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Abstract

This paper presents a multi-layer demand-responsive logistics control strategy for alleviating, effectively and effi-

ciently, the bullwhip effect of a supply chain. Utilizing stochastic optimal control methodology, the proposed method

estimates the time-varying demand-oriented logistics system states, which originate directly and indirectly downstream

to the targeted member of a supply chain, and associate these estimated demands with estimates of different time-

varying weights under the goal of systematically optimizing the logistical performance of chain members. In addition,

an experimental design is conducted where the proposed method is evaluated with the two specified criteria. Numerical

results indicate that the proposed method permits alleviating, to a great extent, the bullwhip effect in comparison with

the existing logistics management strategies. Furthermore, the methodology presented in this study is expected to help

address issues regarding the uncertainty and complexity of the distortion of demand-related information existing

broadly among supply chain members for an efficient supply chain coordination.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The bullwhip effect remains to be a critical issue in the area of supply chain management. As illus-

trated in the literature (Lee et al., 1997; Metters, 1997; Simchi-Levi et al., 2000), a small variance in the

demands of the downstream end-customers may cause dramatic variance in the procurement volumes of

upstream suppliers via the bullwhip effect under the condition that the distortions of demand-related

information exist among the members of a supply chain. As a consequence, the systematic profitability of
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a supply chain is seriously affected. Correspondingly, the functional coordination of a supply chain may
no longer exist due to such inappropriate interactions of supply-demand information flows between chain

members.

As can be deduced from the previous statement, the distortion of demand information can be viewed as a

major factor in the formation of the bullwhip effect because of three related phenomena: (1) bias demand

information from the downstream chain members, (2) delayed information transferring, and (3) unsuitable

logistical operations responding to the downstream demands. Similar viewpoints can also be found in the

previous literature (Simchi-Levi et al., 2000; Chopra and Meindl, 2001). Herein, bias demand information

may result either from the increase in demand variability in the end-customer market including price and
demand fluctuations or from the estimation errors of downstream-chain-member demands. Delayed

information transfer among chain members influences the efficiency of the inter-member information

sharing, and more seriously, magnifies the induced effect on the deviation of the demands estimated by

suppliers from the real end-customer demands. Furthermore, inappropriate logistics operational strategies

including demand forecasting based on the orders, and batch ordering from the direct-downstream chain

member also accelerate the formation of the bullwhip effect.

Improvement in forecasting customer demands appears to be an alternative measure for alleviating the

bullwhip effect. According to Bowersox and Closs (1996), for the purpose of coordinating logistics activ-
ities, accurate forecasts of customer demands may help to proactively allocate resources rather than

reacting directly to the needs with expensive changes in inventory. McGinnis and Kohn (1990) also urge

that demand forecasting should be further emphasized in the evolution of advanced logistics management.

Nevertheless, there exist some limitations of published demand forecasting methods in dealing with

chain-based customer demands. Some typical cases in the previous literature are illustrated as follows. Time

series-based techniques, well-known statistical methods, have been widely employed in the traditional area

of demand forecasting, and diverse related approaches including moving average, exponential smoothing,

extended smoothing, and adaptive smoothing are proposed for short-term forecasting. Given the short-
term stable relationships of time-varying demand patterns in sequential time intervals, Kahn (1987) pro-

posed a demand forecasting model utilizing an autoregressive moving average approach. Following Kahn�s
approach, Xu et al. (2001) further investigated several alternatives to improve supply chain coordination.

Similar applications of time series-based approaches have also be reported by Chen et al. (2000). Despite

the convenience of utilization of time-series techniques in characterizing the changes of demand patterns

under the condition of stable external environments, the capability of the published techniques appears

limited to forecast the demands of the direct-downstream chain member, corresponding to the direct or-

ders. In addition, the risk of bias prediction still remains in time-series techniques particularly under
conditions of unstable changes in external environments. An analytical hierarchy process (AHP) based

approach proposed by Korpela and Tuominen (1996) is elaborately used to forecast the aggregate growth

rate of customer demand in the market area. Although they claimed that the proposed AHP-based method

permits avoiding some problems inherent in classical demand forecasting techniques, the inter-member

relationships of a supply chain are not taken into account in this method.

Furthermore, recent advances in information and communication technologies coupled with various

time-based logistics control strategies such as continuous replenishment planning (CRP), and quick re-

sponse (QR) may be noteworthy for their potentials in addressing the bullwhip effect, there still exists a lack
of logistics control techniques in systematically coordinating demand information of chain members for

solving problems induced by the bullwhip effect, effectively and efficiently. As pointed out by Metters

(1997), most of the early research was devoted to explaining and analyzing the existence of the bullwhip

rather than finding the remedy of the effect. In addition, Kahn (1987) claimed that ignorance of changes in

end-customer behavior is the major cause of the bullwhip effect, and it remains in the area of supply chain

management (SCM). Similar argument can also be found in Naish (1994), which argues that if fore-

knowledge of demand changes is incorporated, the bullwhip effect may disappear.



Raw Material
Supplier

Manufacturer Wholesaler Retailer
End-

Customer

S1(k) S2(k) S3(k) S4(k)
O2,1(k) O4,3(k)O3,2(k) O5,4(k)

T1,2(k) T2,3(k) T3,4(k) T4,5(k)

Layer-1 layer-2 layer-3 layer-4 layer-5

Fig. 1. Illustration of the logistics system scope investigated in this study.
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In view of the aforementioned issues relevant to the bullwhip effect, this study presents a multi-layer

demand-responsive logistics control approach, which serves not only to address the issues relevant to

distortion of demand information in a supply chain cited previously but also to improve the supply chain

coordination. The architecture of the proposed method is constructed on the basis of the principles of

stochastic optimal control methodology, together with the Kalman filtering technology. Three major

procedures including (1) specification of state variables, (2) formulation of a stochastic demand-oriented

control system, and (3) development of a recursive decision-making support algorithm, are involved in

developing the proposed methodology.
The rest of this paper is organized as follows. In Section 2, we specify the state variables of a multi-layer

demand-responsive logistics system as well as the investigated system scope. In Section 3, the proposed

logistics system is formulated as a discrete-time nonlinear stochastic system to characterize the time-varying

relationships of the specified state variables. Section 4 describes a recursive stochastic optimal control

algorithm serving to determine the control strategies, and update the estimates of state variables of the

proposed logistics system. Numerical studies are presented in Section 5 to demonstrate the potential

advantages of the proposed method. Concluding remarks are summarized in Section 6.
2. System specification

The system investigated in this study is presented in Fig. 1, which represents a 5-layer supply chain

typically including members of raw material suppliers, manufacturers, wholesalers, retailers, and end-

customers. The inter-member and intra-member logistical operations relationships of such a typical 5-layer

supply chain, in reality, can be characterized with four types of time-varying logistics operations status,

including: (1) the order from the downstream chain member, (2) the procurement to the upstream chain
member, (3) inventory, and (4) the distribution amount to the downstream chain member. Herein, the

status of order and procurement exhibits inter-member demand-oriented informative flows in a supply

chain; in contrast, inventory and distribution indicate the conditions of intra-member and inter-member

physical flows, respectively. Given a chain member in layer-i of the specified 5-layer supply chain, the in-

bound and outbound logistics operations of the given chain member i can be characterized with: (1) the

time-varying inventory amount in a given time interval 1 kðSiðkÞÞ, (2) the time-varying procurement to the

upstream chain member of layer ‘‘i� 1’’ at the beginning of time interval kðOi;i�1ðkÞÞ, (3) the time-varying
1 In this study, a given time interval k is defined as a given period of time in ½k; k þ 1Þ, where the length of each time interval is set to

be the maximum of the disaggregate lead times in the multi-layer logistics control system.
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order amount from the downstream chain member of layer iþ 1 at the beginning of time interval
kðOiþ1;iðkÞÞ, and (4) the time-varying distribution amount to the downstream chain member in time interval

kðTi;iþ1ðkÞÞ. Note that the aforementioned four types of time-varying logistics-related activities apply to any

chain member of a supply chain, excluding the raw-material supplier and the end-customer in which the

activities of procurement to the upstream member and the order from the downstream member, respec-

tively, do not exist.

Next, the hypothesis that the logistics operations of any given chain member in the specified 5-layer

supply chain can be influenced primarily by the deviation in multi-layer demand information is postulated

as shown in Fig. 2, and herein, the demand-oriented deviation can be caused either by the variance of time-
varying demand relative to the average of the previous demands or by the biasness of demand forecasting.

Compared to inter-member relationships demonstrated in traditional SCM-related areas, the presented

hypothesis exhibits a distinctive feature that the time-varying logistics operations status of a given chain

member in a given layer i can be influenced not only by the order from the direct-downstream chain

member (Oiþ1;iðkÞ) but also by the members in farther downstream layers (e.g., Oiþ2;iþ1ðkÞ and Oiþ3;iþ2ðkÞ),
and the time-varying magnitude of the downstream demand-deviation effect is herein represented by wj;iðkÞ,
as can be seen in Fig. 2. As a result, any given chain member may need to take such an effect into account in

the operations of logistics-related activities including the procurement to the upstream chain member and
the distribution to the downstream chain member in the specified multi-layer supply chain system in order

to alleviate the downstream demand-oriented impact.

According to the aforementioned conceptual framework shown in Fig. 2, three groups of decision

variables are specified to characterize the operations of the specified multi-layer logistics system: (1) basic

state variables, (2) measurement variables, and (3) control variables. Herein, the specified decision variables

are regarded as the critical elements which are involved in modeling the proposed stochastic system. Their

definitions are given in the following.

Basic state variables are referred to as the critical informative elements of the specified system that can be
used to derive other time-varying system states characterizing logistics operations of chain members in the

given supply chain, and correspondingly, they play the key role in determining the performance of the

proposed 5-layer supply chain. In this study, one type of basic state variable is specified: Oiþ1;iðkÞ which

represents the time-varying order amount from the chain member of the direct-downstream layer iþ 1 to a
layer-1 layer-2 layer-3 layer-4 layer-5
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Fig. 2. Illustration of the multi-layer demand-oriented effect in a given 5-layer supply chain.



J.-B. Sheu / European Journal of Operational Research 161 (2005) 797–811 801
given chain member of layer i at the beginning of time interval k. Therefore, there are four basic state
variables existing in the aforementioned 5-layer supply chain system, namely O2;1ðkÞ, O3;2ðkÞ, O4;3ðkÞ, and
O5;4ðkÞ, respectively.

A measurement variable corresponds to the observable physical amount associated with a given logis-

tics-related activity, which dominates the performance of the proposed multi-layer logistics system, and

determines the time-varying status of basic state variables. Herein, one type of measurement variable SiðkÞ
is specified, which is defined as the time-varying inventory amount of the given chain member of layer i
observed in time interval k. In the given 5-layer supply chain system, there are totally four measurement

variables, including S1ðkÞ, S2ðkÞ, S3ðkÞ, and S4ðkÞ.
Control variables determine the magnitude of the downstream demand-oriented deviation effect on the

logistics operations of a given chain member in the system, and herein, one type of control variable is

proposed: wj;iðkÞ which represents the time-varying magnitude of the effect oriented from the short-term

changes in the time-varying order amount associated with the chain member of a given downstream layer j
on the logistics operations of a given upstream chain member of layer-i in a given time interval k. The value
of wj;iðkÞ changes with time, and is determined in each time interval during the process of the proposed

multi-layer demand-responsive logistics control approach for each given chain member of layer i in re-

sponse to the time-varying downstream demand-oriented deviation effect in the specified multi-layer
logistics system. As can be seen in Fig. 2, there are a total of ten control variables in this system.

Utilizing the aforementioned specified variables, we further propose an aggregate demand effect variable

(WiðkÞ) associated with the chain member in a given layer i in a given time interval k, and WiðkÞ is denoted
by
WiðkÞ ¼
XJ

j¼iþ1

wj;iðkÞ � Oj;j�1ðkÞ

24 �
XeK
e¼1

Oj;j�1ðk

0@ � eÞ

1A,eK
35; ð1Þ
where J represents the number of layers in a given supply chain, which is equal to 5 in the proposed

framework; e is a time-lag index; and eK represents the total number of time lags pre-set for identifying the

deviation between the time-varying downstream demand and the associated average demand in the pre-

vious given time intervals. Herein, WiðkÞ is introduced to serve the specified multi-layer logistics system in

order to achieve the following systematical equilibrium condition:
WiðkÞ ¼ Ti�2;i�1ðk þ 1Þ þ eSi�1 � Oi;i�1ðkÞ; ð2Þ
where Oi;i�1ðkÞ is referred to as the time-varying procurement amount from the given chain member in layer

i to the chain member in the direct upstream layer i� 1 at the beginning of time interval k; Ti�2;i�1ðk þ 1Þ
corresponds to the time-varying distribution amount from the chain member of layer i� 2 to the chain
member of layer i� 1 at the beginning of the next time interval k þ 1; eSi�1 represents the pre-set safety stock

amount associated with the chain member of layer i� 1, and can be further expressed as
eSi�1 ¼ da
i�1 � ri�1 �

ffiffiffiffiffiffiffiffi
�ui�1

p
; ð3Þ
where da
i�1 is a constant associated with the given service level a of the chain member of layer i� 1, which

ensures that the stockout probability of the chain member of layer i� 1 during the lead time is exactly

1� a; ri�1 represents the standard deviation of daily demand faced by the chain member of layer i� 1; and
�ui�1 is the average lead time associated with the chain member of layer i� 1. Accordingly, under the

aforementioned systematical equilibrium condition, the physical amount in terms of the net inventory

associated with the chain member of layer i� 1 must ideally satisfy the informative demand originated

from the downstream chain member of layer i in any time intervals in the specified multi-layer logistics

system.
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3. Model formulation

In this study, the following two assumptions are postulated to facilitate the formulation of the proposed

stochastic model.

(1) The activity of procurement associated with the chain member of any given layer is triggered at the

beginning of any given time interval.

(2) The lead time associated with the chain member of any given layer is not greater than the length of a
given time interval. Correspondingly, the issue of the order crossing a time interval is assumed not to

exist in the presumed QR environment. In addition, as diverse marketing theories emerge, more and

more distribution channel researchers and business decision makers believe the philosophy––‘‘the cus-

tomer is the king,’’ leading to the existing demand-driven marketing environment. As such, our inten-

tion is focused on multi-layer demand-responsive logistics control, which can also make the

corresponding assumption more agreeable. Accordingly, it is inducible that the time-varying procure-

ment amount from a given chain member i to its upstream chain member i� 1 is consistent with the

distribution amount from the upstream chain member i� 1 to the given chain member i in any given
time interval (i.e., Oi;i�1ðkÞ ¼ Ti�1;iðkÞ).

Based on these assumptions, we formulate the operations of the proposed time-varying 5-layer supply

chain system as a discrete-time nonlinear stochastic optimal control problem employing the specified

decision variables as well as the fundamentals of stochastic optimal control approaches. The entire sto-

chastic system is characterized primarily with three groups of time-varying equations including (1) state

equations, (2) measurement equations, and (3) boundary constraints. These equations are denoted

respectively as follows.

3.1. State equations

The state equations denote the time-varying relationships between the next-time-interval and the cur-

rent-time-interval basic state variables, namely the procurement/order variables, in the specified logistics

system, assuming that these time-varying state variables follow Gaussian–Markov processes. Corre-

spondingly, these state variables are assumed to possess the Markovian properties preferably in the

deterministic environment; however, they may be affected in practice by noise terms which follow, to a
certain extent, Gaussian processes that contribute to a stochastic system. Therefore, we formulate the

generalized form of the time-varying state equations as
Oðk þ 1Þ ¼ F½oðkÞ;wðkÞ; k	 þ L½oðkÞ;wðkÞ; k	UðkÞ; ð4Þ

where Oðk þ 1Þ is a ðJ � 1Þ � 1 time-varying vector of basic state variables in the given time interval k þ 1,

and in the proposed model, Oðk þ 1Þ primarily contains the time-varying procurement variables associated

with specific chain members excluding the raw supplier (i.e., the chain member of layer-1); F½oðkÞ;wðkÞ; k	
represents a ðJ � 1Þ � 1 time-varying vector of basic state variables in terms of the downstream orders

(oðkÞ) and the control variables (wðkÞ) in the given time interval k; L½oðkÞ;wðkÞ; k	 is a ðJ � 1Þ � ðJ � 1Þ
diagonal noise-coupling matrix which is dependent on basic state variables (oðkÞ) as well as the control

variables (wðkÞ); and UðkÞ corresponds to a ðJ � 1Þ � 1 state-independent zero-mean white noise vector,

which involves elements following zero-mean Gaussian processes. The proposed state equations exhibit the

nature of the specified stochastic system that if L½oðkÞ;wðkÞ; k	 and UðkÞ do not exist, the prior predictions

of procurements associated with chain members (Oðk þ 1Þ) will depend merely on the multi-layer order-

related information in the given supply chain (F½oðkÞ;wðkÞ; k	). However, there exist such internal and
external factors as the variation in lead time and the deviation of demand prediction error which may
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influence the prior prediction of procurement to a certain extent, and thus, the aforementioned state-

independent noise and noise-coupling terms, i.e., UðkÞ and L½oðkÞ;wðkÞ; k	, respectively, are involved.

In the state equations, Oðk þ 1Þ, F½oðkÞ;wðkÞ; k	, L½oðkÞ;wðkÞ; k	, and UðkÞ can be further expressed as:
Oðk þ 1Þ ¼

O2;1ðk þ 1Þ
O3;2ðk þ 1Þ
O4;3ðk þ 1Þ
O5;4ðk þ 1Þ

2664
3775; ð5Þ

F½oðkÞ;wðkÞ; k	 ¼

O2;1ðkÞ þ W2ðkÞ
O3;2ðkÞ þ W3ðkÞ
O4;3ðkÞ þ W4ðkÞ

O5;4ðkÞ

2664
3775: ð6Þ
With the notation of the equilibrium demand variable shown in Eqs. (1) and (6) can be rewritten as
F½oðkÞ;wðkÞ; k	 ¼

O2;1ðkÞ þ
P5

j¼3 wj;2ðkÞ � Oj;j�1ðkÞ �
PeK

e¼1 Oj;j�1ðk � eÞ
� ��eK� �

O3;2ðkÞ þ
P5

j¼4 wj;3ðkÞ � Oj;j�1ðkÞ �
PeK

e¼1 Oj;j�1ðk � eÞ
� ��eK� �

O4;3ðkÞ þ w5;4ðkÞ � O5;4ðkÞ �
PeK

e¼1 O5;4ðk � eÞ
� ��eK� �� �

O5;4ðkÞ

2666666664

3777777775
; ð7Þ

L½oðkÞ;wðkÞ; k	 ¼ Dia

w2;1ðkÞ � ½O2;1ðkÞ � O3;2ðkÞ	=tk
w3;2ðkÞ � ½O3;2ðkÞ � O4;3ðkÞ	=tk
w4;3ðkÞ � ½O4;3ðkÞ � O5;4ðkÞ	=tk
w5;4ðkÞ � ½O5;4ðkÞ � D5ðkÞ	=tk

2664
3775; ð8Þ

UðkÞ ¼

u2ðkÞ � �u2
u3ðkÞ � �u3
u4ðkÞ � �u4
‘5ðkÞ � �‘5

2664
3775; ð9Þ
where tk is denoted as the length of any given time interval k; D5ðkÞ shown in Eq. (8) represents the time-

varying demand of layer 5 (i.e., the time-varying demand in the end-customer market) in any given time

interval; uiðkÞ and �ui, shown in Eq. (9), correspond to the time-varying lead time associated with the given
chain member of layer i in a given time interval k and the associated average lead time, respectively; ‘5ðkÞ
and �‘5, shown in Eq. (9), represent the time-varying length of the product life cycle in a given time interval k
and the average length of the product life cycle, respectively. Note that the order amount from the chain

member of layer 5 to that of layer 4 (O5;4ðkÞ) does not need to be exactly the same as D5ðkÞ, but can be a

certain proportion of D5ðkÞ in a given time interval. That is, the chain members of layer 4 in other com-

petitive supply chains may share the rest of the end-customer demand (i.e., D5ðkÞ � O5;4ðkÞ) in the given

time interval.

3.2. Measurement equations

The measurement equations represent the time-varying relationships between the measurement variables

and the basic state variables. In the proposed multi-layer demand-responsive logistics control approach
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they are employed to update the prior predictions of the basic state variables through the proposed sto-
chastic optimal control algorithm which is depicted in the following section. Therein, the generalized form

of the measurement equations is given by
ZðkÞ ¼ H½oðkÞ;wðkÞ; k	 þ VðkÞ; ð10Þ
where ZðkÞ is a ðJ � 1Þ � 1 time-varying inventory vector in which each element represents the measured

inventory amount associated with the chain member of a given layer i in time interval k (i.e., SiðkÞ for

i ¼ 1; 2; 4) excluding that of layer 5 (S5ðkÞ); H½oðkÞ;wðkÞ; k	 is a ðJ � 1Þ � 1 time-varying vector which ex-
presses the relationships between the measured inventories and the basic state variables; and VðkÞ is a

ðJ � 1Þ � 1 zero-mean white noise vector, which involves the state-independent zero-mean Gaussian error

terms (v1ðkÞ, v2ðkÞ, v3ðkÞ, and v4ðkÞ) of the measured inventory associated with the chain members of

layers 1, 2, 3, and 4 in a given time interval k. Herein, ZðkÞ, H½oðkÞ;wðkÞ; k	, and VðkÞ are given, respec-

tively, by:
ZðkÞ ¼

S1ðkÞ
S2ðkÞ
S3ðkÞ
S4ðkÞ

26664
37775; ð11Þ

H½oðkÞ;wðkÞ; k	 ¼

T0;1ðkÞ þ S1ðk � 1Þ � T1;2ðkÞ
T1;2ðkÞ þ S2ðk � 1Þ � T2;3ðkÞ
T2;3ðkÞ þ S3ðk � 1Þ � T3;4ðkÞ
T3;4ðkÞ þ S4ðk � 1Þ � T4;5ðkÞ

26664
37775: ð12Þ
According to the postulated assumptions and Eq. (1), using the specified decision variables, Eq. (12) can be

rewritten as
H½oðkÞ;wðkÞ; k	 ¼

W1ðk � 1Þ þ S1ðk � 1Þ � O2;1ðkÞ
O2;1ðkÞ þ S2ðk � 1Þ � O3;2ðkÞ
O3;2ðkÞ þ S3ðk � 1Þ � O4;3ðkÞ
O4;3ðkÞ þ S4ðk � 1Þ � O5;4ðkÞ

26664
37775; ð13Þ

VðkÞ ¼

v1ðkÞ
v2ðkÞ
v3ðkÞ
v4ðkÞ

26664
37775: ð14Þ
3.3. Boundary constraints

In order to yield feasible solutions of decision variables efficiently in the proposed multi-layer demand-

responsive logistics operations, the estimates of basic state variables (Oi;i�1ðkÞ) should be subjected to the

limitation of time-varying allowable storage amount in specific layers.
06Oi;i�1ðkÞ6 Smax
i

24 � Siðk � 1Þ þ
PeK

e¼1 Oiþ1;iðk � eÞeK
35 for i ¼ 2; 3; 4; 5: ð15Þ
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4. Algorithm development

The proposed stochastic optimal control-based algorithm serves to minimize the demand-deviation

impact on the operations of the specified multi-layer logistics system in a given time period, and corre-

spondingly, to alleviate such an effect with the goal of systematical equilibrium, as depicted in Eq. (2).

Therefore, the objective function (n) can be represented as:
n ¼ minE
XN
k¼0

½OðkÞ
(

�O
ðkÞ	TR1ðkÞ½OðkÞ �O
ðkÞ	 þ ½WðkÞ �W
ðkÞ	TR2ðkÞ½WðkÞ �W
ðkÞ	
)
;

ð16Þ

where R1ðkÞ and R2ðkÞ represent the ðJ � 1Þ � ðJ � 1Þ and

PJ
i¼1 ðJ � iÞ

� �
�

PJ
i¼1 ðJ � iÞ

� �
time-varying

diagonal, positive-definite weighting matrix associated with the estimation vector of the basic state vari-

ables (OðkÞ), and that of the control variables (WðkÞ), respectively; N corresponds to the total number of

time intervals in terms of the logistics control period, and is pre-determined in the study; O
ðkÞ andW
ðkÞ
are the time-varying target vectors associated with OðkÞ and WðkÞ, respectively. Herein, each element in

O
ðkÞ represents the ideal value of a given basic state variable that contributes to the systematical equi-

librium condition. Similar explication is applied to the elements ofW
ðkÞ. Accordingly, the aforementioned

objective function serves the purpose of minimizing the operational cost in the process of approaching to
systematical equilibrium.

To perform the functionality of multi-layer demand-responsive logistics control, a stochastic optimal

control-based algorithm is developed where the extended Kalman technology is employed to update the

estimates of decision variables in each time interval. Note that Kalman filtering techniques have been

investigated for a couple of decades, and applied successfully in many areas such as spacecraft navigation,

target tracking, trajectory determination (Stengel, 1986; Santina et al., 1994) as well as transportation

(Busch, 1987; Cremer, 1987; Sheu, 1999, 2002). An extended Kalman filter is adapted from a basic Kalman

filter, particularly for the state estimation of nonlinear stochastic systems. Using an extended Kalman filter,
the estimates of the current-time-interval basic state variables (OðkÞ) as well as control variables (WðkÞ) are
updated with the objective function shown in Eq. (16), and then, used as the basis for estimating the next-

time-interval decision variables. Moreover, other physical measurements including the inbound distribution

amount (Ti�1;iðkÞ) and the outbound distribution amount (Ti;iþ1ðkÞ) associated with a given chain member i
in each layer, are derived in each time interval in the control process. The entire control logic is presented in

Fig. 3, and corresponding computational procedures are summarized below.

Step 0: Initialize decision variables. Given k ¼ 0, decision variables including (1) the vector of basic state

variablesOð0j0Þ, (2) the initialized inventory measurements Zð0Þ, (3) the control variable vectorWð0j0Þ, (4)
the covariance matrix of the basic state estimation error Uð0j0Þ, and (5) the weighting matrix R1ð0Þ are

initialized.

Step 1: Input time-varying end-customer demand data and measured multi-layer inventories. Let the

time-varying demand of the end-customer market (D5ðkÞ) in each given time interval be known, and let the

measured inventories (S1ðkÞ, S2ðkÞ, S3ðkÞ, and S4ðkÞ) associated with the chain members of layers 1, 2, 3, and

4 be the input in time interval k.
Step 2: Compute prior prediction in terms of the vector of basic state variables (Oðk þ 1jkÞ) and the

covariance matrix of the state estimation error (Uðk þ 1jkÞ) by:
Oðk þ 1jkÞ ¼ F½oðkÞ;wðkÞ; k	; ð17Þ

Uðk þ 1jkÞ ¼ fðkÞUðkjkÞfTðkÞ þ L½oðkÞ;wðkÞ; k	R1ðkÞL oðkÞ;wðkÞ; k½ 	T; ð18Þ
where matrix fTðkÞ is the transpose matrix of fðkÞ which is given by:
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Fig. 3. Diagram of the proposed multi-layer logistics control logic.
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fðkÞ ¼ oF½oðkÞ;wðkÞ; k	
oOðkÞ

����
OðkÞ¼OðkjkÞ

: ð19Þ
Step 3: Calculate the Kalman gain (Cðk þ 1Þ) by:
Cðk þ 1Þ ¼ Uðk þ 1jkÞhTðk þ 1Þ½hðk þ 1ÞUðk þ 1jkÞhTðk þ 1Þ þ R2ðk þ 1Þ	�1
; ð20Þ
where R2ðk þ 1Þ is pre-specified in the algorithm based on the covariance matrix of VðkÞ and hðk þ 1Þ is
denoted by:
hðk þ 1Þ ¼ oH½oðk þ 1jkÞ;wðkÞ; k þ 1	
oOðk þ 1jkÞ : ð21Þ
Step 4: Update the prior prediction in terms of the vector of basic state variables ðOðk þ 1jk þ 1ÞÞ by:

Oðk þ 1jk þ 1Þ ¼ Oðk þ 1jkÞ þ Cðk þ 1ÞDZðk þ 1jkÞ; ð22Þ
where DZðk þ 1jkÞ is given by:
DZðk þ 1jkÞ ¼ Zðk þ 1Þ �H½oðk þ 1jkÞ;wðkÞ; k þ 1	: ð23Þ

Step 5: Truncate the updated estimates of basic state variables with boundary constraints shown in Eq.

(15).

Step 6: Update the covariance matrix of the state estimation error (Uðk þ 1jk þ 1Þ) as:

Uðk þ 1jk þ 1Þ ¼ ½I� Cðk þ 1Þhðk þ 1Þ	Uðk þ 1jkÞ: ð24Þ
Step 7: Calculate the control-variable vectorWðk þ 1Þ. According to the principles of stochastic optimal

control (Stengel, 1986; Santina et al., 1994), the updated vectors of basic state variables (Oðk þ 1jk þ 1Þ)
and control variables (Wðk þ 1Þ) are fed back through the optimal gain matrix Eðk þ 1Þ to minimize the

pre-specified operational cost function (see Eq. (16)), and Wðk þ 1Þ is estimated by:



J.-B. Sheu / European Journal of Operational Research 161 (2005) 797–811 807
Wðk þ 1Þ ¼ �Eðk þ 1ÞOðk þ 1jk þ 1Þ þ gðk þ 1Þ: ð25Þ

In Eq. (25), Eðk þ 1Þ and gðk þ 1Þ are denoted respectively by:
Eðk þ 1Þ ¼ ½BTðk þ 1ÞCðk þ 2ÞBðk þ 1Þ þ R2ðk þ 1Þ	�1
BTðk þ 1ÞCðk þ 2Þfðk þ 1Þ; ð26Þ

gðk þ 1Þ ¼ ½BTðk þ 1ÞCðk þ 2ÞBðk þ 1Þ þ R2ðk þ 1Þ	�1

� ½Bðk þ 1ÞR1ðk þ 1ÞO
ðk þ 1Þ þ R2ðk þ 1ÞW
ðk þ 1Þ	; ð27Þ
where matrix Cðk þ 2Þ should satisfy the Riccati equation as shown below:
Cðk þ 1Þ ¼ R1ðk þ 1Þ þ fTðk þ 1ÞCðk þ 2Þfðk þ 1Þ � fTðk þ 1ÞCðk þ 2ÞBðk þ 1ÞEðk þ 1Þ ð28Þ
and matrix Bðk þ 1Þ can be further expressed as:
Bðk þ 1Þ ¼ oF½oðkÞ;wðkÞ; k	
oWðkÞ : ð29Þ
Step 8: Update the estimated time-varying inventory amount (Siðk þ 1jk þ 1Þ) associated with the chain

member in each given layer i at the end of time step k þ 1 as
Siðk þ 1jk þ 1Þ ¼ Ti�1;iðk þ 1Þ þ SiðkÞ � Ti;iþ1ðk þ 1Þ for i ¼ 1; 2; 3; 4: ð30Þ
According to the assumptions and Eq. (13), Eq. (30) can be rewritten as
Siðk þ 1jk þ 1Þ ¼ Oi;i�1ðk þ 1jk þ 1Þ þ SiðkÞ � Oiþ1;iðk þ 1jk þ 1Þ for i ¼ 1; 2; 3; 4: ð31Þ

Step 9: Check the status of the logistics control routine by conducting the following rules.

If the next time interval is at the end of the control period, then stop the control routine. Otherwise, let

k ¼ k þ 1, and go to Step 1 to continue the routine.
5. Experimental design

This section describes the major procedures of experimental design conducted for verifying the potential

of the proposed logistics control method in terms of alleviating the bullwhip effect between the second layer

(i.e., the manufacturer) and the fourth layer (i.e., the retailer) through systematically optimizing the logistics

performance in a typical 5-layer supply chain of the manufacturing industry. Evaluation measures were

based mainly on the comparison of the output data generated from the proposed method with that

measured using a simplified ðs; SÞ ordering strategy for each chain member giving the same patterns of the

end-customer demand which follow specific stochastic processes during a given 10-time-interval control

period.
The input data acquisition procedure primarily involves two stages: (1) specification of initialized system

states, and (2) generation of time-varying end-customer demands and measured inventories via simulation.

As noted in Step 0 of the proposed logistics control algorithm, system states primarily including basic state

variables, measurement variables, and control variables should be initialized at the onset of the logistics

control period. Moreover, the data sets of time-varying end-customer demand (D5ðkÞ) and the measured

inventories associated with chain members of layers 1–4 (i.e., S1ðkÞ, S2ðkÞ, S3ðkÞ, and S4ðkÞ) in each given

time interval k, all assuming to follow Gaussian processes, were generated via simulation. Utilizing random

numbers, a subroutine which serves to generate Gaussian-based random variables was then executed in the
simulation procedure to obtain these time-varying end-customer demands and inventories. Tables 1 and 2

summarize the primary initialized system states and control variables, respectively.



Table 1

Summary of initialized system states

Parameter Layer-i

1 (raw-material

supplier)

2 (manufacturer) 3 (wholesaler) 4 (retailer) 5 (end-customer)

Initialized inventory (Sið0Þ) 1000 1000 1000 1000 *

Initialized order (Oi;i�1ð0j0Þ) * 1300 1200 1100 1000

Table 2

Summary of initialized control variables (wi;jð0Þ)
Layer-‘‘i’’ Layer-‘‘j’’

1 2 3 4 5

1 * * * * *

2 1.00 * * * *

3 0.75 1.00 * * *

4 0.50 0.75 1.00 * *

5 0.25 0.50 0.75 1.00 *
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The output database used for comparison includes the basic state variables estimated via the proposed
logistics control algorithm, and the order associated with each chain member yielded utilizing the simplified

well-known ðs; SÞ ordering strategy. Given the initialized system states and pre-set parameters, the afore-

mentioned two specific logistics control strategies were executed to obtain time-varying orders during the

10-time-interval period. Herein, we compared the performance of the proposed logistics control approach

with that of the given ðs; SÞ ordering strategy utilizing two types of measures defined as follows:

(1) VRh
i;5ðkÞ corresponds to the variance of the time-varying procurement amount placed by the chain

member of layer i relative to the variance of the time-varying end-customer demand (i.e., the demand
of the chain member of layer 5) in a given time interval k under the condition of a given logistics control

strategy h. Herein, VRh
i;5ðkÞ is given by

VRh
i;5ðkÞ ¼

Var½Oh
i;i�1ðkjkÞ	

Var½Oh
5;4ðkjkÞ	

; ð32Þ

where Var½Oh
i;i�1ðkjkÞ	 represents the variance of the estimated procurement amount placed by the chain

member of layer i to the chain member of layer i� 1 in a given time interval k given the logistics control

strategy h; and similarly Var½Oh
5;4ðkjkÞ	 is referred to as the variance of the estimated orders from the

end-customer (i.e., the chain member of layer 5) to the retailer (i.e., the chain member of layer 4) in the

time interval k given the logistics control strategy h.
(2) VR

h

i;5 is denoted as the average value in terms of VRh
i;5ðkÞ estimated during the control period, and is

given by

VR
h

i;5 ¼

PN
k¼1

PJ�1

i¼1

Var½Oh
i;i�1ðkjkÞ	

�
Var½Oh

5;4ðkjkÞ	

½N � ðJ � 1Þ	 : ð33Þ

Note that as to the aforementioned two types of evaluation measures, VRh
i;5ðkÞ can be used to indicate the

change in patterns of the relative deviation of the time-varying procurement associated with a given up-

stream chain member in comparison with that associated with the end customer, and in particular to imply
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the improvement in the bullwhip effect which can be measured readily by VRh
2;5ðkÞ=VRh

4;5ðkÞ given the

logistics control strategy h. In contrast with VRh
i;5ðkÞ, VR

h

i;5 evaluates the long-term performance of a given

logistics control strategy. The comparison results according to the aforementioned criteria are summarized

in Table 3.

Overall, the comparison results shown in Table 3 revealed the significant improvement in reducing the

deviation of chain-based orders by implementing the proposed multi-layer demand-responsive logistics

control in comparison with the classical ðs; SÞ ordering strategy. Two observations from the analysis are

provided to elucidate this generalization. First, the comparative improvements with respect to the two
aforementioned measures, VRh

i;5ðkÞ and VR
h

i;5 are significantly high under the control of the proposed

logistics control method. As depicted in Table 3, the measurements associated with the proposed approach

are lower than that of the ðs; SÞ ordering strategy, either in the short-term or in the long-term temporal

domain, and overall, the relative improvement is up to 64%. Second, the estimates of VRh
i;5ðkÞ associated

with the proposed method change rather smoothly over time during the control period, implying the

stability of the order patterns of chain members, and thus, help to accomplish the goal of systematical

equilibrium in the chain-based logistics operational environment. Accordingly, it is inducible that the

proposed multi-layer logistics control strategy appears to respond efficiently to the variability of the end-
customer demand.

Considering the efficiency of the proposed logistics control method in alleviating the bullwhip effect

under different conditions of control periods, further tests of hypotheses with statistical techniques were

conducted. Given the pre-determined parameters, we estimated the measures of VRp
i;5ðkÞ in different con-

trol-period scenarios, including 5-time-interval, 10-time-interval, 20-time-interval, and 30-time-interval

cases utilizing the proposed method. Then, the following hypothesis (H0) was tested to verify that the

bullwhip effect does not remain in any control-period cases under the control of the proposed logistics

control method.
Table

Compa

Tim

‘‘k’’

1

2

3

4

5

6

7

8

9

10

Ave

VRp
i;5ðk

VRs
i;5ðk

VR
p
i;5ðk

VR
s
i;5ðk
H0 : VR
p
2;5 ¼ VR

p
3;5 ¼ VR

p
4;5: ð34Þ
3

rison of system performance

e interval Layer-‘‘i’’

2 (manufacturer) 3 (wholesaler) 4 (retailer)

VRp
2;5ðkÞ VRs

2;5ðkÞ VRp
3;5ðkÞ VRs

3;5ðkÞ VRp
4;5ðkÞ VRs

4;5ðkÞ
1.67 2.78 1.72 2.54 0.83 1.89

1.21 3.62 0.89 2.09 0.75 1.62

0.84 1.97 0.72 3.26 0.74 2.12

0.77 2.54 0.93 2.11 0.69 1.63

0.54 3.80 0.77 1.98 0.72 2.05

0.68 3.31 0.53 1.70 0.80 2.53

0.73 2.22 0.69 2.04 0.98 1.44

0.62 2.96 0.70 3.62 0.76 1.62

0.74 3.74 0.61 2.79 0.80 1.23

0.69 3.26 0.54 2.33 0.77 1.98

rage (VR
h

i;5) VR
p
2;5 VR

s
2;5 VR

p
3;5 VR

s
3;5 VR

p
4;5 VR

s
4;5

0.85 3.02 0.81 2.45 0.78 1.81

Þ: the time-varying measure generated using the proposed logistics control strategy.

Þ: the time-varying measure generated using the simplified ðs; SÞ logistics control strategy.
Þ: the average value of VR

p
i;5ðkÞ.

Þ: the average value of VRs
i;5ðkÞ.



Table 4

Results of two-tailed p-value tests

Test scenario p-value Significance level Result

5-time-interval 0.28 0.01 Accepted

10-time-interval 0.33 0.01 Accepted

20-time-interval 0.24 0.01 Accepted

30-time-interval 0.13 0.01 Accepted
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Herein, the p-value testing approach, a conventional hypothesis-testing technique, was used in this test

scenario. Table 4 summarizes the results of case-by-case two-tailed p-value tests with the level of signifi-

cance a ¼ 0:01.
The p-value test results shown in Table 4 indicate that the aforementioned hypothesis is acceptable.

Accordingly, there is no reason to reject the assumption that given patterns of the end-customer demand,

there is no difference in terms of the variance of orders among the chain members of layers 2–4 in these

tests. Therefore, it implies that the proposed multi-layer demand-responsive logistics control approach

appears promising to address the bullwhip effect, efficiently and effectively, in different control-period cases.
6. Concluding remarks

This paper has presented a novel multi-layer demand-responsive logistics control method to address the

bullwhip effect, which is a critical issue remaining in the field of supply chain management. Through

analyzing the intra-member and inter-member relationships linking with demand-related information flows

and physical flows, a conceptual framework is specified to illustrate the potential effect of demand-oriented
information deviation on the multi-layer logistics operations of a typical 5-layer supply chain. Utilizing the

specified conceptual framework, three groups of decision variables including (1) basic state variables, (2)

measurement variables, and (3) control variables are proposed, followed by the formulation of a discrete-

time nonlinear stochastic model to characterize the operations of the specified multi-layer logistics system

under the condition of demand variability. To accomplish the goal of systematical equilibrium which serves

to minimize the chain-based logistics operational cost, a stochastic optimal control based algorithm is

developed, in which the extended Kalman technology is employed in aid of updating the estimates of

decision variables during the logistics control period.
In addition, experimental design is conducted to illustrate the potential performance of the proposed

logistics control method in terms of addressing the issue of bullwhip effect in comparison with a simplified

ðs; SÞ ordering strategy. With two specified evaluation measures, the comparison results have revealed the

comparative potential of the proposed method in reducing the effect of the variability of the end-customer

demand on the logistics operations of the other chain members. The results of hypotheses tests further

imply that the proposed multi-layer demand-responsive logistics control approach appears promising to

address the bullwhip effect, efficiently and effectively, in diverse control-period cases.

Nevertheless, further tests as well as modifications may be necessary to verify the robustness of the
proposed multi-layer demand-responsive logistics control methodology, and its applicability in real cases.

Further comparison of the performance of the proposed control method with that of other advanced

logistics control approaches can also help to demonstrate the potential advantages of the proposed method.

Moreover, efforts on either integrating the proposed control method with other published logistics man-

agement strategies such as QR and JIT or extending it for multi-layer multi-member (i.e., multiple chain

members in a given layer) cases seem to be necessary. On the basis of the present results, our future research

will aim at incorporating advanced ITS-related technologies into the architecture of the proposed method

to improve time-based demand-responsive logistical control and management. Moreover, the applicability
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of the proposed method for QR logistical operations in the e-business environment is also interesting, which
warrants further research.
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