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Abstract

Quick response (QR) to passenger needs is a key objective for advanced public transportation systems (APTS),
and it has become increasingly important for contemporary metropolitan bus operations to gain a competitive ad-
vantage over private transportation. This paper presents a real-time control methodology for demand-responsive bus
operations that respond quickly to passenger needs. The proposed method primarily involves two levels of function-
ality: (1) short-term forecasting of passenger demands using time-series prediction models, and (2) identification of
service strategies coupled with the associated bus service segments using fuzzy clustering technologies in response
to variances in passenger demand attributes and traffic conditions. The proposed bus operations method identifies
the demand-responsive vehicle service strategies primarily according to the predicted up-to-date attributes of pas-
sengers’demands, rather than deterministic passenger arrival rates, which were generally used in previous literature.
In addition, the variation of traffic conditions along bus lines is considered in the proposed method. Results from
numerical studies using real data of passengers’ demands, including passenger volume at each bus stop and the
passenger origin-destination (O-D) patterns, are presented to demonstrate the effectiveness of the proposed method
for real-world applications.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Correctly identifying passenger demands and quickly responding to those needs with advanced bus
operations control strategies are vital to the development of advanced public transportation systems
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(APTS) in urban areas. Generally, traditional public transportation systems are less convenient than pri-
vate transportation, which can be quantified to a certain extent by passengers’ satisfaction with the total
travel time, including walking time, waiting time and in-transit time. To improve the competitiveness of
public transportation systems in urban areas, there have recently been increased applications of advanced
technologies, such as automatic vehicle location (AVL) systems, wireless communication systems, and
electronic fare payment systems for urban transit. However, APTS must also rely on advanced vehicle
dispatching strategies. This is especially true since tremendous advances in information and communi-
cation technologies have contributed to dramatic changes in passenger demands for public transportation
services, and have exerted a profound influence on the operations of fleet management in public trans-
portation systems.

Despite the importance of advanced demand-responsive bus transit operations control in APTS, there
have been few related studies in previous literature, and this can be seen in the following two aspects.

First, most research in the field of APTS is devoted to analytical studies and related discussions for the
application of new technologies in APTS, such as the assessment of system performance based on only
limited case studies. Adoption of various intelligent transportation systems (ITS) technologies in public
transportation systems and some local application cases are described in both Khattak et al.[18] and
Hansen et al.[12]. Those studies indicate that the utilization of advanced ITS technologies such as global
positioning systems (GPS), electronic fare payment systems, and automatic passenger counting systems
appears to permit significant improvement in public transportation systems, such as metropolitan bus
operations. Similar arguments can also be found in Hickman[13]. In addition, the idea of using historical
AVL data to improve bus service, as proposed by Horbury[15], also helps to demonstrate the potential
benefits of the emerging ITS technologies to the public transportation operations. Nevertheless, there is a
lack of further research to investigate the operational problems of these new technologies in APTS, using
the analytical results from previous literature.

Second, although there is some literature on the operations of public transportation, the validity of
published methods seems to be subject to specific operational conditions, such as deterministic passen-
ger arrival rates and fixed schedules, which may cause these previous methods to be problematic for
real-time operations. In these previous studies, two types of methodology are noteworthy: simulation-
based[1,23] and optimization-based[6,8,25,33], both of which are broadly employed in the previous
literature. FRABSIM, a fixed-route accessible bus service simulation model proposed by Adesanya[1]
was designed to evaluate the performance of bus service under various scenarios of passenger demands.
One notable application example of FRABSIM is the estimation of the possible effects of different bus
service alternatives on the performance of bus operations when serving persons in wheelchairs. Similarly,
Santhakumar et al.[23] developed a simulation model to analyze the effects of diverse bus operational
strategies on system performance, including express bus transit service. Given historical demand data
collected from four bus lines, in order to improve the performance of local fixed-route bus operations,
their numerical results highly recommended the strategy of express bus transit operations coupled with
re-configuration of bus stops. In addition, Tsao et al.[33] proposed a nonlinear programming model to
determine optimal solutions in terms of the number of bus stops in each zone and the optimal dispatch-
ing headway associated with each zone-based bus route, given passenger demand data. In addition to
zonal service, short-turn service strategies have also attracted substantial research to address issues of
heavy passenger demand, and considerable advances can be found in previous studies, including Furth
[8] and Site et al.[25]. One notable generalization obtained from recent related studies is that the effect of
variation of passenger distribution on bus routing and scheduling has been given increasingly attention.
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The specific real-time deadheading operational problem is elaborately investigated in Eberlein et al.[6],
which assumes that such demand-related parameters as passenger arrival rates, the passenger alighting
proportion at each transit station, and the boarding and alighting times per passenger are all constant.
Nevertheless, the dynamics of such demand-related parameters as the parameters mentioned above in
Eberlein et al.[6], and the effect caused by time-varying traffic conditions along a bus route remain as
critical issues in the existing approaches of real-time transit operations control.

Overall, it should be noted that the difficulties in formulating and solving real-time demand-responsive
bus dispatching control problems are rooted in the uncertainty and vagueness of short-term changes
in time-varying passenger origin-destination (O-D) flows and corresponding time-varying traffic flow
conditions in bus routes. Correspondingly, it seems that any advanced bus control methodology must have
the capability of identifying time-varying passenger O-D demand patterns coupled with corresponding
traffic flow conditions so as to implement appropriate bus service strategies for quick response.

Considering the aforementioned uncertain effects on bus operations induced by variations in passenger
O-D flow patterns as well as time-varying traffic conditions, we propose a real-time demand-responsive
bus operations control method. This method utilizes fuzzy-clustering techniques and time-series predic-
tion models for identification of passenger demand patterns and prior prediction of the short-term changes
in passenger volumes in the operations of bus routing. In contrast with existing bus operations control
approaches, the proposed method has several distinctive features, as follows.

(1) Conceptually, the proposed methodology stems from the concept of demand-oriented business op-
erations, which advocates the primary goal of satisfying customer needs. Following this approach,
we propose that the operations of bus routing should respond efficiently and effectively to short-term
changes in passenger demand, thus satisfying passenger needs as much as possible.

(2) For real-time operations control, a two-stage QR demand-responsive bus operations control approach
is proposed. Herein, we reiterate that the identification of appropriate bus service strategies should
be made before bus routing is established in order to respond to short-term changes in passenger
demand patterns. Such a pre-trip measure is very important, especially in the APTS operational
environment, when real-time information on passenger volumes and their O-D attributes is obtainable
using advanced information and communication technologies. Therefore, two sequential procedures,
including prior prediction of time-varying passenger demand attributes and real-time identification
of bus service strategies, are used in the proposed method.

(3) For methodology, we integrate the fundamentals of fuzzy clustering and time-series prediction ap-
proaches to address the real-time demand-responsive bus operations control problem. In the scenario
of prior prediction of short-term passenger demands, a time-series prediction model is developed to
forecast the short-term changes in passenger demands in the process of bus routing. This is done
using measured real-time passenger-related information together with historical data. Fuzzy clus-
tering techniques are then utilized to identify appropriate bus service strategies in response to the
variations in time-varying passenger demands and traffic conditions along bus lines. In contrast, pre-
vious approaches, both optimization-based and simulation-based, are not used in this study due to
their inadequacy in responding to the dynamics of passengers’ O-D flows and their inflexibility in
dealing with uncertain and complicated time-varying traffic operational conditions for real-time bus
operations control. At least, there is a lack of evidence in the previous literature to show that the ex-
isting approaches for real-time bus operations control can perform well in a dynamic bus operational
environment with no ideal assumptions for either model parameters or input data.
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It is worth mentioning that any advanced bus control strategy can be operated dynamically in the
spatial (e.g., various bus stop strategies) and/or temporal (e.g., time-varying bus dispatching frequencies)
domains to respond to the short-term changes of time-varying passengers’demand patterns. Nevertheless,
the scope of our current study is limited to dealing with the dynamic bus operations in the spatial
domain. Correspondingly, appropriate bus service strategies are determined in response to the short-
term changes of passenger O-D flows subject to constant bus dispatching frequency and given fleet size
for bus operations.

Furthermore, it is worth noting that fuzzy clustering is a part of fuzzy data analysis, and can be viewed
as an improved clustering technique. Compared to classical clustering techniques, the distinctive feature
of fuzzy clustering is that fuzzy clustering utilizes fuzzy partitioning so that a given data point can belong
to several groups with the degree of belongingness bounded within the range of 0 and 1. However, utilizing
classical clustering techniques, any given data point can be assigned to one and only one group among
mutually exclusive data groups. In contrast with classical clustering techniques, this feature of fuzzy
clustering techniques can make pattern recognition more flexible for real-time applications, especially
in cases where patterns of data attributes change rapidly. For detailed descriptions of properties of fuzzy
clustering techniques and related applications, the reader is referred to the early literature[3,10,31]as
well as our previous research[16,24].

The rest of the paper is organized as follows. The architecture of the proposed bus operations control
method and the methodology development are presented in Section 2. Section 3 depicts numerical results
obtained from cases studied. Finally, concluding remarks are made in Section 4.

2. Methodology development

Throughout this paper, the following three basic assumptions are postulated to facilitate development
of the proposed methodology.

(1) Bus dispatching frequency is set to be time-invariant. Correspondingly, the prototype of the proposed
method is limited to fixed-schedule operations, although it is claimed to be capable of adjusting
bus service strategies in real time in response to short-term changes in passenger demands. Such
an assumption is postulated to facilitate modeling the proposed discrete-time time-series prediction
model in the case of fixed time intervals; however, it implies limitations of the proposed method for
the implementation of more advanced operational strategies, such as dynamic headway control.

(2) Real-time passenger demand data are assumed to be collectable via advanced ITS technologies such
as automatic passenger counting systems.

(3) The changes of passenger O-D patterns in the time interval between bus dispatching from the terminal
and arriving at the origin bus stop are not considered. Correspondingly, the passenger O-D patterns
are assumed to be known in a given time interval, and measurable directly from related advanced
technologies such as electronic fare payment systems.

Accordingly, a real-time demand-responsive bus operations control methodology is proposed, and
Fig. 1illustrates the framework of the proposed control method.As shown inFig. 1, there are two primary
mechanisms, (1) short-term passenger demand forecasting and (2) identification of bus service strategies
coupled with the served bus stops in given bus routes. Here the real-time control of demand-responsive



J.-B. Sheu / Fuzzy Sets and Systems 150 (2005) 437–455 441

    time interval k=k+1 

Real-time passenger 
O-D flows Historical data of 

passenger O-D 
patterns 

Short-term passenger demand 
forecasting 

Identification of passenger demand 
patterns 

Determination of bus service 
strategies and segments 

Time-varying 
traffic conditions 

Fig. 1. Framework of the proposed bus operations control method.

bus operations refers to the identification of appropriate bus service strategies each time when a bus is
dispatched to serve passengers in a given route.Therefore, such proposed real-time bus dispatching control
methodology relies mainly on both the mechanisms of real-time passenger demand data collection and
quick response to the changes of corresponding passenger demand patterns for determination of suitable
bus service strategies at that moment. However, the highlight of the proposed method is on the latter,
i.e., the capability of responding to the changes of passenger demand patterns, which can be found in the
corresponding model formulation in the following two subsections. As to the real-time data collection,
it is assumed to be available via other ITS-related technologies, as mentioned in the second assumption.
The details in the fundamentals of the aforementioned two major functions are described in the following
two subsections.

2.1. Short-term passenger demand forecasting

This function serves to forecast the time-varying passenger volume at each bus stop in a given time
interval k of bus headway. To execute the aforementioned short-term passenger demand forecasting,
a time-varying passenger demand variable�i(k) is introduced, and derived using the fundamentals of
exponential smoothing-based prediction approaches, where�i(k) is defined as the time-varying passenger
volume at a given bus stopi in the time intervalk.

It is noteworthy that although there have been a certain amount of short-term forecasting techniques,
e.g., basic and extended time-series prediction methods, filtering techniques, neural network based ap-
proaches and nonparametric regression models, published previously[2,5,7,11,21,22,27–30,36], most
of them aim at traffic state prediction (e.g., speed, volume and occupancy) rather than passenger trip
generation, as conducted in this study. In addition, the analytical results obtained by comparing the
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Fig. 2. Relationship of bus dispatching and time-varying passenger demands.

existing typical techniques may vary in different studies due to different study purposes and evaluation
criteria[20,26,28,34]. Considering the need of this study and the corresponding requirement in terms of the
functionality of passenger demand forecasting performed in the proposed method, a simple exponential
smoothing technique is employed for convenience.

In the proposed demand-responsive bus operations control method,�i(k) should be predicted at the
beginning of the time intervalk, before bus dispatching, and is derived as follows. As shown inFig. 2,
a bus is dispatched at the start of a given time intervalk to serve the passengers at a given bus stopi
at the beginning of the next time intervalk+1. Here�i(k − 1) is the real increased demand volume of
passengers measured from passenger counting systems in a given time intervalk−1; and�i(k−1|k−2) is
the increased demand volume of passengers predicted at a given bus stopi in the given time intervalk−1.
Utilizing the theories of exponential smoothing methodology, the prior prediction of short-term changes
in the passenger volume at the given bus stopi in the time intervalk (�i(k|k − 1)) can be formulated as

�i(k|k − 1) = � × �i(k − 1) + (1 − �)

× �i(k − 1|k − 2), (1)

where� corresponds to a user-specific weight, which is set to be 0.63 in this study. Conveniently,� is here
determined utilizing the SAS statistical analysis package, which searches for the optimal value of� with
the objective of minimizing the sum of squared prediction errors. First, we sum up the real passenger
volume remaining at a given bus stopi at the end of the time intervalk−1�i(k−1|k−1) and the predicted
value�i(k|k − 1), both measured at the beginning of the time intervalk. From this, we then have the
prior prediction of�i(k) at the beginning of the given time intervalk (�i(k|k − 1)) as

�i(k|k − 1) = �i(k − 1|k − 1) + � × �i(k − 1)
+ (1 − �) × �i(k − 1|k − 2), (2)

Herein, the estimate of�i(k|k − 1) is used as one of determinants in the following fuzzy clustering
mechanism to identify appropriate bus dispatching strategies in response to the time-varying passenger
demands in the time intervalk. In addition, the passenger volume remaining at the given bus stopi at the
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end of the time intervalk (�i(k|k)) should be updated as

�i(k|k) = [�i(k − 1|k − 1) + �i(k)] −
[∑

∀�

f �
i (k)

]
, (3)

where�i(k) is the real increased demand volume of passengers, as measured by passenger counting
systems at the given bus stopi in a given time intervalk; and f �

i (k) represents the real volume of
passengers which are served by a given bus using a given bus dispatching strategy� at the given bus stop
i, as measured by on-board electronic fare payment systems in the given time intervalk. It is noteworthy
that the updated value of�i(k|k) is used for recursive estimation in the next time intervalk+1. In addition,
further details referring to testing the model’s validity can be found elsewhere[32].

2.2. Identification of bus service strategies

This mechanism serves to identify appropriate bus service strategies which are implemented to satisfy
both time-varying passenger demands in a given time intervalk. To perform this function in real time,
we propose a fuzzy clustering-based algorithm, which analyzes multiple state variables in relation to
both time-varying passenger demand attributes and traffic conditions. This algorithm then determines a
suitable bus service strategy together with its service segment in the given bus route, in quick response to
the time-varying passenger demands under the present traffic conditions along the given bus route. The
entire architecture of fuzzy-clustering functionality built in this mechanism is shown inFig. 3.

Herein, four well-known bus service strategies are considered as candidates for demand-responsive
bus service strategies, responding to various conditions of passenger demand patterns, as well as traffic
conditions. They are: (1) all-stop service, (2) express service, (3) short-turn service, and (4) zonal service.
Fig. 4graphically characterizes the specific en-route stopping operations of these bus service strategies.
Details relevant to their advantages and limitations can be found in previous studies[9,33,35,37]. In the
proposed method, all-stop service is regarded as a basic bus service strategy which aims for the case that
passengers’O-D trip flows disperse at bus stops on a given bus route, and the proportion of short-distance
passenger trips is relatively high in a given time interval. In contrast, the other strategies differ from the
all-stop service strategy in terms of the specific patterns of passenger trip flows that they mainly serve.
Note that there are no limitations on the number of bus service strategies potentially used in the proposed
method. Other sophisticated bus service strategies such as deadheading service and skip-stop service can
also be involved in further development of a comprehensive demand-responsive bus operations control
system. Nevertheless, this study aims to investigate the feasibility of the proposed approach as well as
the primary procedures of model formulation, and thus only certain bus service strategies are illustrated.

To perform real-time bus service strategy identification, four groups of state variables are specified in
this study, and are defined as follows.

(1) �s∗(k) represents the time-varying degree of passenger trip centralization in a specific short-turn bus
service regions∗ in a given time intervalk, and is denoted by

�s∗(k) =

∑
∀os∗

∑
∀ds∗

⌊
vos∗ ,ds∗ (k)/ los∗ ,ds∗

⌋
∑
∀oT

∑
∀dT

⌊
voT ,dT (k)/ loT ,dT

⌋ , (4)
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Fig. 3. Functional architecture for the identification of bus service strategies.

whereos∗ andds∗ represent a given pair of origin and destination bus stops located in the specific
short-turn service regions∗, andlos∗ ,ds∗ is the geographic distance betweenos∗ andds∗ ; similarly,oT
anddT correspond to a given pair of the origin and destination bus stops served by a given all-stop
bus coded withT in a given bus route, andloT ,dT is the geographic distance betweenoT anddT ;
vos∗ ,ds∗ (k) represents the time-varying passengers’ O-D trip volume betweenos∗ andds∗ , estimated
in a given time intervalk; and similarly,voT ,dT (k) represents the time-varying passengers’ O-D trip
volume between a given pair of the originoT and the destinationdT in the given bus routeT in a given
time intervalk. Herein, the time-varying passengers’ O-D trip volumesvos∗,ds∗(k) andvoT ,dT (k) are
estimated in real time using the previous mechanism of the proposed system, denoted respectively by

vos∗ ,ds∗ (k) = �os∗ (k|k − 1) × pos∗ ,ds∗ (k − 1|k − 1), (5)

voT ,dT (k) = �oT (k|k − 1) × poT ,dT (k − 1|k − 1), (6)

where the prior predictions of passenger demands (�os∗ (k|k−1) and�oT (k|k−1)) at given bus stops
os∗ andoT are predicted using Eq. (2);pos∗ ,ds∗ (k − 1|k − 1) represents the time-varying percentage
of passengers originating at a given bus stopos∗ and getting off at a given bus stopds∗ measured at
time stepk−1; and similarly,poT ,dT (k − 1|k − 1) refers to the time-varying percentage of passen-
gers originating atoT and alighting atdT . Note that as described previously in assumption (3), both
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Fig. 4. Illustration of en-route stopping operations for the specified bus service strategies.

pos∗,ds∗(k − 1|k − 1) andpoT ,dT (k − 1|k − 1) are given, and can be determined employing advanced
APTS-related technologies.

(2) �e∗(k) denotes the time-varying degree of passenger trip centralization in a specific express service
regione∗ in a given time intervalk, and is given by

�e∗(k) =

[ ∑
∀oe∗

∑
∀de∗

voe∗ ,de∗ (k)

] /
ne∗[∑

∀i
�i(k|k − 1)

] /
N

, (7)

whereoe∗ andde∗ represent a given pair of the origin and destination bus stops located in the specific
express service regione* ; ne∗ represents the total number of bus stops in the specific express service
regione∗; N is the total number of bus stops in a given bus route; and similar to the definition of
vos∗ ,ds∗ (k), voe∗ ,de∗ (k) is referred to as the time-varying passengers’ O-D trip volume betweenoe∗
andde∗ , estimated in a given time intervalk.

(3) �z∗(k) represents the time-varying degree of passenger trip centralization in a specific zonal service
regionz∗ in a given time intervalk, and is denoted by

�z∗(k) =

∑
∀oz∗

∑
∀dz∗

voz∗ ,dz∗ (k)∑
∀i

�i(k|k − 1)
, (8)

whereoz∗ anddz∗ represent a given pair of origin and destination bus stops located in the specific
zonal service regionz∗; andvoz∗ ,dz∗ (k) is referred to as time-varying passengers’ O-D trip volume
betweenoz∗ anddz∗ , as predicted in a given time intervalk.
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(4) �(k)denotes the time-varying congestion index, which is used to quantify the effect of road congestion
on the performance of diverse bus service strategies in a given time intervalk. In addition to the variety
of passenger trip patterns, the severity of road traffic congestion along a given bus route is also consid-
ered as a critical factor in determining the performance of real-time bus operations control in the study.
Correspondingly, the bus service strategies determined in real time by the proposed method may vary
with present traffic conditions using the specified traffic state variable. Conveniently employing the
advantages and characteristics ofS-shaped fuzzy membership functions suggested by Zimmermann
[38] and Kandel[17], �(k) is herein formulated as anS-shaped fuzzy membership function with
respect to the aggregate road traffic occupancy in the given bus routeT (ūT (k)), and is denoted by

�(k) = F (ūT (k); a, b, c) = 0, for ūT (k)�a

=2
(

ūT (k)−a
c−a

)2
, for a� ūT (k)< b

=1 − 2
(

ūT (k)−c
c−a

)2
, for b� ūT (k)< c

=1 for ūT (k)�c

(9)

where ūT (k) corresponds to the route-based occupancy value which is determined by averaging
the measured occupancies on the links located in the given bus routeT in the time intervalk; the
parametersa, b, andc (termed the primary values in fuzzy theories), represent the pre-set thresholds
to characterize the degree of road traffic congestion indicated by the linguistic terms light, medium,
and heavy congestion, respectively.

Given the real-time passenger demand data as well as the measured raw traffic data in a given time
intervalk, we then have an (ns + ne + nz + 1)×1 time-varying state variable vector (�(k)) as:

�(k) = Col
[
�s(k),�e(k),�z(k), �(k)

]
, (10)

wherens , ne, andnz are defined as the numbers of bus stopping strategies associated with the types
of short-turning (s for short), express (e for short), and zonal services (z for short), respectively;�s(k),
�e(k), and�z(k) are the (ns × 1), (ne × 1) and (nz × 1) state vectors which involve the groups of state
variables associated with the types of short-turning, express, and zonal services, respectively, and can be
further expressed as

�s(k) = [�s1
(k),�s2

(k), . . . ,�sns
(k)]T, (11)

�e(k) = [�e1
(k),�e2

(k), . . . ,�ene
(k)]T, (12)

�z(k) = [�z1
(k),�z2

(k), . . . ,�znz
(k)]T. (13)

Herein, the elements present in�s(k), �e(k), and�z(k) represent the state variables estimated, respec-
tively, under the bus operational conditions of short-turning (s for short), express (e for short), and zonal
services (z for short) associated with corresponding service regions. Accordingly, all the state variables
involved in�s(k), �e(k), and�z(k) are estimated using Eqs. (4), (7) and (8), respectively.

Utilizing the time-varying state variables, a fuzzy clustering-based algorithm is proposed to determine
if it is necessary to replace the basic all-stop service strategy with another appropriate bus service strat-
egy coupled with specific service regions in response to the time-varying patterns of passengers’ trip
demands and the present traffic conditions along a given bus route in a given time interval. Otherwise, the
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conventional all-stop bus service strategy remains in the given time interval. The following summarizes
the primary steps executed in this algorithm.
Step0: Initialize the vector of clustering centers associated with the specified bus service strategies,

where each clustering center represents the typical measurements of state variables associated with a
given bus service strategy� and a specific service region�∗. Conveniently, the mean vector of�(k),
denoted as follows, is employed as the(ns + ne + nz + 1) × 1 clustering-center vector (�).

� = E[�(m)] = [E[�s(m)], E[�e(m)], E[�z(m)], E[�(m)]]T, (14)

wheremdenotes any given time interval; andE[�s(m)], E[�e(m)], andE[�z(m)] are given by

E[�s(m)] = [
ūs1, ūs2, . . . , ūsns

]T
, (15)

E[�e(m)] = [
ūe1, ūe2, . . . , ūene

]T
, (16)

E[�z(m)] = [
ūz1, ūz2, . . . , ūznz

]T
. (17)

The elements of� are time-invariant, and pre-determined using the historical data, which were collected
under the implementation of specific bus service strategies.
Step1: Calculate the time-varying state variable vector�(k) in a given time intervalk. As mentioned

previously, these time-varying state variables can be readily estimated in real time using the collected
passengers’ trip patterns and traffic data, according to the aforementioned definitions of state variables.
Step2: Compute the fuzzy correlation matrix. In this stage, we attempt to estimate the time-varying

(ns + ne + nz + 1) × (ns + ne + nz + 1) fuzzy correlation matrix (W(k)), which is given by

W(k)
(ns+ne+nz+1)×(ns+ne+nz+1)

=




w�,�(k) W�,s(k)
(1×ns)

W�,e(k)
(1×ne)

W�,z(k)
(1×nz)

Ws,�(k)
(ns×1)

Ws,s(k)
(ns×ns)

Ws,e(k)
(ns×ne)

Ws,z(k)
(ns×nz)

We,�(k)
(ne×1)

We,s(k)
(ne×ns)

We,e(k)
(ne×ne)

We,z(k)
(ne×nz)

Wz,�(k)
(nz×1)

Wz,s(k)
(nz×ns)

Wz,e(k)
(nz×ne)

Wz,z(k)
(nz×nz)




. (18)

Herein, each given element ofW(k) (wg,h(k)) represents the degree of similarity between a given datum
pairg andh, as estimated by the following rules:

IF g = h, THEN wg,h(k) = 1, (19)

ELSE IFwg,h(k) ∈ Row�(W(k)) ∨ Col�(W(k)), THEN

wg,h(k) = wh,g(k) = 1 − 1

�

√√√√ 3∑
j=0

{�g(k − j) − ūh + �(k − j) − E[�(k − j)]}2, (20)

ELSE wg,h(k) = wh,g(k) = 1 − 2
∣∣ūg − ūh

∣∣
�

, (21)

where� is a pre-determined value set for the upper and lower boundaries ofwg,h(k), namely 1 and 0,
respectively, and here it is set to be 15 in the numerical study. It is also worth noting that according to
Eqs. (19)–(21),W(k) turns out to be a symmetrical matrix.
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However, according to the fundamentals of fuzzy clustering techniques[19], the estimated fuzzy
correlation matrixW(k) should be processed through the composition operation such that the following
condition, Eq. (22), holds for further use in sample clustering.

W̃(k) ◦ W̃(k) = W̃(k), (22)

whereW̃(k) represents the processed fuzzy correlation matrix ofW(k). To generateW̃(k), we conduct a
routine of the max-min composition operation with respect to each given element ofW(k) (e.g.,wg,h(k))
as:

W(k) ◦ W(k) = ns+ne+nz+1
max
t=1

{min[wg,t (k), wt,h(k)]} (23)

until the condition shown in Eq. (22) is satisfied. Then, we have the processed fuzzy correlation matrix
W̃(k), which is represented mathematically by

W̃(k)
(ns+ne+nz+1)×(ns+ne+nz+1)

=




w̃�,�(k) W̃�,s(k)
(1×ns)

W̃�,e(k)
(1×ne)

W̃�,z(k)
(1×nz)

W̃s,�(k)
(ns×1)

W̃s,s(k)
(ns×ns)

W̃s,e(k)
(ns×ne)

W̃s,z(k)
(ns×nz)

W̃e,�(k)
(ne×1)

W̃e,s(k)
(ne×ns)

W̃e,e(k)
(ne×ne)

W̃e,z(k)
(ne×nz)

W̃z,�(k)
(nz×1)

W̃z,s(k)
(nz×ns)

W̃z,e(k)
(nz×ne)

W̃z,z(k)
(nz×nz)




. (24)

Step3: Identification of appropriate bus service strategies by the following truncation rules. Letw̃g,h(k)

be a given element of the processed fuzzy correlation matrixW̃(k), and be truncated as

w̃g,h(k) = 1, if w̃g,h(k)��1,

= 0, otherwise,
(25)

where�1 is a pre-determined threshold, which is bounded by the range of 0 and 1. Then, comparing
the first column vector (i.e.,Col1(W̃(k))) with the other column vectors of̃W(k), a given bus service
strategy� associated with a specific service region�∗ is identified for serving passengers in the given time
intervalk in case ofCol1(W̃(k)) = Col�∗(W̃(k)); otherwise, an all-stop bus is dispatched in the given
time intervalk.

Note that the aforementioned threshold�1 appears to influence the result of fuzzy clustering in the
proposed method, and the effect caused herein by�1 may be similar to that caused by a fuzzifier, as
discussed in Hoppner et al.[14]. The corresponding effect of�1 on the identification of bus service
strategies is illustrated inFig. 5, which implies that different values of�1 may result in different sets of
bus service strategies. Theoretically, the greater�1 is, the fasterw̃g,h(k) becomes 0, which may result in
more groups. One extreme case is that the all-stop bus service strategy may remain to be implemented in
any time interval if we choose�1 to be 1. It is also noteworthy that the identification of multiple bus service
strategies is allowed in the proposed method when more than one strategy is identified simultaneously
in a given time interval, and thus multiple buses associated with different service strategies and service
regions can be dispatched in the given time interval. Nevertheless, such a multi-bus dispatching strategy
is not absolutely needed in all practical operational cases because the limited operational resources (e.g.,
available bus drivers and bus fleet size) and induced operational costs should also be considered, as in
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Fig. 5. Illustration of the effect of�1 on the determination of bus service strategies.

the following numerical study. It is therefore suggested that�1 should be carefully determined using
historical data before being used for real-world applications, and here is preset to be 0.96, according to
our previous calibration results[32]. Related discussions on the specification of fuzzifiers can also be
found in the previous literature[14].

3. Illustrative application

To demonstrate the potential advantages of the proposed methodology for the operations of demand-
responsive bus operations control, the model was applied to a hypothetical but realistic case in which
the real passenger demand data collected from the Taipei City bus route 255 was used to evaluate the
performance of the proposed approach in comparison with the existing all-stop bus service strategy
implemented in the given bus route.

Bus route 255 primarily serves the community trips along one radial corridor of Taipei, with one end
in the CBD during peak hours, and with a total route length of 30.5 km. The total number of stops on the
route is 50, as illustrated inFig. 6, where stop 25 serves as a transfer stop for the connection with the
metropolitan mass transit system. The existing dispatching frequency is one bus per 30 min. To generate
a real database used for the numerical study, the 30-min passenger volume profiles in morning peak hours
were collected from 06:00 am to 08:00 am over one month at the study site.

The proposed algorithm was then utilized to determine the bus service strategies implemented in the
specific four sequential test intervals, namely 06:00–06:30, 06:30–07:00, 07:00–07:30, and 07:30–08:00,
in response to the time-varying passenger demand patterns. Note that herein, the processed time-varying
passenger volume at each bus stop in a given test time interval is directly used as the data basis for the
determination of both bus service strategies and the associated bus stops served. Corresponding model
testing for the short-term passenger demand forecasting executed in the first mechanism of the proposed
algorithm was completed previous to this study[32], and thus is not presented here.

To quantitatively assess the performance of the proposed method with respect to the improvement of
bus operations for a given bus service route, we compared the results obtained from the proposed approach
and from the original all-stop service strategy utilizing three proposed measures, defined as follows:
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Fig. 6. Illustration of the Taipei City bus route 255 in the study.

(1) The time-varying transportation cost for routing with the bus service strategy� in a specific service
region�∗ in a given time intervalk (T C�∗(k)), which is denoted by

T C�∗(k) = t1 × L�∗(k), (26)

whereL�∗(k) is the total distance for a given bus routing with a given bus service strategy�, in a specific
service region�∗ and in a given time intervalk; andt1 is the unit cost for transportation, as determined
according to statistics provided by the municipal bus administration of Taipei.

(2) The total monetary value of passengers’ in-vehicle travel time under the service associated with
a given bus routing with service strategy� and a specific service region�∗ in a given time intervalk
(PC�∗(k)), as given by

PC�∗(k) = t2 ×
∑
∀o�∗

∑
∀d�∗

vo�∗,d�∗ (k) ×
lo�∗,d�∗
	�∗(k)

, (27)

wherevo�∗ ,d�∗ (k) represents the time-varying passenger trip volume traveling from a given bus stopo�∗ to
a given bus stopd�∗ served by a bus associated with a given bus service strategy� in a give time intervalk;
lo�∗ ,d�∗ (k) is the geographical distance between bus stopso�∗ andd�∗ ; 	�∗(k) is the average running speed
of the bus associated with the given bus service strategy� in the specific service region�∗; andt2 is herein
defined as the average monetary value of passengers’ in-vehicle travel time in the unit of US dollars per
hour. Conveniently,t2 is pre-determined using the analytical results of a related study[4] for the case of
Taiwan. It is worth noting thatt2 may vary with the study site, and is adjustable in consideration of the
distinction of passengers’ perception of time value in different countries.
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(3) The total monetary value of passengers’ waiting time under the service provided by a given bus
with service strategy� in the specific service region�∗ in time intervalk (WC�∗(k)), which is given by

WC�∗(k) = t3 ×



∑
∀o�

[

 × �o�∗ (k|k) + l�,o�∗

	∗�(k)
×f �∗

o�∗ (k) +
∑
∀�o�∗

ε × f
�∗
�o�∗

(k)

]
 , (28)

whereo�∗ represents a given bus stop associated with a given bus service strategy� in the specific service
region�∗; similarly, �o�∗ also belongs to the set of bus stops associated with the given bus service strategy
� and the specific service region�∗, but is located beforeo�∗ ; �o�∗ (k|k) is the time-varying passenger
volume at the given bus stopo�∗ in a given time intervalk; l�,o�∗ represents the geographical distance

from the beginning of the given bus route (�) to the bus stopo�∗ ; f �∗
o�∗ (k) andf �∗

�o�∗
(k) represent the real

passenger volumes which are served by a given bus using a given service strategy� at bus stopso�∗ and
�o�∗ in a given time intervalk, respectively;
 is the length of a given time interval;ε is defined as the
average riding time;t3 is the average monetary value of passengers’waiting time in the unit of US dollars
per hour, and for the case of Taiwan, is herein set to be the triple oft2, according to the above-cited
study[4]. Moreover, the numerical results yielded by other strategies are also used to demonstrate the
comparative advantages of the bus service strategies determined by the proposed algorithm.

To illustrate the applicability of the proposed method in real-time demand-responsive bus dispatching
control, we summarized the main numerical results yielded from the proposed fuzzy clustering-based
algorithm in the process of identifying an appropriate bus service strategy for the first test interval (i.e.,
06:00–06:30). According to the proposed fuzzy clustering algorithm mentioned above, the vector of
clustering centers associated with the specified three bus service strategies, including short-turn, express
and zonal service strategies, was generated in the initialization step, as can be seen inTable 1. Then,
in Step 1, the time-varying state variable vector�(k) in the given time interval was estimated using
the collected passengers’ trip patterns and traffic data. Using the results obtained in the previous steps,
the estimated fuzzy correlation matrix̃W(k), as presented inTable 2, was measured in Step 2.Table 3
summarizes the output of the strategy identification in the current test interval using the truncation rule
mentioned in Step 3 of the proposed algorithm. Accordingly, the short-turn strategy is identified as the
suitable bus service strategy for the first test interval.

The comparison results according to the aforementioned criteria are summarized inTable 4, where the
strategies identified by the proposed method are highlighted in bold. The generalizations obtained from
the numerical results are itemized as follows.

Table 1
Estimated clustering centers for identification of bus service strategies

Type of strategy state variable Short-turn Express Zonal

�s∗(k) 0.67 0.25 0.28
�e∗(k) 0.17 0.89 0.36
�z∗(k) 0.23 0.42 0.73
�(k) 0.13 0.78 0.44
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Table 2
Estimated time-varying fuzzy correlation matrix̃W(k)

Data sample Short-turn Express Zonal

Data sample 1 0.968 0.653 0.274
Short-turn 0.968 1 0.217 0.468
Express 0.653 0.217 1 0.639
Zonal 0.274 0.468 0.639 1

Table 3
Identification results for the first test interval 06:00-06:30

Data sample Short-turn Express Zonal

Data sample 1 1 0 0
Short-turn 1 1 0 0
Express 0 0 1 0
Zonal 0 0 0 1

1. Overall, the numerical results shown inTable 4reveal that there would be significant improvement
in the performance of bus routing by implementing the proposed real-time demand-responsive bus
dispatching approach in comparison with the system performance of the existing all-stop bus service
strategy. According to the results with respect to the average performance during the four-interval
test period, the existing bus operations can be improved by 16.65% by implementing the proposed
bus service strategies, and herein, the average passengers’ waiting time is particularly improved up
to 23.65%, which is a significant improvement for customers. In addition, the supply-oriented trans-
portation cost is reduced by 19.45%, which extends the potential benefit of the proposed method to
the supply side, in addition to the demand side.

2. The identified strategies appear superior to the other un-identified bus service strategies in their capa-
bility of responding to diverse passenger demand patterns during the test period. This can be seen in
that the aggregate cost-based measure associated with the identified strategy is less than that associated
with any other strategies in any given time interval. Such a generalization also implies the validity
of the proposed method in the identification of appropriate bus strategies in response to time-varying
patterns of passenger demands.

3. The measurements shown inTable 4may also be helpful to analyze the relative performance of the
existing bus dispatching operations. For example, there is an interesting finding which can be seen
in the results ofTable 4that, under certain patterns of passengers’ trip volumes, the existing all-stop
bus service strategy proves to be more suitable than some specific strategies, although its overall
performance may not satisfy the peak-hour passenger demands for the criterion of waiting time.

4. Concluding remarks

This paper has presented an advanced demand-responsive bus operations control approach in response
to the variety of both passenger demands and road traffic conditions. Using the proposed short-term
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Table 4
Comparison of system performance

Criteria strategies T C�∗(k) PC�∗(k) WC�∗(k) Aggregate

k = 1 (06:00 am–06:30 am)
All-stop 49.41 4.25 355.88 409.54
Express 36.60 3.14 344.09 383.83
Short-turn 40.26 3.36 287.15 330.77
Zonal 42.09 3.55 346.94 392.58
k = 2 (06:30 am–07:00 am)
All-stop 49.41 4.92 402.62 456.95
Express 36.60 2.83 291.89 331.32
Short-turn 40.26 3.55 281.71 325.52
Zonal 42.09 3.78 323.09 368.96
k = 3 (07:00 am–07:30 am)

All-stop 49.41 3.97 365.06 418.44
Express 36.60 3.27 362.04 401.91
Short-turn 40.26 3.17 444.11 487.54
Zonal 42.09 3.36 355.49 400.94
k = 4 (07:30 am–08:00 am)

All-stop 49.41 4.61 389.84 443.86
Express 36.60 3.30 344.01 383.91
Short-turn 40.26 4.49 389.21 433.96
Zonal 42.09 3.33 347.19 392.61
Average performance (identified strategy vs. all-stop strategy)

Identified strategy 39.80 3.39 317.09 360.28
All-stop strategy 49.41 4.44 378.35 432.20
Relative improvement (%) 19.45 23.65 16.19 16.65

Note: the regions highlighted in bold represent the strategies suggested in given time intervals.

passenger demand forecasting model coupled with advancedAPTS-related technologies, the time-varying
patterns of passengers’ O-D trip volumes are recognized, and then appropriate bus service strategies
associated with specific service regions are identified using the proposed fuzzy clustering based algorithm
in response to the time-varying passenger demands.

Our numerical study, using the processed data of real passenger demands collected from one city bus
route in Taipei, demonstrates the potential advantages of the proposed method over both the existing
all-stop bus service strategy and the other specific bus service strategies. Utilizing three specified criteria
measures, including one supply-based and two demand-based criteria, the comparison results reveal the
applicability of the proposed method for the use of real-time demand-responsive bus operations control.

Nevertheless, there is potential for improving the performance of the proposed method by adding more
elaborate bus service strategies such as skip-stop and limited-stop service strategies to the possible bus
service strategies in response to the variety of passenger demands. Moreover, more elaborate strategies,
such as the adjustment of dispatching headways, can also be implemented for quick response to a growing
variety of passengers’ trip volumes under conditions of complicated urban transportation networks. Based
on the present results, our further research will explore the possibility of integrating the time-varying
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passengers’ demands on multiple bus routes in a given urban area to satisfy the systematic optimization
of network-wide bus routing by extending the proposed methodology. Clearly, the acquisition of valid
data for model testing and evaluation will be significant for our further research.

More importantly, it is expected that this study can help to demonstrate the applicability of the real-
time data collected from advancedAPTS-related technologies, and stimulate more research on operational
models in the APTS environment. Furthermore, the integration of the proposed method with other public
transportation systems, including mass transit systems, also warrants further research in order to improve
the competitiveness of urban public transportation systems.
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