
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 26(4), 453465 (APRIL 1996)

On Efficiency and Optimization of Ci-t
Programs*

PEI-CHI WU AND FENG-JIAN WANG
Department of Computer Science and Information Engineering, National Chiao Tung

University, I001 Ta-Hsueh Road, Hsinchu, Taiwan
(email; (pcwu, fjwang/@csie.nctu.edu. tw)

SUMMARY
The efficiency of object-oriented programs has become a point of great interest. One necessary factor
for program efficiency is the optimization techniques involved. This paper presents the performance
of several variations of a given C t t program and compares them with a version that uses no object-
oriented features. Our result indicates that some object-oriented features in C t t are not well optim-
ized in current C t t compilers. We thus discuss some code optimization techniques that can improve
the efficiency based on the given C t t program.

KEY WORDS object-oriented programming; code optimization; ctt efficiency; Ci-k compiler optimizations

INTRODUCTION
The Ci-t language’ is one of the most efficient object-oriented programming languages.
A recent comparison2 using a simple ‘database’ program showed that the C t t version
is faster than those in the other four modem languages: Oberon-2, Modula-3, Sather,
and Self. The designers of Ci-t have carefully considered the efficiency issue. For
example, dynamic dispatch is not by default for the invocation of a member function
in C t t . In addition, C++ is strongly typed: it is easier to provide efficient (constant
time) dynamic dispatch when the type information is available. The C3 programs are
thought to be efficient and compact. Do C t t programs inherit this property? Can we
write C t t programs without concern for the underlying implementation of object-ori-
ented constructs, even when the efficiency of programs is concerned?

Answering the above questions depends on the applications and compiler techno-
logies of Ci-t. It may be very difficult. This paper presents a case study to show several
efficiency and optimization problems specific to C t t . It measures the efficiency of
some variations of a given C t t example program (quick sort) and compares them with
a version using no object-oriented features. These variations include a class without
inheritance, a class whose base class is empty, and a class whose base class is abstract.
The experiment uses four compilers on PC and workstation platforms. Our results indi-
cate that many current C-H compilers still do not produce well optimized codes for

* This research was supported in part by National Science Council, Taiwan, R.O.C., under Contract No. NSC 83-0408-
E009-029.

CCC 0038-0644/96/040453-13
0 1996 by John Wiley & Sons, Ltd.

Received 13 June 1994
Revised 18 September 1995

454 P.-C. WU AND F.-J. WANG

given C t t programs. The class and inheritance features are straightforwardly supported
and few optimization techniques are applied. We then discuss the following code optim-
ization techniques: allocating a small object in registers, eliminating the space overhead
in pure abstract classes, statically binding object values and arrays of object values,
and removing offset adjustment in the dynamic dispatch of multiple inheritance. These
techniques are easy to apply but are virtually ignored in the literature.

BACKGROUND
Object-oriented programming tries to bridge the gap between the real world and the
information world. Class and inheritance are the important constructs in modeling real
world objects. Some object-oriented languages, e.g., Smalltalk4 and Self,' provide flex-
ible dynamic binding and also bring in the efficiency problem. One major difficulty for
code optimizations in object-oriented languages is that the type information is not avail-
able to compilers. For example, adding two integers in Smalltalk is represented by
sending a '+' message with an integer parameter to an integer 'receiver'. In a Smalltalk
interpreter, the corresponding procedure (Integer + Integer - Integer) is called with
the object pointers (memory addresses) of the two integers as parameters, even if the
operation to be invoked is a primitive method. On the other hand, most optimizing
compilers translate this operation into one machine instruction and the operands are
usually allocated in registers.

Some research work has been devoted to optimizing object-oriented programs. Typed
Smalltalk6 is a compiler for Smalltalk programs annotated with type declarations. It
compiled a set of small examples and obtained a speed-up of 5 to 10 over a Smalltalk
interpreter. The Self ~ o m p i l e r ~ , ~ developed several optimization techniques. The first is
customization,' which compiles several copies of a procedure, and makes the receiver
type in each copy bound statically. The Self compiler allows functions inline, so many
message passing and run-time type checking operations can be removed. Another tech-
nique is polymorphic inline cache^.^ It is a direct extension of the inline cache* used
in Smalltalk. A polymorphic inline cache is a sequence of if-then-else statements to
match the receiver type and then jump to the corresponding routine for a sending mess-
age. The code of a simple method can also be inlined in the cache. On the other hand,
because determining exact type information is important in doing optimizations, some
other work has been devoted to collecting type information from program profiles'*'"
or data flow analyses for object-oriented programs."*'*

The efficiency of a program (disregarding algorithmic issues) depends on (1) how
much fine-tuning is applied by the programmers, and (2) how many and what optimiza-
tions are applied (by the compilers). The efficiency of a C program mainly depends on
the former since most language features of C are close to the instructions of underlying
machines. However, a recent work'3 on behavioral differences between C and Ctt-
programs shows that C t t programs pose several challenges for compiler designers and
computer architects. C t t not only inherits most of C's features but introduces some
features that cannot be directly supported by underlying machines. The features such
as virtual functions take several machine instructions and have more overhead than
direct procedure calls. Reducing such overheads requires compiler's supports, so the
efficiency of a C-H program depends more on optimization techniques than does that
of a C program.

Some work has been devoted to optimizing Ctt (and its compiler). Leal4 proposed

EFFICIENCY AND OPTIMIZATION OF C-kk PROGRAMS 455

an extension to C-H for applying customization. The keyword ‘template’ (originally
used for ‘generic’ declarations in C t t) was also used to declare a customized program.
Calder and Grunwald9 measured the effects of various optimization techniques on sev-
eral large Ctt- programs. They minimized the cost of virtual functions by using the
brunch-prediction mechanism in modern computers, especially those of deeply pipe-
lined architectures. In addition, there are two simple techniques, unique name and if-
conversion, used in combination with branch prediction. The if-conversion technique
is similar to inline cache. However, an if-statement may be slower than an indirect call
in computers that have a branch penalty less than a deeply pipelined architecture does.
The unique name technique replaces indirect function calls with direct calls when the
linker detects that the virtual function has only one copy. The problem is that this
optimization can only be done by using a ‘smart’ linker.

AN EXPERIMENT
Besides the features inherited from C, C++ introduces the following object-oriented
constructs: class, inheritance, template, etc. Here we consider only class and inherit-
ance, since templates do not cause (execution time) efficiency problems. The experiment
is designed to compare the efficiency of the programs that use the class and inheritance
constructs in C t t .

The experiment tests a quick sort function template qsort (Figure 1). The first
parameter of the qsort function is the array of data to be sorted, where the data type
T is determined at instantiation. The experiment measures the sorting time for arrays
of the following data types: i n t , I n t , v In t , and w I n t . Type int is the built-in

te rnpla te<class T>
void qsort (T a [I , i n t m, i n t n)
I

register i n t i = m ;
r e g i s t e r i n t j=n+ l ;
register T k = a [m] ;
wh i l e (i < j) {

i++;
w h i l e (a [i] < k) i++;

w h i l e (a [j] > k) I--;
i f (i < j) {

j--;

/ * interchange a [i l , a [j l * /
r e g i s t e r T tmp = a [i l ;
a [i] = a [j l ;
a [j l = tmp;

I
1
/ * i n t e rchange aim], a [j l * /
a[ml = a [j l ;
a []] = k;
i f (m < j-1) qsort (a, m, j-1); / * m.. j-1 * /
if (jtl < n) q s o r t (a , j+ l , n); / * j + l . .n-1 * /

I

Figure 1. The function ternplate qsort (quick sort)

456 P.-C. WU AND F.-J. WANG

class Int
t
int v;

public :
Into I 1
Int(int i) { v=i; }
operator int () { return v; J
inline int operator<(const I n t & b) const I return v < b.v;
inline int operator>(const Int& b) const [return v > b . v ;

1 ;

Figure 2. Class Int (a class with no inheritance)

class Object t 1 ;
class vInt : public Object
{
public :

i n t v;
vInt 0 (1
vInt(int i) { v=i;)
operator into 1 return v; 1
inline int operator<(const vInt& b) const { return v < b.v; I
inline int opeiator>(const vInt& b) const { return v > b.v;)

1 ;

Figure 3. Class vInt (inheriting an empty class)

integer type of C/C++. Class Int (Figure 2) is a user-defined class without inheritance.
Class vInt (Figure 3) inherits an empty class Object. In some C++ libraries, e.g.,
NIHCL,I5 all classes inherit a base Object class. Class w I n t (Figure 4) inherits an
abstract class called Comparison, which declares the comparison operators '(' and ')'
used in a sorting routine. All these classes encapsulate a data member of i n t type and

template<class NumberT>
class Comparison
I
public:
virtual int operator<(const NumberT&) const =0:
virtual int operator>(const NumberT&) const =O;

1;

class wInt : public Cornparison<wInt>
(
public :
int v;
wInt 0 (1
wInt(int i) { v=i; }
operator into { r e t u r n v; 1
inline int operator<(const vvInt& b) const { return v < b.v; 1
inline int operator>(const wInt& b) const { return v > b.v; 1

I ;
Figure 4. Class wInt (inheriting an abstract class)

EFFICIENCY AND OPTIMIZATION OF C H PROGRAMS

template<class T>
void test(T& max, int size)
(
int i;
l o n g to, tl;
T *data = new T[sizetl];
srandom (19930909) ;
for (i=O; i<size; i+t)

data [size]= max;
t O=clock () ;
qsort (data, 0, size-1); / * index 0. .size-l * /
tl=clock 0 ;
printf ("time (in u-sec) : %d\n", tl-to) ;
delete data;

data[il= T(random0) ;

1
Figure 5. Function template test

457

provide comparison operations. They are designed using C t t ' s object-oriented pro-
gramming features, including class, inheritance, abstract class, and template.

Figure 5 shows the function template t e s t , which contains the test loop. The first
parameter of t e s t (T& max) is necessary because the type parameter (class T) must
be used in the parameter list (Reference 1, p. 346). The array of data is generated by
a random number generator. Figure 6 shows the main program. Each variation is
executed with the same data.

These tests were performed on four Ci-t compilers: AT&T cfront (CC),I6 GNU C t t
(Gtt)," Borland C t t (BCC)," and Microsoft Visual C t t (MSC).19 They were
executed on a workstation (SPARC station ELC) and a PC (i486, real mode). Since

#include <stdio.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/tirne .h>
extern "C" t

long clock () ;
long random () ;
void srandom(int seed) ;

1
main (int argc, char *args [I I

int size;
if (argc ! = 2) (

printf ("usage: %s size\n", args[OI) ;
return 0;

1
sscanf (args [ll , "%d", &size) ;
t e s t tint (INT-MAX) , s i z e) ;
test (Int (INT-MAX), size) ;
test (vInt (INT-MAX), s i z e) ;
test (wInt (INT-MAX), size) ;

Figure 6. Main program and included header

45 8 P.-C. WU AND F.-J. WANG

CC and MSC compilers do not support templates, we replaced the templates with simple
macros of C preprocessor. The tests on G t t and CC compilers used an array of 200,000
elements, and the tests on BCC and MSC were reduced to 10,000 elements due to
space limitations. Table I shows the execution time measured in seconds. The programs
were run five times to calculate the average execution time. The optimization flag for
CC and C t t was ‘-0’. We did not use ‘-02’, because applying ‘-02’ in GCC some-
times gets a less efficient code than ‘-0’. In the test on CC, a C t t program was trans-
lated into a C program (by the ‘+i’ option) and then compiled by GNU CC (GCC)*’
with the option ‘-0’. To simplify the measurement, the clock rate of the PC was set
low. The optimization flags were set both to generate i386 instructions and to optimize
the speed. Since the generated random numbers in BCC and MSC are not the same, a
random number generator was also provided during the test on a PC.

A DISCUSSION OF EFFICIENCY

The qsort program used in our test may not be general, neither can the arguments
be applied in other programs. Thus, the conclusion drawn from thc above performance
result may not be applied to other C++ programs. However, our result does show the
potential efficiency problem of C++ programs: More object-orientution, more
execution pains.

Programming with class but no inheritance (i.e. object-bused) can result in programs
that run nearly as fast as equivalent C programs (e.g. class Int, 83 per cent speed in
G++ and 93 per cent in CC). The use of inheritance takes 1/4 to 1/3 the speed (e.g.
class wInt, 26 per cent speed in G++ and 32 per cent in CC). Our result is comparable
to some experiences in Reference 21. Replacing built-in data types such as integers
and floats by user-defined classes may cause efficiency problems due to the lack of
advanced optimization techniques.

In the following paragraphs, we discuss the result in more detail, mainly as concerns
CC and G t t . The time difference between vesions of int and Int is due to ‘regis-
ter T k’ in the qsort function template (Figure 1). G t t does not allocate a (small)
object in registers. CC removes the optimization hint ‘register’ from the translated
C file (Figure 7), although GCC can allocate a small C structure (e.g. one word) in
registers. GCC automatically allocates the variable tmp in a register but not for ‘regis-
ter Tk’. When a hint ‘register’ is put in the translated C file, GCC can also allocate
variable k in a register.

The time difference between the Int and vInt versions comes from the inheritance
of an empty class. A traditional C compiler treats an empty structure as a structure of
at least one byte (and aligned on a word boundary in the SPARC architecture).

Table I . The execution times under four compilers of four versions of gsort

Program G t t -0 CC + GCC -0 BCC -02 -3 MSC -0 -G3

i n t
I n t
v In t
w I n t

1.81 s 1.79 s
2.17 s 1.93 s
3.04 s 3.04 s
6.85 s 5.69 s

0.59 s 0.39 s
0.51 s 0.39 s
0.72 s 0.39 s
1.65 s 1.27 s

EFFICIENCY AND OPTIMIZATION OF Ctf - PROGRAMS

c h a r qsortInt-FP3Int iT2 (-Oa I -Om , -On)
s t r u c t I n t -0a 11;
int -Om ;
i n t -On ;
(register i n t -1i ;

register i n t -1j ;
s t r u c t I n t -1k ;
- li = -Om ;
. . .

459

i f (-li
s t r u c t
- 3tmp
(-0a
(-0a

I ...
I

Figure 7. The ‘ r eg i s t e r ’ hint for - lk has been removed by CC in the translated C$le for I n t

s t r u c t Object 1 / * s i z e o f Object == 1 * /

1;
s t r u c t v I n t { / * s i z e o f v I n t == 0 * /

cha r _Wl-SObject ;

cha r -Wl-SObject ;
i n t v-4vInt ;

I ;
Figure 8. The translated C structures for the classes Object and vIn t by CC

Inheriting an empty class then introduces an additional data member of one byte
(char - w1 - 50bject) in the vInt class (Figure 8). All the swap operations in
vInt operate on two words instead of one. All these objects are allocated in memory.
In addition, the temporary object tmp is short-lived, and allocating tmp in memory
causes many memory accesses (Figure 9).

sll %04,2, %02
Id [%iO+%021 , %03
sll %10/2, %ol
Id [%iOt%ol] ,%oo
s t %oO, [%iOt%021
s t %03 , [% i o + % O l]

// tmp is allocated in 803

Sll %03,3, %02
Id [%iO+%o2] , %OD

add %iO, %02, %02
Id [%02+4] , %oO

sll %lo, 3, % o l
Id [%iOt%ol] , %oO

add %iO, %ol , % o l
Id [%01+4], %OO
st %oO, [%02+41
Id [%fp-32] , %oO
s t %oO, [%Oil
Id [%fp-281 %00

st %OO, [%fp-321

st %00, [%fp-28]

s t %OO, [%021

st %oO, [%01+41
// tmp is allocated in
// l%fp-321 and f%fp-281

Figure 9. The comparison on the swap operations for I n t (left) and vIn t (right) of CC

460 P.-C. WU AND F.-J. WANG

The time difference between the vrnt and w I n t versions comes from the dynamic
dispatch in class w I n t . The class w I n t has one additional data field (one word) for
storing a pointer to its virtual function table. All comparison operations in w I n t are
dynamically dispatched (indirect procedure calls). These dispatches double the
execution time since the comparison operations are critical (inside the inner loop, Figure
10) in qsort.

The comparisons between G t t and CC are also interesting: the combination of CC
and GCC produces a more efficient qsort program than G t t . CC is a translator, and
we used CC with GCC in the experiment. G-H and GCC share the same back-end and
have the same capability in code optimization. G t t is a native C t t compiler and may
do more work in optimizing C++ programs. Our result indicates that Gi+ does not. It
shows that much of the translation work for object-oriented features in G t t is done
straightforwardly: translating C++ constructs to some C constructs and then calling the
code generation routines for C. Our result reflects that a translator is not substantially
different from a native compiler in terms of the output object code, but a translator
may run much slower than a native compiler.

The above discussion has focused on the results from CC and G* tests. The results
from BCC and MSC are slightly different. First, BCC and MSC are both able to allocate
a register for 'register T k' in the while-loops for comparisons, but fail to allocate
'register T tmg' in a register for the versions of int and Int. The execution times
for the in t and Int versions are thus almost equal on BCC and MSC. Secondly, for
the layout of vInt, MSC does not introduce the additional field, so the speeds for the
vInt and Int versions are the same. BCC does not align vInt with a word boundary,
so an additional byte copy, instead of a word copy, is needed for swapping two vInt
objects. Thirdly, for w I n t , both BCC and MSC are able to generate dynamic dispatch
code of single inheritance.

SOME C t t CODE OPTIMIZATION TECHNIQUES
Current C t t compilers have used many optimization techniques, e.g. function inline,
statically binding member functions, and virtual function tables for dynamic dispatch.

L30 :
Sll %04,2, %OO
l d [%iO+%oO] I %oO
cmp %oO, %02
bl,a L30
add %04,1, % 0 4

/ *
8.10 is address of a [] .
go4 is i.
%oO is a d d r e s s of a [i] .
%02 is v a l u e o f k.
*/

add $10, 1, $10
L69 :

sll %lo, 3, $01 ! %.lo is i.
add %iO, % o l , % o l ! B i O is a l l .
Id [%011,%02

* l d s h [%02+81,%00
* add %ol,%oO,%oO

Id [%02 t121 , 'bo2
c a l l %02,0
add % f p , -24,801
cmp %oO,O
bne,a L69
add %lo, 1, %10

801 is a l i l .
go2 is the
p o i n t e r t o vtable.

ca 1 1 opera to r<

t h e result in %oO

/ * [%02+8] is the "delta" field i n vtable. I [%02t12] is t h e f u n c t i o n p o i n t e r t o
1 o p e r a t o r <. */

Figure 10. The inner loop 'while (a [i] (k) itt;' for vInt (left) and w I n t of CC

EFFICIENCY AND OPTIMIZATION OF C4-l PROGRAMS 46 1

Our result indicates that there is still a need for more optimization techniques. Here
we enumerate some code optimization techniques for further improvement of efficiency.
All these techniques can be applied in the ‘separate’ compiling tradition of C/C+t.

Allocating a small object in registers
Most modern computers have many registers. How these resources are used may

affect the program efficiency. Many basic data structures, e.g. a node of a linked list,
are very small. A temporary object of such data structures can be allocated in registers.
However, it is not so easy in practice. First, the semantics of Ctt- constructors are
defined as ‘a constructor turns raw memory into an object . . .’ (Reference I , p. 262).
Is an address of raw memory necessary when constructing an object? As addressed in
the previous section, GCC allocates a small object (a C structure) in a register. Com-
pilers may have more choices when using a constructor. Secondly, objects are usually
passed by references, i.e. memory addresses. It is impossible to give a ‘memory address’
for a set of registers. Directly adding a ‘register’ hint to object variables does not
work. Figure 11 shows the warning messages when adding ‘ r e g i s t e r ’ to the variables
k and t m p in the class w I n t on the ouput C file. The hint is ignored since the
addresses of k and tmp are needed to call the comparison function.

For a function with parameters of object references, two separate versions of the
function code are needed for passing objects, one by registers and the other by memory
addresses. For example, C t t compilers may need to provide two copies of a default
constructor and a copy constructor, which are automatically generated. This optimiz-
ation may thus increase code size. However, allocating an object in registers works fine
for an inline function. It does not increase the code size, because the inline function is
already expanded in callers. In addition, an inline function may be more efficient if the
objects involved are allocated in registers.

Eliminating space overhead in pure abstract classes
Abstract classes are useful in object modeling. A pure abstract class is an abstract

class with no real implementation. The inheritance of a pure abstract class is not for
implementation but for interfiuce. A pure abstract class may be mapped to an empty
structure of C. Unfortunately, the size of a structure in C must be greater than zero, so
an empty structure contains at least one field of char. Inheriting a pure abstract class
may thus inherit a useless field and cause overhead in object copying. This space over-
head can be easily removed by compilers, if pure abstract classes are handled directly
by using specific code generation routines.

Removing offset adjustment in dynamic dispatch of multiple inheritance
Although dynamic dispatch sometimes causes inefficiency, dynamic dispatch is use-

ful and flexible in programming. The type of an object may not be statically determined,

qSOrt..c: I n function ‘qsortvvInt-FP5wIntiT2~:
qsort..c:295: warning: address of register variable ‘-0k’ requested
qsort..c:323: warning: address of register variable ’-2tmp‘ requested

Figure 11. The messages in adding ‘register’ to the variables k and t m g for the class wInt

462 P.-C. WU AND F.-J. WANG

so it is impossible to completely eliminate function calls of dynamic dispatch. Such a
kind of inefficiency can be overcome with more optimization techniques.

The designers of the C t t language carefully considered the implementation of virtual
functions. The solution is a virtual function table (vtuble) (Reference 1, Section 10.8.1~).
For single inheritance, support of dynamic dispatching requires an indirect procedure
call. For multiple inheritance, in addition to an indirect call, two operations, a load of
offset, and an add operation are needed in most implementations.

Because the program qsort uses only single inheritance, we can simply remove the
code for offset adjustment. Table I1 shows the speed-up by removing offset adjustment
in dynamic dispatch of multiple inheritance in G t t and CC. The asterisked instructions
in Figure 10 are removed, and the register ‘%ol’ is changed to ‘%oO’. The execution
time reduction is nearly the same for G t t and CC. The speed-up is 6.9 per cent for
G++ and 10.5 per cent for CC. The code generated by CC is more compact than that
generated by G t t , so the execution time reduced with CC thus looks more significant.
Note that BCC and MSC have already applied this optimization.

There are three means of applying this optimization. Stroustrup (Reference 22, p.
265) presented an alternative implementation for dynamic dispatch of multiple inherit-
ance. In his approach, a small piece of code is used to adjust the this pointer and
jump to the corresponding member function. There is no need to store the offset in a
virtual function table, no code duplication, and no execution overhead for dynamic
dispatch of single inheritance. This implementation technique looks good, but is less
portable.

Borland C t t version 3.P3 (BCC3 in short, the older version of BCC) restricts the
use of multiple inheritance and provides more efficient dynamic dispatching. BCC3
disallows an inheritance with interactions of sibling classes (e.g., the inheritance con-
sidered in Reference 1, p. 234). Some code rewriting is needed when the inheritance
violates the restriction. Figure 12 shows an example of interactions between sibling
classes. Class C defines the function g () by calling the function f () , which is defined
in class B. The example works in G t t , CC, MSC, and BCC (the newer version), but
not in BCC3.

Another approach is to duplicate the code inherited from base classes when the inter-
actions of sibling classes happen in an inheritance hierarchy. Considering the above
example, Figure 13 shows an equivalent class hierarchy without interactions. The func-
tion f () is defined once again in class D. There is an additional copy of f specific for
objects of D, so the offset adjustment for converting an object of D to that of B is not
needed when calling B : : f . The equivalent class hierarchy can be automatically gener-
ated by compilers. The code duplicated (e.g., function f ()) may be small, if the inherit-
ance hierarchy is very simple.

Table 11. The speed-up in replacing multiple inheritance by single inheritance

Program G u cc
Multiple inheritance (1) 6.85 s 5.69 s
Single inheritance (2) 6.41 s 5.15 s
Speed-up (1)/(2) - 100% 6.9% 10.5%

EFFICIENCY AND OPTIMIZATION OF C-H- PROGRAMS 463

c l a s s A [
public :

v i r t u a l void f () ;
v i r t u a l void g() ;
v i r t u a l void h 0 ;

1 ;
c l a s s B : public v i r t u a l A {
public :

A (f , g , h I void f () (1 / \ 1 ;

\ /
c ~ g) B (f 1 publ ic :

c l a s s C : public v i r t u a l A {

void g 0 I f 0 ; 1
1 ;
c l a s s D : public v i r t u a l B, publ ic v i r t u a l C
I

D I h)

publ ic :

1 ;
void h () ()

Figure 12. The class hierarchy and an example showing interaction between sibling classes B and C

c l a s s A (...) ;
c l a s s B : public v i r t u a l A (. . . } ;
c l a s s C : public v i r t u a l A (. . .) ;
c l a s s D : public v i r t u a l B, publ ic v i r t u a l C

publ ic :

A (f , g , h I
/ \

C (g 1 B (f)
void h 0 (I
void f() (1

\ /
D (f , h)

);

Figure 13. Equivalent class hierarchy without interactions in sibling classes

Binding object values and arrays of object values statically
C++ supports polymorphism on object references but not on object values. Object

values and array of object values have exact types. They are in wide use, e.g. ‘T a [I ’
in qsort. Let T be a class. A declaration of ‘T t;’ declares an object (value) t of
type T. A declaration ‘T a[1;’ declares a as an array of object values of class T. In
contrast, the declaration ‘T &b;’ (or ‘T * C ; ’) declares b (c) as a reference (pointer)
to any derived class of T.

For an object value or an array of object values, no dynamic dispatch is needed when
executing their member functions. Although ‘objects of a derived class can be assigned
to objects of a public base class’ (Reference 1, p. 297), the copy operations do not
change the structure (the type) of either object (Reference 1, p. 298). Binding such
objects statically is very simple and can greatly improve the efficiency. This is true
since no dynamic dispatch is needed and function inline is applicable. In addition, the
vtable pointers of an array of object values are the same. This may be the invariant in
a loop that processes an array of object values. Table I11 shows the speed-up that results
from using static binding for the array of integers a 1 in qsort (compared with the
version of single inheritance). Note that the single inheritance versions of BCC and

464 P.-C. WU AND F.-J. WANG

Table 111. The speed-up in using static binding for an array of objects

Program G u cc BCC MSC

Single inheritance (1)
Static binding (2)
Speed-up (1)/(2) - 100%

6.41 s 5.15 s 1.65 s 1.27 s
5.75 s 4.54 s 1.44 s 1.13 s

1 1.5% 13.4% 14.6% 12.4%

Table IV. The availability of the optimization techniques in the four compilers

Optimization G++ CC BCC MSC

Allocating a small object in registers
Eliminating pure abstract classes
Replacing multiple inheritance by single inheritance
Binding arrays of object values statically

MSC are the versions of wInt . The speed-ups in the four compilers are all more than
10 per cent.

The means of treating arrays in C may forbid this optimization. For example, ‘char
[3 ’ in C is defined to be equivalent to ‘char*’. However, the declaration ‘T d 1 ;’
is not equivalent to ‘T *e;’, since d has an exact type T, and the type of e is a pointer
to any derived class of T. The type information is lost when translating an array to a
pointer. It may not be easily recovered by optimizations in the back-end of a compiler.

Table IV summarizes the availability of these optimization techniques in the four
compilers tested. None of these compilers fully support the allocation of an object in
registers, and none of them apply static binding of arrays of object values. The table
indicates the needs for more optimizations.

CONCLUSIONS
Our experiment shows some potential inefficiency of object-oriented programs using
C t t language. One major factor is the lack of code optimizations for the object-oriented
features of the C t t language. We have presented several C t t code optimization tech-
niques. Although the improvements have only been measured in the qaort example,
these techniques may work well for small programs that intensively use object-oriented
features. The speed-up may be less significant when they are applied to real C t t appli-
cations, which usually involve bulks of C codes.

Most C t t compilers are extended from existing C compilers. Many of their develop-
ment efforts have been devoted to correctly implementing new features, especially mul-
tiple inheritance and templates. In the future, more research will be needed to improve
these features too.

REFERENCES

1. M. A. Ellis and B. Stroustrup, The Annotated Ci+ Reference Manual, Addison-Wesley, 1990.
2. R. Henderson and B. Zorn, ‘A comparison of object-oriented programming in four modern languages’,

Sofhoare-Practice and Experience, 24, 1077-1 095 (1 994).

EFFICIENCY AND OPTIMIZATION OF C t k PROGRAMS

3. B. W. Kernighan and D. M. Ritchie, The C Programming Language, 2nd edn., Prentice Hall, 1988.
4. A. Goldberg and D. Robson, Smalltalk-80: The Language, Addison-Wesley, 1989.
5. C. Chambers and D. Unger, ‘Customization: optimizing compiler technology for SELF, a dynamically-

typed object-oriented programming language’, Proc. ACM SIGPLAN ’89 Conference on Programming Lan-
guage Design and Implementation (PLD1’89), also as ACM SIGPLAN Notices, 24, (7), 146-160 (1989).

6. R. E. Johnson, J. 0. Graver and L. W. Zurawski, ‘TS: an optimizing compiler for Smalltalk’, Proc.

7. U. Holzle, C. Chambers and D. Unger, ‘Optimizing dynamically-typed object-oriented languages with poly-
morphic inline caches’, ECOOP’91 European Conference on Object-Oriented Programming, LNCS, Vol.
512, Springer-Verlag, July 1991, pp. 21-38.

8. L. P. Deutsch and A. M. Schiffman, ‘Efficient implementation of the Smalltalk-80 system’, Proc. 11th
ACM Symp. on the Principles of Programming Languages, pp. 297-302 (1984).

9. B. Calder and D. Grunwald, ‘Reducing indirect function call overhead in Ct-t programs’, Proc. ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL’94), pp. 397408 (1 994).

10. U. Holzle and D. Unger, ‘Optimizing dynamically-dispatched calls with run-time type feedback’, Proc.
ACM SIGPLAN ’94 Conference on Programming Language Design and Implementation (PLD1’94), also
as ACM SIGPLAN Notices, 29, (6). 326-336 (1994).

11. M. Sudholt and C. Steigner, ‘On interprocedural data flow analysis for object oriented languages’, Proc.
4th Int. Con& Compiler Construction (CC’92), LNCS 641, Springer-Verlag, 1992, pp. 156-162.

12. J. Vitek, N. Horspool and J. S. Uhl, ‘Compile-time analysis of object-oriented programs’, Proc. 4th Int.
Con& Compiler Construction (CC’92), LNCS 641, Springer-Verlag, 1992, pp. 236-250.

13. B. Calder, D. Grunwald and B. Zom, ‘Quantifying behavioral differences between C and C t t programs’,
Technical Report CU-CS’698-94, Department of Computer Science, University of Colorado at Boulder,
U.S.A., January 1994.

14. D. Lea, ‘Customization in C t t ’ , Proc. 1990 USENIX C-H Conference, San Francisco, California, April

15. K. E. Gorlen, NIH Class Library, Revision 3.0, May 1990.
16. AT&T, C++ Translator, Version 2.1.03, 1990.
17. Free Software Foundation, GNU C t t Compiler, Version 2.5.7, 1993.
18. Borland International Inc, Borland Ctt, Version 4.0, 1993.
19. Microsoft Corp, Microsoft Visual C t t , Version 1.5, 1993.
20. Free Software Foundation, GNU C Compiler, Version 2.5.7, 1993.
21. J. M. Coggins, ‘Speed of C t c vs C: Myths, Data, and Skepticism’, C t t Report, Jan 1993, pp. 25-27.
22. B. Stroustrup, The Design and Evolution of Ctt , Addison-Wesley, 1994.
23. Borland International Inc, Borland C t t , Version 3.1, 1992.

465

OOPSLA ‘88, pp. 18-26.

9-1 1, 1990, pp. 301-314.

