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Abstract

An energy transport model coupled with the density gradient method as quantum mechanical corrections is pro-

posed and numerically investigated. This new model is comprehensive in both physical and mathematical aspects. It

is capable of describing hot electron transport as well as significant quantum mechanical effects for advanced devices

with dimensions comparable to the de Broglie wave-length. The model is completely self-adjoint for all state variables

and hence provides many appealing mathematical features such as global convergence, fast iterative solution, and

highly parallelizable. Numerical simulations on diode and MOSFET with the gate length down to 34 nm using this

model have been performed and compared with that using the classical transport model. It is shown that the I–V char-

acteristics of this short-channel device is significantly corrected by the density-gradient equations with current drive

reduced by up to 60% comparing with that of the classical model along. Moreover, a 2D quantum layer, which is only

a fraction of the length scale of inversion layer, is also effectively captured by this new model with very fine mesh near

the interface produced by an adaptive finite element method.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Numerical simulation of charge transport in device structures is widely used for analysis of physical

processes in the semiconductor devices and estimation of their electrical parameters. The major part of

the activities in this field is based on drift-diffusion (DD) equations. However, there is a growing realization
that technologist cannot ignore quantum effects much longer. The combination of thin gate oxides and

heavy doping in the conventional MOSFETs, and the thin silicon body of the double-gate structures, will

result in substantial quantum mechanical (QM) threshold voltage shift and transconductance degradation
0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
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[21]. Computationally efficient methods to include QM effects are required for the purpose of practical

Computer Aided Design of this generation of devices.

Some numerical methods employing full quantum models such as non-equilibrium Green�s function [23]

and Wigner�s function [9] suffer from unsolved robustness problems and are still much too costly for device

or circuit simulations. Another approach for including QM effects is to add quantum corrections to clas-
sical models [4,3,15–20,22,28,30,32,33]. In particular, the density gradient (DG) model developed by Anc-

ona et al. is a more rigorous macroscopic transport model which avoids ad hoc assumption to the material

parameters or imposing an artificial shape function [34]. It is demonstrated in [1,7,8,29] that this model is

feasible and efficient to accurately and generally simulate multi-dimensional devices with gate lengths rang-

ing from 30 nm down to 6 nm when combined with the DD model.

In this paper, we further extend the DG model to combine with the energy transport (ET) model pro-

posed in our previous work [11] and show that this new combination (DGET) is capable of describing hot

electron transport as well as significant QM effects for advanced devices. Our model is able to explain that
electron temperature essentially differs from the lattice temperature. It is clear that this effect cannot be de-

scribed by the DG model along. Quantum hydrodynamic (QHD) models give accurate simulation results,

but the numerical methods to solve this system are too costly and time consuming to model real problems in

semiconductor production mode where simulation results are needed in hours or minutes. The DGET

model is of parabolic type so that its numerical solution needs less effort than QHD models which contain

hyperbolic modes.

Moreover, our model is completely self-adjoint for all state variables and hence provides many appealing

mathematical features such as global convergence, fast iterative solution, and highly parallelizable as dem-
onstrated in our previous papers [11,12,24]. The global convergence is a consequence of monotone iterative

methods used in solving the discrete systems of nonlinear algebraic equations resulting from adaptive finite

element approximation of the model. It is shown here that the convergence analysis of these methods given

in [11,12] can be straightforwardly carried over to the present model. Our numerical experiments on various

device structures with high drain bias have shown that the monotone iteration do not suffer from the con-

vergence difficulties as frequently encountered by the commonly used Newton�s iteration since the Jacobian

is either close to singular or poorly conditioned [29]. This is a fundamental issue constantly faced by the

practitioner in device and circuit modeling. Numerical simulations on diode and MOSFET with the gate
length down to 34 nm using the DGET model have been performed and compared with that using the

ET model. It is shown that the I–V characteristics of this short-channel device is significantly corrected

by the density-gradient equations with current drive reduced by up to 60% compared with that of the clas-

sical model along. Moreover, a 2D quantum layer, which is only a fraction of the length scale of inversion

layer, is also effectively captured by this new model with very fine mesh near the interface produced by the

adaptive finite element method.

The paper is divided into the following sections: Section 2 briefly recalls the ET model considered in [11]

and the DG model. A full self-adjoint formulation of both models is then given in Section 3. For the sake of
clearness, we also extend our previous adaptive finite-element algorithm [11] to the present model in Section

4. In Section 5, numerical results of simulation on various diodes to compare with the results in the liter-

ature and on MOSFET device structures to demonstrate the effectiveness of the proposed model. A short

concluding remark is given in Section 6.
2. The energy transport and density gradient models

As in [11], we consider the following ET model
D/ ¼ q
es
ðn� p þ N�

A � Nþ
DÞ; ð1Þ
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1

q
r � Jn ¼ R; ð2Þ

1

q
r � Jp ¼ �R; ð3Þ

r � Sn ¼ Jn � E� n
xn � x0

snx

� �
; ð4Þ

r � Sp ¼ Jp � E� p
xp � x0

spx

� �
; ð5Þ
where / is the electrostatic potential, n and p are the electron and hole concentrations, q is the elemen-

tary charge, es is the permittivity constant of semiconductor, N�
A and Nþ

D are the densities of ionized

impurities, Jn and Jp are the current densities, R is the function describing the balance of generation

and recombination of electrons and holes, Sn and Sp are the energy fluxes for carriers, E is the electric

field, snx and spx are the carrier energy relaxation times, x0 is the thermal energy, and xn and xp are

the carrier average energies. These physical variables are tightly coupled together with the following
auxiliary relationships
E ¼ �r/; ð6Þ

Jn ¼ �qlnnr/þ qDnrn ¼ �qnvn; ð7Þ

Jp ¼ �qlppr/� qDprp ¼ qpvp; ð8Þ

Sn ¼
Jn

�q
xn þ

Jn

�q
kBT n þQn; ð9Þ

Sp ¼
Jp

þq
xp þ

Jp

þq
kBT p þQp; ð10Þ

x0 ¼
3

2
kBT L; ð11Þ

xn ¼
3

2
kBT n þ

1

2
m�

njvnj
2
; ð12Þ

xp ¼
3

2
kBT p þ

1

2
m�

pjvpj
2
; ð13Þ

Qn ¼ �jnrT n; ð14Þ

Qp ¼ �jprT p; ð15Þ

jn ¼ 2
kB
q

� �2

nqlnT L; ð16Þ

jp ¼ 2
kB
q

� �2

pqlpT L; ð17Þ
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R ¼ np � n2i
s0nðp þ pTÞ þ s0pðnþ nTÞ

; ð18Þ
where Qn and Qp are the heat fluxes for carries, kB is Boltzmann�s constant, Tn, Tp, and TL are the electron,

hole and lattice temperatures, ln and lp are the field-dependent electron and hole mobilities, Dn and Dp are

the electron and hole diffusion coefficients expressed by the Einstein relation with the mobilities, m�
n and m�

p

are the electron and hole effective masses, vn and vp are the electron and hole velocities, jn and jp are the

electron and hole heat conductivities, and (18) is the Shockley–Read–Hall (SHR) generation-recombination
model with ni being the intrinsic carrier concentration, s0n and s0p the electron and hole lifetimes, and pT and

nT the electron and hole densities associated with energy levels of the traps. In the above equations, vectors

are denoted by bold letters.

The DG theory was developed by observing that the electron gas is energetically sensitive not only to its

density but also to the gradient of the density. It captures the nonlocality of quantum mechanics to the low-

est-order of �h2 where �h is the reduced Planck constant and can be rigorously derived from quantum

mechanics [4,3]. Specifically, a third order derivative term of quantum correction is added to the carrier

current density as
Jn ¼ �qlnnr/þ qDnrn� 2qlnbnnr
D
ffiffiffi
n

pffiffiffi
n

p
� �

; ð19Þ

Jp ¼ �qlppr/� qDprp þ 2qlpbppr
D
ffiffiffi
p

pffiffiffi
p

p
� �

; ð20Þ
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Fig. 1. The numerical results of the 600 nm silicon diode.
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where the coefficients bn ¼ �h2

12m�
nq

and bp ¼ �h2

12m�
pq

are the material parameters measuring the strength of the

gradient effects in the gas. To alleviate the difficulty in discretization caused by this higher order term,

additional variables called the quantum potentials
/qn � 2bn
D
ffiffiffi
n

pffiffiffi
n

p
� �

; ð21Þ

/qp � �2bp
D
ffiffiffi
p

pffiffiffi
p

p
� �

ð22Þ
have been introduced in [29] and thus can be lumped with the classical drift term to obtain
Jn ¼ �qlnnrð/þ /qnÞ þ qDnrn; ð23Þ

Jp ¼ �qlpprð/þ /qpÞ � qDprp: ð24Þ
We thus have a complete set of seven PDEs (1)–(5) and (21) and (22) describing both ET and DG models

with the seven state variables /, n, p, /qn, /qp, Tn, and Tp.
Note that the coefficients in (21) and (22) result in a boundary layer near the silicon/silicon-oxide interface

for short-channel devices. The layer is only a fraction of the length scale of the inversion layer, in which the

electron density typically drops from its peak value of order 1018 at about 0.5–1.5 nm away from the interface

to zero at the interface [1,7]. Numerical treatments for this boundary layer problem are evidently subtle and

challenging. A more detailed description of our approach to this problem will be given in Section 5.
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Fig. 2. The numerical results of the 120 nm silicon diode.
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Remark 2.1. Taking first three moments of the Boltzmann transport equation (BTE) with conservation of

particles, momentum, and energy, the classical hydrodynamic (CHD) model can be expressed as (for

simplicity, we list the equations of electrons only) [6,17]:
on
ot

þr � ðnvnÞ ¼
on
ot

� �
c

;

opn
ot

þ vnr � pn þ pn � rvn ¼ �qnE�rðnkBT Þ þ
opn
ot

� �
c

;

oxn

ot
þr � ðvnxnÞ ¼ �qnvn � E�r � ðvnnkBT Þ � r �Qn þ

oxn

ot

� �
c

;

where pn ¼ m�
nnvn is the momentum density. Considering the steady state and employing the collision terms
opn
ot

� �
c

¼ � pn
spn

;

oxn

ot

� �
c

¼ �xn � x0

snx
;

we have [11]
Jn ¼ qln

kBT n

q
rnþ nr kBT n

q
� /

� �� �

and Eq. (4). Similarly the three conservation equations of the QHD model are [16,18]
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Fig. 3. The numerical results of the 30 nm silicon diode.
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on
ot

þr � ðnvnÞ ¼
on
ot

� �
c

;

opn
ot

þ vnr � pn þ pn � rvn þ
n
3
rQ ¼ �qnE�rðnkBT Þ þ

opn
ot

� �
c

;

oxn

ot
þr � ðvnxnÞ ¼ �qnvn � E�r � ðvnnkBT Þ � r �Qn þ

oxn

ot

� �
c

:

The quantum correction to the momentum equation is related to the quantum potential of Bohm [27]
Q ¼ � �h2

2m�
n

D
ffiffiffi
n

pffiffiffi
n

p ;
and to the energy density given by
xn ¼
3

2
kBT n þ

1

2
m�

njvnj
2 � �h2n

24m�
n

D logðnÞ:
Following the previous deductive procedure the quantum correction current density equation is
Jn ¼ qln

kBT n

q
rnþ nr kBT n

q
� /

� �
� �h2

6m�
nq

r D
ffiffiffi
n

pffiffiffi
n

p
� �� �

¼ �qlnnrð/þ /qnÞ þ qDnrnþ lnkBnrT n:
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Compared to the DG model, there is a mechanism that can cause an increase in diffusion, i.e., particle

diffusion is enhanced when Tn is significantly greater than TL. Once we obtain the information of Tn from

the DGET model, we will use this formulation to estimate the drain current and to sketch the I–V curves.

On the other hand, since we do not add the quantum correction to the energy density, the difference of the

temperature distribution between the ET and DGET models is not very significant.

Remark 2.2. A quantum energy balance model appears to be first proposed by Grubin and Kreskovsky in

[18] for 1D mesoscopic structures. In their model, quantum correction terms are explicitly included in the

carrier average energies (11) and (12). As a result, third order derivative terms of correction are associated

not only with the carrier densities (see (19) and (20)) but also with the carrier energies. Putting these

correction terms into our model, i.e. into (9) and (10), we will obtain a product of the correction terms

in (9) and (10) which obviously makes computations more formidable for 2D simulation. Instead, the cor-

rection terms in our model are only explicitly added to the carrier density. The energy balance equations are
implicitly and thus less corrected by the quantum effects via the carrier current densities.
3. A self-adjoint formulation of the DGET model

PDEs in self-adjoint form are analytically as well as numerically appealing. In [11,12], we give a rather

thorough study of the self-adjoint DD and ET models in terms of mathematical analysis and numerical jus-

tification. We now consider the self-adjoint formulation of the above DGET model and, for this purpose,

introduce the following new variables
Fig. 5. Doping concentration.
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u ¼ exp
�un

V T

� �
; ð25Þ

v ¼ exp
up

V T

� �
; ð26Þ

fn ¼
ffiffiffi
n

p
; ð27Þ

fp ¼
ffiffiffi
p

p
; ð28Þ

gn ¼ T n= exp
5un

4V T

� �
; ð29Þ

gp ¼ T p= exp �
5up

4V T

� �
; ð30Þ
where VT = (kBTL)/q is the thermal voltage and un and up are the generalized quasi-Fermi potentials that

include the QM effects as shown below. Assuming a Maxwell–Boltzmann energy distribution of carriers, we
have the quantum correction expressions of the carriers
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n ¼ ni exp
/� un þ /qn

V T

� �
¼ ni exp

/þ /qn

V T

� �
u ¼ f2n; ð31Þ

p ¼ ni exp
up � /� /qp

V T

� �
¼ ni exp

�/� /qp

V T

� �
v ¼ f2p; ð32Þ
and rewrite the quantum potentials as
/qn ¼ V T ln
f2n
uni

� �
� /; ð33Þ

/qp ¼ �V T ln
f2p
vni

 !
� /: ð34Þ
For Eq. (1) we have
D/ ¼ F ð/; u; v; fn; fpÞ; ð35Þ
where
F ð/; u; v; fn; fpÞ ¼
qni
es

u exp
/þ /qn

V T

� �
� v exp

�/� /qp

V T

� �� �
þ qðN�

A � Nþ
DÞ

es
: ð36Þ
Substituting (31) into the electron current equation (23), we obtain
Fig. 7. Electrostatic potential.
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Jn ¼ �qlnnrð/þ /qnÞ þ qDnr ni exp
/þ /qn

V T

� �
u

� �
ð37Þ

¼ �qlnnrð/þ /qnÞ þ q
Dn

V T

ni exp
/þ /qn

V T

� �
u

� �
rð/þ /qnÞ þ qDn ni exp

/þ /qn

V T

� �� �
ru

¼ qDnni exp
/þ /qn

V T

� �
ru; ð38Þ
which defines the generalized quasi-Fermi potential as in
Jn ¼ �qlnnrun; ð39Þ

with the quantum correction in electron concentration. Boundary conditions for this potential can be easily

specified. Similar expressions also exist for hole.

For the energy fluxes, we rewrite (9) more precisely as
Sn ¼
5Jn

�2q
kBT n � jnrT n þ

Jn

�q
1

2
m�

njvnj
2

� �
: ð40Þ
Substituting (16), (29), and (39) into this equation, we have
Sn ¼
5Jn

�2q
kBgn exp

5un

4V T

� �
� jn exp

5un

4V T

� �
rgn þ

5

4V T

gn exp
5un

4V T

� �
run

� �
þ Jn

�q
1

2
m�

njvnj
2

� �
¼ �jn exp

5un

4V T

� �
rgn þ

Jn

�q
1

2
m�

njvnj
2

� �
: ð41Þ
Fig. 8. Electron concentration.
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Hence, we obtain the following self-adjoint form
r � jn exp
5un

4V T

� �
rgn

� �
¼ RnðgnÞ; ð42Þ
where
RnðgnÞ ¼ n
xn � x0

snx

� �
� Jn � E� 1

q
r � 1

2
m�

n

jJnj2

q2n2
Jn

 !
: ð43Þ
We also have a similar equation for hole.

Our new model for both DG and ET equations with the seven state variables /, u, v, fn, fp, gn, and gp
and their associated boundary conditions (BCs) is re-organized as follows:
D/ ¼ F ð/; u; v; fn; fpÞ; ð44Þ

1

q
r � Jn ¼ Rð/; u; v; fn; fpÞ; ð45Þ

1

q
r � Jp ¼ �Rð/; u; v; fn; fpÞ; ð46Þ

Dfn ¼ Znð/; u; v; fn; fpÞ; ð47Þ
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Dfp ¼ Zpð/; u; v; fn; fpÞ; ð48Þ

r �Gn ¼ RnðgnÞ; ð49Þ

r �Gp ¼ RpðgpÞ; ð50Þ
where
F ð/; u; v; fn; fpÞ ¼
qni
es

u exp
/þ /qn

V T

� �
� v exp

�/� /qp

V T

� �� �
þ qðN�

A � Nþ
DÞ

es
; ð51Þ

Jn ¼ þqDnni exp
/þ /qn

V T

� �
ru; ð52Þ

Jp ¼ �qDpni exp
�/� /qp

V T

� �
rv; ð53Þ

Rð/; u; v; fn; fpÞ ¼
n2i uv exp

/qn�/qp

V T

� �
� 1

h i
s0n niv exp

�/�/qp

V T

� �
þ pT

h i
þ s0p niu exp

/þ/qn

V T

� �
þ nT

h i ; ð54Þ

Znð/; u; v; fn; fpÞ ¼
fn
2bn

V T lnðf2nÞ � V T lnðuniÞ � /
� 	

; ð55Þ
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Zpð/; u; v; fn; fpÞ ¼ � fp
2bp

�V T lnðf2pÞ þ V T lnðvniÞ � /
h i

; ð56Þ

/qn ¼ V T lnðf2nÞ � V T lnðuniÞ � /; ð57Þ

/qp ¼ �V T lnðf2pÞ þ V T lnðvniÞ � /; ð58Þ

Gn ¼ jn exp
5un

4V T

� �
rgn; ð59Þ

Gp ¼ jp exp �
5up

4V T

� �
rgp; ð60Þ

RnðgnÞ ¼ n
xn � x0

snx

� �
� Jn � E� 1

q
r � 1

2
m�

n

jJnj2

q2n2
Jn

 !
; ð61Þ

RpðgpÞ ¼ p
xp � x0

spx

� �
� Jp � Eþ 1

q
r � 1

2
m�

p

jJpj2

q2p2
Jp

 !
: ð62Þ
The boundary conditions are changed accordingly to
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Fig. 11. Hole temperature.
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/ ¼ V O þ V b;

u ¼ exp
�V O

V T

� �
;

v ¼ exp
V O

V T

� �
;

f2n ¼
1

2
ðNþ

D � N�
AÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNþ

D � N�
AÞ

2 þ 4n2i

q� �
;

fp ¼ ni=fn;

gn ¼
300

exp 5V O

4V T

� � ;
gp ¼

300

exp � 5V O

4V T

� � on oXD
and
o/
on

¼ ou
on

¼ ov
on

¼ ofn
on

¼ ofp
on

¼ ogn
on

¼
ogp
on

¼ 0 on oXN;
where VO denotes the applied voltage and Vb represents the built-in potential. Here, X � R2 denotes the

bounded domain of the silicon. The boundary oX = oXD[oXN is piecewise smooth consisting of Dirichlet

oXD and Neumann oXN parts. The Dirichlet part corresponds to the ohmic contacts on the device. Note
Fig. 12. Electron quantum potential.



146 R.-C. Chen, J.-L. Liu / Journal of Computational Physics 204 (2005) 131–156
that the above Neumann BCs for fn and fp do not hold on the entire oXN excluding the oxide interface at

which a zero Dirichlet BC is imposed. As mentioned in [8], the quantum potentials would have to be infinite

at the interface to force the carrier densities to exactly zero there. Thus, a suitable constraint on the values

of the quantum potentials at the interface is also not available. A small but non-zero value of the carrier

densities is instead used in that paper. Our implementation of such non-exact zero Dirichlet BC at the inter-
face will be specified in Section 5.

It should be noted that effective approximation of the gradient of current densities in formulas (61) and

(62) is in general very difficult to acquire. Simplified models for these formulas based on physical consid-

eration are possible. For example, by assuming that the drift energy is only a small part of the total kinetic

energy [10], (61) and (62) can be reduced to
RnðgnÞ ¼ n
xn � x0

snx

� �
� Jn � E;

RpðgpÞ ¼ p
xp � x0

spx

� �
� Jp � E;
which will be used in our numerical simulations.

Remark 3.1. As observed in [5], the SRH generation-recombination model (18) should be modified for the
DG model since this standard expression will produce spurious generation and recombination near

the oxide barrier. We thus consider here the modified SRH (MSRH) proposed in [5] and extend it into the

self-adjoint context as follows:
Fig. 13. Hole quantum potential.
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np � neqpeq

s0n p þ ffiffiffiffiffiffiffiffiffiffiffiffineqpeq
p

exp et�ei
kBT

� �� �
þ s0p nþ ffiffiffiffiffiffiffiffiffiffiffiffineqpeq

p
exp et�ei

kBT

� �� �
¼

n2i uv exp
/qn�/qp

V T

� �
� neqpeq

s0n niv exp
�/�/qp

V T

� �
þ ffiffiffiffiffiffiffiffiffiffiffiffineqpeq
p

exp et�ei
kBTL

� �h i
þ s0p niu exp

/þ/qn

V T

� �
þ ffiffiffiffiffiffiffiffiffiffiffiffineqpeq
p

exp et�ei
kBTL

� �h i :

Note that the term n2i in (18) is replaced by neqpeq in this MSRH model where et and ei are the trapped and

intrinsic energies. The quantities neq and peq are the spatially dependent equilibrium densities obtained from

a separate numerical solution of the same DG problem, but with all voltages and R set to zero. Following
that paper, we choose s0n ¼ s0p ¼ 10�8 s with et = ei in our simulation. A comparison of numerical results

based on both SRH and MSRH models will be given in Section 5.

Remark 3.2. For simplicity, we use fixed mobilities of l
n
= 1500 cm2/Vs and l

p
= 500 cm2/Vs which are

roughly equal to the intrinsic values at room temperature for silicon as considered in [8]. In our numerical

experiences in [11,12], the field-dependent mobility model of the Caughey–Thomas expression still can be

used in the DGET simulation.

Remark 3.3. The above self-adjoint formulation is based on Maxwell–Boltzmann statistics. However, it is

unclear to us whether the self-adjointness can also be derived for the case of Fermi–Dirac statistics which is

more exact but more complicated to implement. Evidently, this issue deserves further investigation in the

future.
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4. An adaptive finite element algorithm for the DGET model

The main ingredients of the algorithm solving the DGET model are adaptive finite element approxima-

tion of the model, node-by-node and monotone iterative solution of the resulting nonlinear algebraic sys-

tems, and Gummel�s iteration consecutively on the PDEs as described in [11] for the ET model. For the sake
of clearness, we briefly illustrate the algorithm and refer to [11,12] for more details on the adaptive finite

element formulation, monotone convergence analysis, and practical implementation issues.

Here, we use the notation l as Gummel�s (outer) iteration index and m as the monotone (inner) iteration

index.

Step 1. Initial mesh: create a coarse and structured mesh for which the number of nodes can be chosen as

small as possible.

Step 2. Preprocessing: see [11].
Step 3. Gummel and Monotone iterations on (44)–(48).

Step 3.0. Set l: = 0

Step 3.1. Solve the potential equation in (44).
Step 3.1.1. Set m: = 0 and set the initial guess

/ðmÞ
j ¼

f/j or
c/j if l ¼ 0;

/ðlÞ
j otherwise;

(
for all ðxj; yjÞ 2 X

h
;

where f/j and
c/j are constant values that can be easily verified to be an upper and lower solution of /,

respectively, and X
h
denotes the set of mesh points on the closure of the domain.
Step 3.1.2 If l = 0, set u(l) and v(l) by the charge neutrality condition.
Fig. 15. Electron current density (ET).
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Step 3.1.3. Compute /ðmþ1Þ
j by solving the discrete potential system of (44)

nj/
ðmþ1Þ
j þ cjð/Þ/ðmþ1Þ

j ¼
P

k2V ðjÞnk/
ðmÞ
k � F ð/ mð Þ

j ; uðlÞj ; vðlÞj ; fðlÞn ; fðlÞp Þ þ cjð/Þ/ðmÞ
j ; 8ðxj; yjÞ 2 Xh;

/ðmþ1Þ
j ¼ V O þ V b; 8ðxj; yjÞ 2 oXh

D;

o/ðmþ1Þ
j

on ¼ 0; 8ðxj; yjÞ 2 oXh
N;

8>>><>>>:
ð63Þ
where
cjð/Þ ¼ max
oF ð/jÞ
o/

; /̂j 6 /j 6
~/j


 �
; ð64Þ
nk are the matrix elements of the discretization, and Xh, oXh
D, and oXh

N represent the sets of mesh points in

the interior, Dirichlet part, and Neumann part of the domain, respectively.
Step 3.1.4. Set /ðmÞ
j :¼ /ðmþ1Þ

j 8j and m: = m + 1. Go to Step 3.1.3 until the stopping criteria of the

inner iteration are satisfied.

Step 3.1.5. Set /ðlþ1Þ
j :¼ /ðmþ1Þ

j 8j.
Step 3.2. Solve the electron continuity equation (45).

Step 3.2.1. Set m: = 0 and set the initial guess

uðmÞj ¼
euj or buj if l ¼ 0;

uðlÞj otherwise;

(
for all ðxj; yjÞ 2 X

h
;

Fig. 16. Electron current density (DG).
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where euj and buj are constant values for all ðxj; yjÞ 2 X
h
that can be easily verified to be an upper and lower

solution of u, respectively.
Step 3.2.2. Compute uðmþ1Þ
j by solving the discrete electron system of (45).

Step 3.2.3. Set uðmÞj :¼ uðmþ1Þ
j 8j and m: = m + 1. Go to Step 3.2.2 until the stopping criteria of the inner

iteration are satisfied.
Step 3.2.4. Set uðlþ1Þ

j :¼ uðmþ1Þ
j 8j.

Step 3.3. Solve the hole continuity equation (46) similarly to that in Step 3.2.

Step 3.4. Solve the DG equation (47).

Step 3.4.1. Set m: = 0 and set the initial guess

½fn�ðmÞj ¼
g½fn�j or d½fn�j if l ¼ 0;

½fn�ðlÞj otherwise;

8<: for all ðxj; yjÞ 2 X
h
;

where [fn]j � fn(xj,yj) and g½fn�j and d½fn�j are constant values for all ðxj; yjÞ 2 X
h
that can be easily verified to

be an upper and lower solution of fn, respectively.

Step 3.4.2. Compute ½fn�ðmþ1Þ

j by solving the discrete system of (47).

Step 3.4.3. Set ½fn�ðmÞj :¼ ½fn�ðmþ1Þ
j 8j and m: = m + 1. Go to Step 3.4.2 until the stopping criteria of the

inner iteration are satisfied.

Step 3.4.4. Set ½fn�ðlþ1Þ
j :¼ ½fn�ðmþ1Þ

j 8j.
Step 3.5. Solve the DG (48) similarly to that in Step 3.4.

Step 3.6. Update ½/qn�
ðlþ1Þ
j and ½/qp�

ðlþ1Þ
j by the Eqs. (57) and (58).

Step 3.7. Set l: = l + 1 and go to Step 3.1 until the stopping criteria of the outer iteration are satisfied.

Step 4. Monotone Iteration on (49) and (50).
Fig. 17. Electron current density (DGET).
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Step 4.1. Solve the energy equation (49) for gn similarly to that in Step 3.2.

Step 4.2. Solve the energy equation (50) for gp similarly to that in Step 3.2.

Step 5. Error estimation: See [11].

Step 6. Refinement: See [11]

Step 7. Postprocessing: All computed solutions are then postprocessed for further analysis of physical
phenomena.

Note that, in each one of Steps 3.1–3.5, 4.1, and 4.2, a Jacobi (node-by-node) type of solution is per-

formed for the corresponding discrete system (63), for example, in which the monotone parameters (64)

can be easily obtained by means of lower and upper solutions. Two important factors that guarantee a glo-

bal convergence with this kind of simple solutions as initial guesses are the diagonally dominant property of

the matrices due to the self-adjoint formulation and the monotonicity of the parameters by the special non-

linearity of the formulation. The diagonally dominant property for (44)–(50) can be proved in exactly the
same manner as that given in [11,12]. It can also be easily shown that each one of the nonlinear functionals

in (44)–(50) is monotone in its respective state variable. It is thus a straightforward generalization from our

previous theoretical analysis that all the nonlinear algebraic systems generated by this algorithm preserve

these two factors. We thus summarize these important results in the following theorem.

Theorem. For each one of the PDEs (44)–(50) with associated boundary conditions, the matrices resulting to

the adaptive finite element approximation are diagonally dominant. Moreover, starting with suitable lower and

upper solutions of the corresponding PDE, the Jacobi iteration in each of Steps 3.1–3.5, 4.1, and 4.2 generates

a pair of lower and upper sequences which converge monotonically to the exact solution of the nonlinear

algebraic system of equations of that PDE.
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Fig. 18. Hole temperature (with the standard SRH model (18)).
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5. Numerical examples

To demonstrate the effectiveness and accuracy of the DGET model, several numerical studies have been

made for sample diode and MOSFET device structures. A benchmark device, namely, an abrupt n+–n–n+

silicon diode is first used to verify our methods and formulation with the results reported in literature.
Numerical experiments are performed first on a 600 nm silicon diode at 300 K with n+ = 5.0 · 1017 cm�3

and n = 2.0 · 1015 cm�3. The length of the n-region is approximately 400 nm. The steady state results

for this problem are illustrated by the dotted and solid curves with respective to the DGET and ET models

in Figs. 1(a)–(d) where the applied voltage VO is taken as 2.0 V. The dotted curve coincides with the solid

curve. This represents that the new model can be applied to devices with larger size, i.e., where the QM

effects are negligible. These results agree also very well with that previously reported in the literature

[2,14,17,31].

To verify QM effects with our model, we then reduce the scale down to two cases. Case (1) is a 120 nm
silicon diode with n+ = 5.0 · 1018 cm�3 and n = 2.0 · 1015 cm�3. The length of the n-region is approximately

80 nm. The applied voltage VO is taken as 1.2 V. Case (2) is a 30 nm silicon diode with n+ = 5.0 · 1019 cm�3

and n = 2.0 · 1015 cm�3. The length of the n-region is approximately 20 nm. The applied voltage VO is ta-

ken as 0.8 V. Figs. 2 and 3 show the significant change of the electron density predicted by the new model

but for the electron temperature the change is not very significant. The maximal temperatures of ET and

DGET models are T = 3423 K and T = 3309 K, respectively. The corresponding thermal energies are

Eth ¼ 3
2
kBT ¼ 0:442 eV and Eth = 0.428 eV. Therefore, the temperature reduced by the QM corrections

of the DGET model is very similar to that by the nonparabolicity effects presented in [14]. Fig. 4 shows
a visible tendency of the quantum potential /qn toward a large variation when the channel length is

decreased. Here, we scale the figures into the same size for comparison.
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Fig. 19. Hole temperature (R = 0).
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The second example of our simulation test on the model is a MOSFET device structure which has an

elliptical 1019 cm�3 Gaussian doping profiles in the source and drain regions and 1016 cm�3 in the p-sub-

strate region as shown in Fig. 5. The junction depth is 20 nm, the lateral diffusion under gate is 8 nm, the

channel length is 34 nm, and the gate oxide thickness is 2 nm. With VBS = 0 V, VDS = 1.0 V and VGS = 0.8

V, Figs. 6–13 present the final adaptive mesh, electrostatic potential, electron concentration, hole concen-
tration, electron temperature, hole temperature distribution, electron quantum potential, and hole quantum

potential, respectively. Across the junction, Figs. 12 and 13 clearly show similar quantum potential profiles

as that in Fig. 4 for the 1D diode device. Furthermore, in the direction perpendicular to the interface, a very

thin boundary layer of about 6 nm appear in the inversion layer as shown in Figs. 12–17. The boundary

layer as shown in Fig. 6 is effectively captured by the a posteriori error estimation with 1-irregular refine-

ment strategy developed in [11,12,25,26].

As mentioned earlier, a suitable constraint on the values of the quantum potentials at the oxide interface

is not available. One solution to this lack of quantum potential BCs is to solve the DGET model in the
oxide as well as in the adjoining silicon and poly gate. This will allow us to simulate the tunneling effects

across the oxide [13]. This issue is not addressed here and will be reported elsewhere in our future works.

We do not impose zero Dirichlet BCs for the variables fn and fp exactly at the interface but instead at the

grid points in silicon that are very close (about 0.13 nm) to the interface. In effect, these BCs are very similar

to that in [8] where a small but non-zero value of the carrier densities is set at the interface. We found that if

the BCs are prescribed exactly at the interface, the result of temperature will be very poor although the

algorithm is still convergent.
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As noted in Remark 2.2, the quantum corrections are implicitly defined in the energy fluxes (9) and (10)

via the carrier densities (19) and (20), the temperature distribution of carriers will not be very accurate as

shown in Figs. 10 and 11. More specifically, the temperature peak for electron appears to be near the drain

but the peak for hole is in the middle of the channel. We found that the generation-recombination model

will influence the hole temperature distribution significantly. If the standard SHR model (54) is used instead
of the MSHR model of Remark 3.1, the hole temperature is even much worse as shown in Figs. 18 and 19.

To our knowledge, there are no numerical results of quantum corrected carrier temperatures available in

the literature to be compared with our results. Evidently, efficient and effective numerical methods for han-

dling energy fluxes with explicit quantum corrections are needed for future investigations.

The electron density profile shown in Fig. 14 is a cross section of the 2D profile at the middle point of the

interface. The peak of the density is about 1.5 nm away from the interface, which agrees well with that in

[7], see also [1]. Fig. 15 is the electron current density computed by the ET model, which clearly shows that

the classical density is sharply peaked comparing with the smoothly peaked in Figs. 16 and 17 obtained by
the DG and DGET models. The substantial QM effect of transconductance degradation is also evidently

displayed in these figures. From these figures, we observe that the carrier temperature provides a mecha-

nism to increase carrier diffusion as noted in Remark 2.1. This is the main justification to consider DGET

instead of DG along.

Finally, Fig. 20 shows the simulated I–V curves in which the drain current obtained by the DGET model

is about 20–60% below that predicted by the ET model for the gate biases of 0.7, 0.8, and 0.9 V. This result

is also in good agreement with that of [8] where a MOSFET with 30 nm gate length and 2 nm gate oxide

thickness is considered. Admittedly, this represents a serious decrease in the current drive capability of the
device. Note also that the difference of the maximal temperatures between the ET (T = 3677 K) and DGET

(T = 3649 K) models is not very significant. The corresponding thermal energies are 0.475 and 0.471 eV.

The figure also shows that ET over estimates the current whereas DG under estimates.
6. Conclusion

A self-adjoint model combining both ET and DG models is proposed here for nanoscale semiconductor
devices. This model is capable of describing hot carrier and quantum correction effects.

Moreover, due to the self-adjointness and monotonic nonlinearity, the present model enjoys many fav-

orable mathematical properties such as global convergence with simple initial guesses, highly parallelizable,

and fast iterative solution. Numerical convergence is a fundamental issue constantly faced by the practi-

tioner in device and circuit simulation. This model and monotone iterative methods may offer an alternative

in handling the convergence difficulties frequently associated with Newton�s methods.

Our numerical simulations on diode and MOSFET with the gate length down to 34 nm using the DGET

model have been performed and compared with that using the ET model. And the results are shown to be in
good agreement with those reported in the literature. It is shown that the I–V characteristics of this short-

channel device is significantly corrected by the density-gradient equations with current drive reduced by up

to 60% comparing with that of the classical model along. Furthermore, a 2D quantum layer, which is only a

fraction of the length scale of inversion layer, is also effectively captured by this model with very fine mesh

near the interface generated by an adaptive finite element method.

Nevertheless, many improvements on our preliminary model can be further studied in future works. For

example, the self-adjoint formulation of the present paper is based on Maxwell–Boltzmann statistics. It is

however unclear to us whether the self-adjointness can be also derived for the case of Fermi–Dirac statis-
tics which is more exact but more complicated to implement. Moreover, efficient and effective numerical

methods for handling energy fluxes with explicit quantum corrections are also deserved for future

investigations.
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