + Trrr + 971y — 377 =0. (14)
scattering anglecw, which is defined to be the angle  Note that7;,,; in Eq. (13) originate from the high-
betweerk; andl_ég, through the dependence of momen- energy limit of7pz;, and the antisymmetric property
tum k. To produce Gross'’s high-energy result and fix of the tensor forces the leadirkf term to be zero. Fi-
the proportionality constants, which were not dwelt on nally the singlet zero norm state Ward identity, Eg),
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imply, in the high-energy limit,
34TPH + 9T + 84T ) + 9T 5.1 + 5077 =0.
(15)
It is important to note that all components of high-
energy amplitudes of symmetric spin-three and an-
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Mandelstam variables. Als@® , = 7, = 0 as
claimed above. A calculation of subleading order in
E shows that the amplitudes are not proportional
to each other or the proportional coefficients do de-
pend on the scattering angbe . Similar calculations
can be done for the third massive level. The result

tisymmetric spin-two states appear at least once in ;g [14]

Eqgs.(9)-(15) It is now easy to see that the naive lead-
ing order amplitudes corresponding B appear in
Egs.(9), (11), (13) and (15)However, a simple cal-

; 4 _ 74 _ 74 _
culation shows the ', , =7, = T(LL) =0. So the

real leading order amplitudes correspondf) which
appear in Eqs(10), (12) and (14)A simple calcula-
tion shows that

T T Ty T3 =8:1:-1:—1. (16)

Note that these proportionality constants are, as con-

Y L e s S Y. =
TTTTT . TTTLL . ,Z'LLLL . TTTL . TLLL . TLT,T . 7—LP,P
:TL4L:71L4L

26 2
—L_:O:—:O,
9 9 3 3

(17)
where 7, 1, THM, T, and 7~jw are amplitudes
corresponding to(x(fl”af)z, mixed-symmetric spin-
three ofa’ja’,, a" ", anda” " 5, respectively.
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V6.

4 1
=16:=:=:
33

jectured by Gross, independent of the scattering angle |t is remarkable to discover that both algebraic and

¢cm and the loop ordey of string perturbation the-
ory. Most importantly, we now understand that they
originate from zero-norm states in the OCFQ spec-
trum of the string! The subleading order amplitudes
corresponding toE? appear in Eqgs(9), (11), (13)
and (15) One has 6 unknown amplitudes and 4 equa-

tions. Presumably, they are not proportional to each 7,150, =

other or the proportional coefficients do depend on
the scattering anglecy. We will justify this point
later in our sample calculation. Our calculation here
is, similar to the toy 2D string case, purely algebraic
without any integration and is independent of saddle
point calculation irf3,5,6]. It is important to note that
our result in Eq.(16) is gauge invariant as it should
be since we derive it from Ward identiti€5)—(8).
On the other hand, the result obtained[6] with
Trrr < IL1y, and7. .7 = Ty =0 in the leading
order energy at this mass level is, on the contraoy,
gauge invariant. In fact, with only two nonzero am-
plitudes of 7rrr and 7rzr}, an inconsistency arises
between Eqgs(6) and (7)or Egs.(12) and (14) To
further justify our result, we give a sample calcula-
tion. For the string-tree levey = 1, with one ten-
sor and three tachyons 3 4, the four scattering am-
plitudes7 »W» 7w Tl and 7+ were explicitly
calculated irf8]. An explicit calculation of their high-
energy limits give the kinematic factors of the ampli-
tudes §— channel only)Xrrr = —8E?sin® gcm =
8K = —8/C(LT) = —8/C[LT], wheres = — (k1 +
k2)2, t = —(k2 + k3)2, andu = — (k1 + k3)? are the

sample calculations give exactly the same results
Egs. (16) and (17) In general there is only one in-
dependent component of high-energy scattering am-
plitude at each fixed mass level, and it can be deduced
that

TT

[(—=2)E3singem]” T (), (18)

where n; is the number ofT for the ith particle
and

T(N)=a(-)N- 12" Ng~1=2V
-3 5-2N
X <sin %TM> (cosqbcTM>

8 eXp(_slns+tlnt —§s+t)|n(s+t)>’

NZZI’Z,'.

As a result, all high-energy string scattering ampli-
tudes can be expressed in terms of those of tachyons.
Finally, unlike the saddle point calculation, our alge-
braic approach is very easy to generalize to closed
string case by “doubling the spectrum”. In that case,
one has 32 zero-norm state at the second massive level.
The nonzero high energy amplitudes can be obtained
by doubling Eq.(16), which amounts to 16 nonzero
components.

We conclude that the physical origin of the high-
energy symmetries and the proportionality constants
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in Eq. (16) are from the zero-norm states in the OCFQ
spectrum. The most challenging problem remained is
the calculation of algebraic structure of these stringy
symmetries derived from the complete zero-norm state
solutions of Eqs(2) and (3)with arbitrarily high spins.
Presumabily, it is a complicated 26D generalization of
weso Of the simpler toy 2D string mod¢§l3].
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