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This paper addresses the covariance control problem with decay rate for a class of nonlinear

discrete stochastic systems using the Takagi-Sugeno (T-S) fuzzy models. A methodology

is developed to find the discrete fuzzy controllers for achieving individual state variance

constraints of discrete T-S fuzzy stochastic models. The approach developed in this paper is

based on the concept of parallel distributed compensation (PDC) and covariance control.

For each rule of the discrete T-S fuzzy model, it shows how to parameterize the static

linear state feedback control gains to achieve a common covariance matrix and decay

rate for each subsystem. Finally, a numerical example is provided to verify the effects of the

proposed design method.

1. Introduction

Tanaka and Sugeno (1992) proposed a theorem on the

stability analysis for T-S fuzzy models, which are

described by fuzzy IF-THEN rules. For a nonlinear

system that is successfully transformed to a T-S fuzzy

model (Takagi and Sugeno 1985, Tanaka and Sugeno

1992) the stability of an overall nonlinear system still

cannot be guaranteed even if the subsystem of the T-S

fuzzy model is stable. To overcome this problem,

Wang et al. (1996) proposed the concept of PDC as

a design framework and also modified the Tanaka’s

stability theorem to include the effect of control. The

goal of PDC concept is to design linear feedback gain

for each local linear model, and let the overall system

input be blended by these linear feedback gains. This

method requires finding a common positive definite

matrix P such that the proposed sufficient stability

conditions are satisfied for every IF-THEN rule. The

linear matrix inequality (LMI) (Boyd et al. 1994)

method is a powerful tool in finding this common

positive definite matrix P. Thus, many approaches are

developed to find P via the LMI method (Tanaka and

Wang 2001). Different from the LMI methodology,

the authors have developed a T-S fuzzy controller

design approach (Chang and Shing 2003, 2004, Chang

2001, 2003), which is based on the generalised inverse

theory (Rao and Mitra 1971, Campbell and Meyer

1991).
For the T-S fuzzy stochastic models, a discrete state

feedback fuzzy controller is developed in this paper by

using the covariance control methodology (Hsien and

Skelton 1990, Chung and Chang 1990, 1991, 1992,

Fujioka and Hara 1995). In the covariance control

theory, the characterisation of assignable covariance

and the parametrization of controllers that assign

these covariance matrices are presented. This type of

control action has many promising features through

control of the state covariance. Therefore, it would be

to our great advantage to specify a state covariance

matrix. According to the different requirements on the

system robustness and performance, covariance control

technique can be used to design a controller such that

the state covariance of the closed-loop system is

equal to a specified covariance matrix. The covariance

control methodology has been applied to deal with the

controller design problems for the linear and bilinear

systems (Hsien and Skelton 1990, Chung and Chang

1990, 1991, 1992, Fujioka and Hara 1995).
In order to achieve individual state variance

constraints, the fuzzy covariance control methodology*Corresponding author. Email: wjchang@mail.ntou.edu.tw
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is developed in this paper by designing a state feedback
gain for each rule of the fuzzy controller. The individual
state variance constrained design problem is difficult to
solve for the LMI-based design method. Since these
state feedback gains cannot be constructed to a standard
LMI form, this paper derives common state covariance
matrix assignment technique to find the state feedback
fuzzy controller for T-S type fuzzy stochastic models.
The first step in the proposed approach is assigning
a common state covariance matrix to replace the
common positive definite matrix P for the stability con-
ditions. Subject to this specified common state covar-
iance matrix, the linear feedback control gains are
solved by using the theory of generalised inverse. In
addition to the specified common state covariance
matrix, this paper also considers the decay rate for the
speed of response. Applying the proposed design
approach, the designers can directly assign the
common state covariance matrix and decay rate,
simultaneously.
This paper is organised as follows. Section 2 describes

the discrete T-S fuzzy model and its stability conditions.
In section 3, a fuzzy covariance controller design
method is developed to find state feedback gains for
the discrete fuzzy controller which can drive the
closed-loop system to achieve the specified common
state covariance matrix and decay rate. A numerical
example is given in section 4. Finally, a conclusion is
provided in section 5.

2. Descriptions of discrete T-S fuzzy

stochastic models

Most physical systems can be expressed in some forms
of mathematical models, or as an aggregation of a set
of mathematical models. Based on this phenomenon,
Takagi and Sugeno (1985) developed a T-S fuzzy
model to present a class of nonlinear systems. The
state responses can be approximated to the original non-
linear system via the T-S fuzzy modelling. The T-S fuzzy
model of a discrete nonlinear stochastic system is
described by fuzzy IF-THEN rules, where the i-th rule
is of the following form:
Rulei:

IF z1ðkÞ is Mi1 . . . and znx ðkÞ is Minx ,

THEN xðkþ 1Þ ¼ AixðkÞ þ BiuðkÞ þDivðkÞ, ð1Þ

where xðkÞ 2 Rn� is the state vector, uðkÞ 2 Rnu is the
control input vector, vðkÞ 2 Rnu is a zero-mean white
noise with the covariance V>0, and v(k) and x(0)
are independent; i ¼ 1,2, . . . , r and r is the number
of IF-THEN rules. The Mij are fuzzy sets, (Ai, Bi, Di)

is the i-th subsytem of the fuzzy model (1), where
Ai 2 Rnx�nx , Bi 2 Rnx�nu and Di 2 Rnx�nv . Besides, z1(k),
z2(k), . . . , znxðkÞ are the premise variables of the fuzzy
model and they are the functions of state variables.

For the fuzzy model (1), the overall state equation
can be represented as

xðkþ 1Þ ¼

Pr
i¼1 !iðzðkÞÞfAixðkÞ þ BiuðkÞ þDivðkÞgPr

i¼1 !iðzðkÞÞ
ð2Þ

where

!iðzðkÞÞ ¼
Ynx
j¼1

MijðzjðkÞÞ: ð3Þ

and zðkÞ ¼ ½ z1ðkÞ, z2ðkÞ, . . . , znxðkÞ� . In addition,
Mij (zj(k)) is the grade of membership of zj(k) in Mij;
!i(z(k)) is the weight of the i-th rule.

Using the concept of PDC, a fuzzy control law can be
developed for the stabilisation of a class of nonlinear
stochastic systems that is represented by the T-S fuzzy
model (1). The idea of PDC approach is to design the
feedback gains to compensate each rule in the T-S
fuzzy models. In other words, one can use linear control
design techniques to design these linear controllers
for each subsystem. Hence, a nonlinear controller
can be blended by linear controllers and it shares the
same fuzzy sets with the discrete T-S fuzzy model (1).
The state feedback T-S type fuzzy controller formula
is represented as follows:

Rulei:

IF z1ðkÞ is Mij . . . and znxðkÞ is Minx ,

THEN uðkÞ ¼ GixðkÞ, ð4Þ

where i¼ 1, 2, . . . , r and r is the number of IF-THEN
rules. Hence, the state feedback T-S fuzzy controller
is of the following form:

uðkÞ ¼

Pr
i¼1 !iðzðkÞÞGixðkÞPr

i¼1 !iðzðkÞÞ
, ð5Þ

where u(k) is the nonlinear feedback controller.
Substituting (5) into (2), one obtains

xðkþ 1Þ ¼
Xr

i¼1

Xr

j¼1

hiðzðkÞÞhjðzðkÞÞ½Ai þ BiGj�xðkÞ

þ
Xr

i¼1

hiðzðkÞÞDivðkÞ, ð6Þ

where

hiðzðkÞÞ ¼
!iðzðkÞÞ

�r
i¼1!iðzðkÞÞ

: ð7Þ
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The hi(z(k)) can be regarded as the normalised weight of
each IF-THEN rule. Rewriting (6), one has

xðkþ 1Þ ¼
Xr

i¼1

hiðzðkÞÞhiðzðkÞÞðAi þ BiGiÞxðkÞ

þ
Xr

i¼1

hiðzðkÞÞDivðkÞ

þ 2
X
i<j

hiðzðkÞÞhjðzðkÞÞRijxðkÞ, ð8Þ

where

Rij ¼
ðAi þ BiGjÞ þ ðAi þ BjGiÞ

2
, i < j � r: ð9Þ

Note that Rij denotes the influence item between each
other rule. From Theorem 8 of Tanaka and Wang
(2001), the equilibrium of closed-loop fuzzy system (8)
is asymptotically stable in the large if there exists a
common positive definite matrix P satisfying

ðAi þ BiGiÞ
TPðAi þ BiGiÞ � P < 0, i ¼ 1, 2, . . . , r:

ð10Þ

R T
ij PRij � P � 0, i < j � r: ð11Þ

Referring to the results of Konstantinov et al. (1986),
one can find that the stochastic system is asymptotically
stable if and only if the closed-loop state matrix is
asymptotically stable. For satisfying stability conditions
(10) and (11), one must choose appropriate matrices
P and Gi (i¼ 1, 2, . . . , r), simultaneously. Most scholars
utilise the LMI method to find the common positive
definite matrix P and linear feedback controllers Gi

for each rule. In this paper, we first assign a common
state covariance matrix to replace the common positive
definite matrix P. To carry on, the generalised inverse
theory is used to develop a methodology to find linear
feedback gains Gi.
If (AiþBiGi) is a stable matrix, the steady state

covariance matrix Xi ðXi ¼ limk!1 E½xðkÞxT ðkÞ�Þ of the
subsystem has the following form (Kwakernaak and
Sivan 1972).

X i ¼ XT
i > 0, ð12Þ

where E denotes the expectation operator. Note that
Xi is the unique solution of the following Lyapunov
equation for each rule.

Xi ¼ ðAi þBiGiÞXiðAi þBiGiÞ
T
þDiVD

T
i , i ¼ 1, 2, . . . , r:

ð13Þ

Here, we define Xi¼X, i¼ 1, 2, . . . , r, where X is called
the common state covariance matrix for all rules.

According to the common state covariance matrix X,
the state variance constraints can be introduced as
follows.

2.1 Individual state variance constraints

Let �‘, ‘ ¼ 1,2, . . . , nx, denote the root mean squared
(RMS) constraints for the variances of individual
system states. The purpose of the state variance con-
strained design problem is to find feedback controllers
such that the following individual state variance

lim
k!1

E½x2‘ðkÞ� ¼ ½X�‘‘ � �2
‘ , ‘ ¼ 1, 2, . . . , nx ð14Þ

where ½��‘‘ denotes the ‘th diagonal element of matrix [ � ]
and X is the common state covariance matrix for all
rules. Using the common state covariance matrix X to
replace common positive define matrix P, the stability
conditions (10) and (11) result in the following lemma.

Lemma 1: The equilibrium of closed-loop fuzzy
system (8) is asymptotically stable in the main if there
exists a common state covariance matrix X¼XT>0
satisfying

X ¼ ðAi þ BiGiÞXðAi þ BiGiÞ
T
þDiVD

T
i , i ¼ 1, 2, . . . , r:

ð15Þ

RijXR
T
ij � X � 0, i < j � r: ð16Þ

If there is a common state covariance matrix X

satisfying (15) and (16), then the nonlinear stochastic
system (8) is asymptotically stable in the main. The
problem considered in this paper can be described as
follows. When we assign a common state covariance
matrix X of all subsystems in (8), the purpose of this
paper is to find the linear feedback gains Gi such that
(15) and (16) are satisfied.

In addition to considering the individual state
variance constraints, we consider the control perfor-
mance for the speed of response. The speed of response
is related to decay rate, i.e. the large Lyapunov
exponent. Thus, we discuss the stability with decay
rate and analyse the stability conditions of T-S fuzzy
models by the following lemma.

Lemma 2 (Tanaka and Wang 2001): The equilibrium
of closed-loop fuzzy system (8) is asymptotically stable
in the main with the decay rate � if there exists a
common state covariance matrix Xd ¼ XT

d > 0 satisfying

�2Xd ¼ ðAi þ BiGiÞXdðAi þ BiGiÞ
T
þDiVD

T
i ,

i ¼ 1, 2, . . . , r:
ð17Þ

RijXdR
T
ij � �2Xd � 0, i < j � r, ð18Þ

where � � 1.
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In Lemma 2, new stability conditions are provided
to instead of (15) and (16) for the decay rate design
problem. The method of finding the linear feedback
gains Gi for the stability conditions of Lemma 1 and
Lemma 2 is presented in the next section.

3. Fuzzy controller design for specified common

state covariance matrix and decay rate

To design a stable state feedback fuzzy controller with
specified common state covariance matrix and decay
rate for all rules, it is necessary to find suitable matrices
Gi and Xd to satisfy stability conditions (17) and (18).
At first, we assign a common state covariance matrix
Xd to conform to the needs of individual state variance
constraints (14). Then, the linear feedback gains Gi

can be solved from equation (17). In order to guarantee
the stability for overall closed-loop system, we need to
check whether (18) is satisfied. If the stability condition
(18) is not satisfied, one needs to reassign the common
state covariance matrix Xd to obtain a feasible fuzzy
controller. In the following theorem, we first solve the
linear feedback control gain for each rule with no
decay rate.

Theorem 1: Given a common state covariance matrix
X¼XT>0 for the discrete T-S fuzzy system (8), there
exists state feedback gains Gi such that X solves (15)
if and only if

X ¼ ½ðI� BiB
þ
i ÞAiXþ BiB

þ
i ẐZi�X

�1

� ½ðI� BiB
þ
i ÞAiXþ BiB

þ
i ẐZi�

T
þDiVD

T
i , ð19Þ

where ẐZi is given to satisfy (19).
Moreover, if the condition (19) is satisfied then the

feedback gains of each rule are as follows:

Gi ¼ Bþ
i ðẐZi � AiXÞX

�1 þ ðI� Bþ
i BiÞZi, ð20Þ

where Zi is an arbitrary matrix of dimension nx� nx.

Proof: Suppose there exists a common state covariance
matrix X>0 satisfying the Lyapunov equation (15),
then the equation (15) can be rewritten as follows:

X ¼ AiXA
T
i � SiX

�1ST
i þDiVD

T
i þ LiL

T
i ð21Þ

where

Li ¼ ðBiGi þ SiX
�1Þ!: ð22Þ

Si ¼ AiX: ð23Þ

X ¼ !TT : ð24Þ

Necessity:
By supposition, the feedback gains Gi of each rule
satisfying (22) exists, and we expand (22) as

BiGi! ¼ Li � SiX
�1!: ð25Þ

According to (25), we can get the solution Gi by the
generalized inverse technique (Rao and Mitra 1971,
Campbell and Meyer 1991), which is guaranteed if and
only if

ðI� BiB
þ
i ÞðLi � Si!

�T Þ ¼ 0: ð26Þ

All solutions Gi are given by (Rao and Mitra 1971,
Campbell and Meyer 1991)

Gi ¼ Bþ
i ðLi!

�1 � SiX
�1Þ þ ðI� Bþ

i BiÞZi, ð27Þ

where Zi is an arbitrary matrix of dimension nx� nx.
Solving (26) for Li yields

Li ¼ ðI� BiB
þ
i ÞSi!

�T þ BiB
þ
i
~ZZi, ð28Þ

where ~ZZi is arbitrary. Substituting (28) into (21) gives

X¼AiXA
T
i þDiVD

T
i �SiX

�1ST
i

þ

h
ðI�BiB

þ
i ÞSi þBiB

þ
i ẐZi

i
X�1 ðI�BiB

þ
i ÞSi þBiB

þ
i ẐZi

h iT
,

ð29Þ

where ẐZi � ~ZZi!
T is arbitrary.

Substituting (28) into (27) yields

Gi ¼ Bþ
i ðẐZi � SiÞX

�1 þ ðI� Bþ
i BiÞZi: ð30Þ

This completes the necessity.

Sufficiency:
Substituting (20) into (21), we can get

Li ¼ ½ðI� BiB
þ
i ÞSi þ BiB

þ
i ẐZi�!

�T : ð31Þ

Putting (31) into (21) yields

X�AiXA
T
i þSiX

�1ST
i �DiVD

T
i

¼ ½ðI�BiB
þ
i ÞSiþBiB

þ
i ẐZi�X

�1½ðI�BiB
þ
i ÞSiþBiB

þ
i ẐZi�

T :

ð32Þ

Note that equation (32) equals to equation (19). Since
(19) holds, equation (21) can be solved by Gi given in
(20). The sufficiency of this proof is completed.

Based on the above theorem, one can find that if
condition (19) holds, then the feedback gains Gi can
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be obtained from (20). Theorem 1 considered the linear
feedback gain design for each rule of the discrete T-S
fuzzy controllers. The theorem is derived based on the
stability conditions of Lemma 1, which does not deal
with the decay rate constraint. In the following theorem,
the common state covariance matrix and decay rate
assignment problem is considered. It is shown that the
development of Theorem 2 is based on the stability
conditions of Lemma 2.

Theorem 2: Given a common state covariance matrix
Xd ¼ XT

d > 0 and a decay rate �(|�|<1) for all rules
of the discrete T-S fuzzy system (8), there exists feedback
gains Gi such that Xd and � solve (17) if and only if

�2Xd ¼ ½ðI� BiB
þ
i ÞAiXd þ BiB

þ
i ŶYi�X

�1
d ½ðI� BiB

þ
i ÞAiXd

þ BiB
þ
i ŶYi�

T
þDiVD

T
i , ð33Þ

where ŶYi is given to satisfy (33).
Moreover, if the condition (33) is satisfied then the

feedback gains of each rule are given as follows:

Gi ¼ Bþ
i ðŶYi � AiXd ÞX

�1
d þ ðI� Bþ

i BiÞYi, ð34Þ

where Yi is an arbitrary matrix of dimension nx� nx.

Proof: Comparing the stability condition (17) of
Lemma 2 with the stability condition (15) of Lemma
1, the proof of this theorem can be obtained from the
proof of Theorem 1 by using Xd to replace X and
using �2Xd to replace the left-hand side of the
equation (21).
Theorem 2 gives the conditions and solutions for the

feedback gains of discrete T-S type fuzzy controllers,
which can simultaneously achieve the specified
common state covariance matrix Xd and the decay
rate �. If the common state covariance matrix Xd and
the decay rate � can be appropriately assigned to satisfy
condition (33), then the linear feedback gains Gi can be
obtained from (34) for each rule. The main contribution
of the proposed approach is that one can design
the discrete T-S fuzzy controller to achieve the system
performance constraints in addition to guaranteeing
the stability of the nonlinear stochastic systems. The
performance constraints include individual state
variance constraints and speed response constraints.
To demonstrate the usefulness of the proposed design
approach, a simple design procedure is provided as
follows. It can be used to find suitable decay rate
� and common state covariance matrix Xd for the
fuzzy covariance controllers.

Step 1: Assign the diagonal elements of common state
covariance matrix Xd subject to the state variance
constraints (14).

Step 2: Choose �¼ ", where "<1 is a small positive

real number.
Step 3: Substitute � and the diagonal elements of Xd

into (33) to solve the off-diagonal elements of Xd and ŶYi.
Step 4: If the solution of Step 3 is feasible, then go

the Step 6, otherwise adjust �¼ �þ " and go to Step 5.
Step 5: If �>1, then go to Step 1 to reassign the diag-

onal elements of common state covariance matrix Xd;

otherwise, go to Step 3 to solve the feasible solutions

of Xd and ŶYi.
Step 6: Calculate the feedback gains Gi for each rule

from equation (34).
Step 7: Substituting �, Xd and Gi into (18) to check

whether (18) is satisfied. If (18) is not satisfied, then to

go to Step 1 to reassign the common state covariance

matrix Xd.

The flowchart of the above design procedure is shown

in figure 1. The proposed fuzzy controller design

procedure demonstrates the way to choose � and Xd

for satisfying condition (33). Though the present

design procedure needs fewer trial-and-error processes

to pick out parameters � and Xd, it allows designers to

directly assign appropriate decay rate � and common

state covariance matrix Xd such that the speed response

Yes

Calculate the feedback
gains iG

εη =

Is the solution
feasible?

The end

Yes

Assign the diagonal
elements of dX

   Solve the off-diagonal
elements of       and

from (33)
iŶdX

Yes

No

εηη +=

Start

1η >

Check whether (18)
 is satisfied?

No

No

Figure 1. A flowchart of design procedure.
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constraints and individual state variance constraints
are achieved. In the next section, a simple numerical
example is provided to verify the effect of the proposed
design method.

4. An example

In this section, a nonlinear discrete stochastic system is
considered as follows:

x1ðkþ 1Þ ¼ 0:25x2ðkÞ þ 0:5vðkÞ ð35aÞ

x2ðkþ 1Þ ¼ 0:25x2ðkÞ þ
1ffiffiffi
5

p x3ðkÞ þ 0:5vðkÞ ð35bÞ

x3ðkþ 1Þ ¼ 0:8 sin x1ðkÞ þ 0:12x2ðkÞ

þ 0:3x3ðkÞ cos x1ðkÞ �
uðkÞ

1� 0:01 cos x1ðkÞ
:

ð35cÞ

It is assumed that the range of x1(k) is x1ðkÞ 2
ð��=2,�=2Þ. First, we need to transfer the original
nonlinear stochastic system (35) to a T-S type fuzzy
model. The detail of the T-S fuzzy modelling process
can be referred to Chapter 2 of Tanaka and Wang
(2001). In this example, the membership functions are
simply defined by using triangular type functions. The
number of fuzzy rules influences the approximation of
the original nonlinear systems. Indeed, the computa-
tional complexity is increased when the rules increase.
The choice of the rule number and membership function
shape do not influence the proposed fuzzy controller
design process and the stability conditions. To minimise
the design effort and complexity, we try to use as few
rules as possible. Hence, we approximate the nonlinear
system (35) by the following two-rule T-S fuzzy model.

Rule1:

IF x1ðkÞ is about 0

THEN xðkþ 1Þ ¼ A1xðkÞ þ B1uðkÞ þD1vðkÞ, ð36aÞ

Rule2:

IF x1ðkÞ is about� �=2 ðjx1j < �=2Þ

THEN xðkþ 1Þ ¼ A2xðkÞ þ B2uðkÞ þD2vðkÞ: ð36bÞ

where

A1 ¼

0 0:25 0

0 0:25 1=
ffiffiffi
5

p

0:8 0:12 0:3

2
64

3
75, B1 ¼

0

0

�1:0101

2
64

3
75,

D1 ¼

0:5

0:5

0

2
64

3
75, ð37aÞ

A2 ¼

0 0:25 0

0 0:25 1=
ffiffiffi
5

p

1:6=� 0:12 0:3�

2
64

3
75, B2 ¼

0

0

�1=ð1� 0:01�Þ

2
64

3
75,

D2 ¼

0:5

0:5

0

2
64

3
75, ð37bÞ

and � � cosð88�Þ. The covariance matrix V of v(k) is
given as follows:

V ¼ 0:1: ð38Þ

The membership functions of x1(k) are shown in
figure 2. Considering the decay rate constraint, we
assign �¼ 0.5 in this example. Besides, it is assumed
that the state variance constraints for the system (36)
have the following forms:

½Xd �11 � 0:25, ½Xd �22 � 0:5 and ½Xd �33 � 0:3: ð39Þ

For the state variance constraints (39), we assign the
common state covariance matrix as

Xd ¼

0:2 0:2 0

0:2 0:4 0

0 0 0:25

2
64

3
75: ð40Þ

Let us define ŶYi as follows:

ŶY1 ¼

y111 y112 y113
y121 y122 y123
y131 y132 y133

2
4

3
5 and ŶY2 ¼

y211 y212 y213
y221 y222 y223
y231 y232 y233

2
4

3
5;

ð41Þ

1Rule

2Rule2Rule

−
2

π
2

π

1

Figure 2. The membership function of x1(k).

206 W.-J. Chang and C.-C. Shing

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

5:
26

 2
6 

A
pr

il 
20

14
 



where y1ij and y2ij are the desired parameters.
Substituting (40) and (41) into (33), one has

1

4
y132 ¼ 0, ð42aÞ

1

4
y132 þ

1ffiffiffi
5

p y133 ¼ 0, ð42bÞ

10y1231 � 10y131y132 þ 5y1232 þ 4y1233 �
1

16
¼ 0, ð42cÞ

1

4
y232 ¼ 0, ð42dÞ

1

4
y232 þ

1ffiffiffi
5

p y233 ¼ 0, ð42eÞ

10y2231 � 10y231y
2
32 þ 5y2232 þ 4y2233 �

1

16
¼ 0: ð42fÞ

Solving (42), ŶY1 and ŶY2 can be respectively obtained as
follows:

ŶY1 ¼

1 1 1
2 2 2ffiffiffiffiffi

10
p

=40 0 0

2
4

3
5 and ŶY2 ¼

1 1 1
2 2 2

�
ffiffiffiffiffi
10

p
=40 0 0

2
4

3
5:

ð43Þ

Putting Xd, ŶY1 and ŶY2 into (34) the state feedback gains
are solved as follows:

G1 ¼ ½ 0:0093 0:5101 0:297� and

G2 ¼ ½ 1:2998 �0:2753 0:0105� ð44Þ

Substituting the feedback gains G1 and G2 into (18),
we can find that the condition (18) is satisfied. By
Lemma 2, it can be concluded that the fuzzy control
system is asymptotically stable in the main. Applying
the state feedback gains (44), the simulated results
are obtained with the initial conditions xð0Þ ¼
½ 1 �1 �2�T . Besides, the simulation range is defined
as k ¼ 0, 1, 2, . . . , 2000. The simulated results are
shown in table 1, where var( � ) denotes the variance
value of ( � ).
In order to demonstrate the usefulness of the present

approach, the above results are compared with the
LMI-based design method (Tanaka and Wang 2001).
Assigning the same decay rate �¼ 0.5 and applying the

LMI-based design method, one can solve Gi and P

from (3.34) and (3.35) of Tanaka and Wang (2001).
The solutions of feedback gains Gi can be obtained via
MATLAB LMI-toolbox as follows:

GL1 ¼ �0:7925 �0:1188 �0:2975
� �

and

GL2 ¼ �0:5098 �0:12 �0:011
� �

ð45Þ

The simulated results controlled by the above fuzzy
control gains (45) are shown in table 1 with the same
initial conditions xð0Þ ¼ ½ 1 �1 �2�T and the same
simulation range k ¼ 0, 1, 2, . . . , 2000. From the results
of table 1, one can find that the state variances of
the proposed fuzzy control approach are smaller than
that of LMI-based fuzzy control method. The fourth
table column shows the percentage improvement of
the proposed approach when compared to the LMI
approach. Hence, the proposed approach provides
a more efficient design method for the designers while
dealing with the individual state variance constrained
control problems.

5. Conclusions

In this paper, a fuzzy covariance controller has been
developed for a class of nonlinear discrete stochastic
systems. The T-S fuzzy model was utilised to represent
this class of nonlinear systems. Using the covariance
control concept, one can directly design a fuzzy covar-
iance controller for the discrete T-S fuzzy stochastic
models. In general, most scholars solved the stability
control problem of T-S fuzzy models by using the
LMI design method. But it is difficult to directly
assign a common state covariance matrix for the
designers when they applied the LMI design method.
This paper provided a methodology to solve state feed-
back gains for the T-S type fuzzy controllers such that
the common state covariance matrix and decay rate
can be directly assigned.
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