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Abstract 

Towards the construction of multivariate spline functions, we introduce a way to set linear 
restrictions in the generation of bivariate regression splines. The hyperplanes in R 2 are used in the role 
of "knot" to slice the domain of explanatory variables; hence, we have the flexibility in domain 
partition which includes rectangle, parallelogram, trapezoid and trapezium. 
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1. Introduction 

A standard way to approximate the cause-and-effect relationship is a single 
model over the entire range of explanatory variables, for example, models for linear 
or polynomial regression. In practice, it might be more realistic to partition the 
range of explanatory variables as disjoint regimes and to approximate the relation- 
ship by a sequence of submodels which is smoothly connected, in some sense, at the 
boundaries of neighboring regimes. A useful technique for this purpose is the spline 
function. 

Among many approaches to define spline functions, three are widely used. The 
first is the interpolating spline function, a piecewise polynomial generated com- 
pletely by interpolating the data points and satisfying conditions of continuous 
derivatives up to a required order. This method is useful only for fitting nonnoisy 
data and is then unsuitable for statistical data analysis. The second is the smoothing 
spline, a solution to an optimization problem of minimizing a sum of a least- 
squares-like term and a term penalizing roughness. The other is the regression 
spline which is a piecewise polynomial calculating its parameters by least-squares 
technique with imposed conditions of continuous derivatives up to a required 
order. For general accounts of splines, the paper by Wegman and Wright (1983) 
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provides a clear review of splines of these and other kinds; the book by Eubank 
(1988) provides a good introduction of the theory of smoothing splines. 

Being a smooth piecewise polynomial, the regression spline has received much 
attention from statisticians. Several approaches have been studied to generate 
regression splines. Poirier (1973) introduced a cubic regression spline with an 
excellent discussion of basic theory. Buse and Lim (1977) developed linear restric- 
tions on parameter space such that the regression cubic spline is obtained by the 
restricted least-squares technique. Smith (1979) showed that the cubic regression 
spline can be obtained by using the " + " function. 

About extensions of smoothing splines to the multivariate case, Meingnet (1979), 
Dyn and Wahba (1982), Cox (1984) and Barry (1986) investigated the multivariate 
smoothing splines by the method of penalized least squares. Poirier (1975) con- 
sidered in two articles bilinear splines by the method of"  + " function; one article 
has a good application of a bilinear spline to formulate the Cobb-Douglas produc- 
tion function. 

Our objective is to propose a class of bivariate regression splines by the tech- 
nique of restricted least squares. This topic is motivated by several reasons. Buse 
and Lim (1977) pointed out that formulating a regression cubic spline by the 
restricted least-squares technique is more general than the approach by Poirier 
(1973), in that the number of restrictions can be varied and the validity of the 
restrictions can be tested. However, the regression spline by the technique of 
restricted least squares has been done for only the case of a cubic single-variable 
spline. An extension of regression spline to the multivariate case is only the bilinear 
regression spline of Poirier (1975). The regression regime considered in spline is 
mostly the rectangular type, but Hamermesh (1970) and Otto et al. (1966) pointed 
out that many economic structural changes happen only on the axis of a single 
variable. In Hamermesh's paper he considered estimation of a wage equation for 
which the consumer price index is the factor affecting the structure. Otto et al. 
attempted to explain the budgetary process of US government agencies where time 
is considered as the index of structural changes. 

Based on the development of restriction matrices that impose restrictions on the 
space of regression parameters, we can design regression splines of many types and 
can extend the polynomial order to arbitrary "k". Of course, the bivariate regres- 
sion spline that has changed on the axis of a single variable is considered. 

The bivariate regression splines to be defined are piecewise bivariate polynomials 
defined on domain of connected regime sets with continuity condition of partial 
derivatives on neighborhoods of regime sets. The regime set is a partition of ~2 by 
the slicing tool of hyperplanes that generate regression splines of many types, 
including rectangle, trapezoid, trapezium and parallelogram. 

In general, a hyperplane in ~2 can be formulated as 

~c((~1, 62) = {X = (XI, X2)': 61X 1 "-[- 62X 2 = C} (1.1) 

with c = 0 or 1. For specification, pairs (FI (61, 0), Fo(61, 0)) and (F1 (0, 62), Fo(0, 62)) 
with 61 ~: 0 and 62 4:0 include vertical and horizontal hyperplanes, and the pair 
(/1(61, 62), Fo(61,62)) with 61,62 ~ 0 include slant hyperplanes. With various 
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hyperplanes, we can choose to construct regression splines in many ways. Besides 
our proposal of regression splines of some types by the restricted least-squares 
technique, an important  part of this work is to find linear restrictions that fulfil the 
continuity conditions. In contrast to a knot in the role of a change point in 
a single-variable spline function, we call the hyperplane in R E the knot space also. 

In Section 2, we introduce monotone  and bivariate quadrilateral regression 
splines for which the knot space/'1 (31, 32) with 3a, 32 ~: 0 is used as a slicing tool. 
In Section 3, rectangle-type bivariate regression spline with knot spaces/'1 (bl, 0) 
with 61 # 0 and F1 (0, 32) with 32 :# 0 is introduced. The linear restrictions that fulfil 
the required continuity conditions are derived for all cases. A Bayesian technique 
for estimating the hyperplanes is introduced in Section 4. 

2. Bivariate regression spline with slant knot space /"1(31, 32) 

Let k be a positive integer. The class of degree k bivariate polynomials is 
formulated as 

P { P : P ( x , f ) =  ~ ~ t~ J, J~ 's } ~-" IJjtJ2 X1 X 2 '  ~J, J2 are real , (2.1) 
l=O jl + j2=l 

where x = (Xl, x2)' is a vector of explanatory variables and the vector fl contains 
coefficients fir, J2 of the bivariate polynomial. 

We introduce monotone  and bivariate quadrilateral regression splines based on 
slant knot space. Before this, we discuss a spline model lor bivafiate two-phase 
regression. 

Definition 2.1. Let 6 = (31, 32) t with 61, 32 :~ 0. The bivariate two-phase regression 
model 

y = P(x, flo)I(x'3 <_ 1) + P(x, flb))I(x'3 > 1) + e (2.2) 

is a bivariate two-phase slant regression spline model if it satisfies the following 
continuity conditions: 

Pj,j2(x,f a) = P j , j 2 ( x , f  b) for XeFl(6)  and 0 < j l  + j2  ~ k - 1, (2.3) 

where 

~J, + J2 

Pj, j2(x, f )  -  J,xl P(x, f ) .  

The condition P~k _j(X, fa) = Pjk-j(X, fb) is not considered because it would result in 
the fact that f l j k -  b a f l j b _ j  = fljk-j, j = 0, . . . ,  k, where fljk-j and are coefficient para- 
meters of P( . ,  f~) and P( . ,  fib) corresponding to the term x~ x k-j. 

To fulfil the continuity conditions for this regression spline, we derive a suffÉcient 
condition represented by some linear restrictions on the parameter space. The 
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representat ion of a differentiated bivariate polynomial  on knot  space FI(6~, 32 )  

leads us to find those linear restrictions. 

L e m m a  2.2. Let  P e P  and 0 <-jl -F j2 <-- k - 1; the ( ja , j2) th  partial derivative of  
bivariate polynomial P on hyperplane F1 (61, 32) with 32 4:0  is formulated: 

I 
k-(J t  +J2) 

njlj2 ( X I ' ~ )  = E E E 
O<_c<_k--(j~+j2 ) l=c O<_d<_c 

6~ -a d! ( l - d ) !  d ~J'+eJ~+lr-d)6~-d x~I" (2.4) 

Consider  the vector fl in a fixed permuta t ion  of parameters  flj,j. For  this 
pe rmuta t ion  there are vectors Lj,j2(c), c = O, 1, ... , k  - ( j ~  + j 2 )  such that  

k-(J,+J2) ( - -1 )c -d( j l  + d ) '  ( j 2 + l - d ) ' ( l - d )  
L j , j , ( c ) . f =  2 Z 6~2 -a d! ( l - d ) !  \ c  d ]  l = c  0 < d < c  

x flj, + dj~ + II- d)6~ -a" (2.5) 

The  permuta t ion  is specified in a convenient  way according to its corresponding 
knot  space. With the above vector representation. 

Pj,j~(xl, fl) = ~ LH2(c)' f lx~. (2.6) 
O<_c<k-(jl +J2) 

Let the parameter  vectors /~a and /~b be arranged associated with the same 
permuta t ion  of indices. Then the condi t ion P:, j2(x, ,6")=Pj, j2(x,~ b) for 
0 ~ j l  + j 2  ~ k - 1 o n / " 1 ( 6 1 ,  62 )  is 

Lj,j~(c).(fl ~ - IJb)xf = 0 
0 _~ C _~ k -- (Jt +J2) 

for xl ~ U~ and all 0 --<jl -F j2 --< k - 1, 

(2.7) 

which is equivalent to 

Lj~j2(c).(~, _ ~b) = O, 0 < c < k - ( j l  + j 2 )  and 0 ~ j x  +J2 -< k - 1. (2.8) 

The  continui ty condi t ion (2.3) can be replaced by linear restrictions in (2.8). The 
bivariate two-phase regression spline is then the restricted least-squares est imator  
of which the restriction matrix is the vertical joining of all vectors Lj,j2(c), 
0 < c < k - ( j l  -b j2) and 0 < J l  + j 2  < k - 1. However,  unlike the single-variable 
case (see Buse and Lim, 1977), the class of Lj,j2(c) in (2.8) is a linearly dependent  set 
having numerous  numbers.  We seek a m a x i m u m  set of linear independent  vectors 
that  greatly simplifies the task of finding regression splines. 

Definition 2.3. Any m a x i m u m  set of linearly independent  vectors in set {Lj,j2(c): 
0 < e < k - (ja +J2) and 0 <J1 + j 2  < k - 1} is called a F1(61, 62)-based restric- 
t ion basis. 
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For  this kno t  space/ '1  (61, 62), the following theorem exactly explains the de- 
pendence and gives a restriction basis. 

Theorem 2.4. Suppose 61 ~ O. (a) Fix (r,j) ,  1 _< r < k - 1 and 1 <_ j <_ r. For b, 
O < _ b < _ k - r ,  L ~ - j j ( b ) = ( - ( b + l ) x L , - j j - x ( b + l ) + L r - j + 1 j - 1 ( b ) ) x ( 6 1 / 6 2 ) .  
(b) The set {Lio(C): 0 < c < k - i ,  i --O, 1, ... ,k  - 1} of number (k~2) _ 1 vectors 
forms a Fx (61, 62)-based restriction basis. 

Assume that  we have n observations (yi,x~) with x~6 < 1 for i _< nl and x'6 > 1 
for i > n a. Let 

y = . ,  x'.,i]' x b = l  i }' 13= , X =  xb  . (2.9, 

Moreover ,  let R be the vertical joinings of vectors of/ '1(61, 62)-based restriction 
basis. Then the restricted least-squares est imator  of the bivariate two-phase regres- 
sion spline is 

= ~,s - <x 'x) -1R' (R(X 'X)-  1R')- 1R~,s, (2.10) 

where ~ls = (X'X)-  1X'y, the ordinary least-squares est imator of/3. 
The est imated bivariate-two phase regression spline is 

y = P(x, fl")I(x'6 < 1) + P(X,~b)I(x'6 > 1), (2.11) 

where/~" and/~" satisfy/~ = (/~,//~b). 
The number  of parameters  of a bivariate polynomial  of order k is (k~2). With 

a continui ty condi t ion imposing (k~ 2) _ 1 linear restrictions, the degrees of freedom 
of the parameter  space of the bivariate two-phase regression spline is then (k S 2) + 1. 
We extend this idea to a mult iphase case. 

Definition 2.5. (a) If a set of slant knot  spaces {Fl(6r), 6~, 6~ ~ 0, r = 0, 1, ... ,a} 
such that  the class of sets 

{ x : x ' 6 ~ > l , O < j < r - l a n d x ' 6 r < l } ,  r = l  . . . .  ,a  (2.12) 

forms a part i t ion of the domain  of explanatory variables Xl and x2, that  is, they are 
mutual ly  exclusive, then we call them slant m o n o t o n e  regime sets. 

(b) A bivariate slant regression spline with regime sets (2.12) is defined as 

f (x )  = ~ P(x ,#r) l (x:x '6  j > 1, 0 < j  < r - 1 and x'6'  < 1), (2.13) 
r = l  

with cont inui ty  condi t ions  

P/,~2(x,/F -1) = Pj,j2(x,~ ~) on F1(6 "-1) (2.14) 

for 0 -<Jl - k - j 2  ~ k - -  1 and r = 2, ... ,a. 
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We add knot  spaces F~ (8 °) and F1 (6") only for convenience. In fact, we assume 
that  there is no observat ion falling under  the hyperplane 6°'x = 1 and falling above 
the hyperplane 6"'x = 1. The (k $2) _ 1 linear restrictions are imposed associated 
with each neighboring knot  space and the continui ty requirement  does not apply 
on the boundary  knot  spaces Fx (6') for r = 0, a. The knot  spaces and the number  
"a" (or "b" that  is used later) are assumed to be known.  Explicit formulat ion of the 
bivariate slant regression spline is an analogous  extending of (2.10) and (2.11) to the 
case of "a" polynomials  that  we neglect. 

As the parameters  for the bivariate slant regression spline numbers  a(k+2 2) in 
total, so (b) of Theorem 2.4 implies that  this spline has degrees of freedom 
(k~ 2) + (a - 1). A refinement of slant m o n o t o n e  regime sets is the quadrilateral  set. 

Definition 2.6. (a) Let {6~} and {6 h} represent nonzero knot  vectors. If the set of 
slant kno t  spaces {F~ (6~), F1 (6h}; r = 0, 1, . . . ,  a, h = 0, 1 . . . .  , b} such that  the class of 
sets 

x6v ~ l a n d x ' 6  h < l } ,  r = l  . . . .  , a a n d h = l  . . . . .  b {x:x'6~, -a ~ 1,x'6~ < 1, ' h-1 

(2.15) 

forms a part i t ion of the domain  of explanatory variables x~ and x2, then we call 
them a quadrilateral  regime set. 

(b) A bivariate quadrilateral  regression spline with regime sets (2.15) is defined as 

y = ~ P(x, f l rh ) l (X '6 r -  1 ~ 1, X'6 r ( 1, X'6~- 1 ) .  1 and x'6~ < 1) + E, 
h = l r = l  

(2.16) 

with the following cont inui ty  conditions.  
Fixed h: 

p~,j~(x, f l , -1 h) = p~,h(x,p,h) on F1(6~-1), r = 2 . . . . .  a (2.17) 

Fixed r: 

Pj,j2(X, fl r h - 1 )  = Pj,j2(X, fl rh) on F l (6h- ' ) ,  h = 2 . . . . .  b (2.18) 

for  0 _< j l  -+-J2 ~ k --  1. 

This quadrilateral  regression spline has the proper ty  that  each piece of poly- 
nomial  includes all regressor terms x~' x~ 2 for which j l  + j2 -< k is satisfied. However,  
the rectangle regression spline, to be in t roduced in the next section, has to sacrifice 
some regressor terms to fulfil cont inui ty  condi t ions in (2.17) and (2.18). With 
Theorem 2.4, we have an explicit form of the bivariate regression spline. 

Let R~,, R h be the vertical joinings '  of F1 (6 r) and Fl(6h)-based restriction basis', 
r -- 1 . . . .  , a - 1 and h = 1, . . . ,  b - 1, respectively. For  these ab polynomials,  to fulfil 
the continuities of the polynomials  on the j th  row regimes the restriction matrix 
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includes the submat r ix  that  has nonze ro  elements  on the fol lowing matrix,  of  which 
its co r r e spond ing  p a r a m e t e r  vec tors  are also listed: 

- lj ij j ... IJ ° - ' j  I w  

- 

R ~ -  1 - -  R ~ -  1 

j = 1 , . . . , b .  (2.19) 

The  restr ict ion matr ix  includes a submat r ix  that  has a nonzero  subset  for cont inu-  
ities of  po lynomia l s  on the kth co lumn  regimes as 

- - i lk1 ilk2 ilk3 . . .  f l kb -1  flkb -- 

m 

k = 1 , . . . , a .  (2.20) 

The  restr ict ion matr ix  is R with R'  ~1, ~2, ~b, "1, -a ,  = ( R u , R u , .  . . . . .  , R u , R v ,  , Rv ). The  matr ices  in 
(2.19) and  (2.20) conta in  zeros for which the co r respond ing  pa rame te r  vectors  are 
not  listed. Cons ide r  an ar rangement ,  the set jo in ing  vector  /~ with 
~j '  = ( i l l  j , , . . . ,  f laj , ) , j  = 1 , . . . ,  b and  further  jo ining fl with/~'  = (/~1,, . . . ,  fib,). Let  the 
co r r e spond ing  obse rva t ion  vectors  and matr ices  be ( f h ,  x r h ) ,  r = 1 . . . .  , a  and 
h = 1 , . . . , b .  Define the extending obse rva t ion  vectors  and matrices,  y with 
y,  = ( y l , , . . .  ,yb,) where  yJ satisfies f i '  = (y l j , ,  . . . .  yaj ,)  and X = d iag(X 1, ... , X  b) 
where  X ~ = d iag(X ~j . . . .  , X~J). The  restr icted leas t -squares  es t imator  of  the bivar ia te  
quadr i la te ra l  regression spline has the form of  (2.10) where  matr ices  y, X, and  R are 
the vers ions listed above.  

The  remaining impor t an t  task is to list explicitly the matr ix  form of the 
F1 (61 ,62) -based  restr ict ion basis. Before this, we cons ider  a simple pe rmu ta t i on  of  
the index set {(J l ,  j2): 0 < j l  +J2  --< k}. Define a suborde r  set 

S(m): (k - m, O) (k - m - 1, 1) (k - m - 2, 2),. . .  ,(k - m - i, i), ... ,(0, k - m), 

(2.20) 

where  0 < i < k - m. S ( m )  is an o rdered  set of  { ( j l ,  j2 ) : j l  + j =  = k - m}. We  define 
the pe rmu ta t i o n  of  the index set as the hor izonta l  jo in ing  of  suborde r  set S ( m )  with 
sequence  m = k, k - 1 , . . . ,  O; that  is, 

S(k )  S ( k  - 1), . . . ,  S(O). (2.21) 
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With this index permutation, we set fl as a vector of parameters flJ~J2 permuted 
according to the order (2.20), (2.21). As an example, we list the matrix form of 
F1 (61, 62)-based restriction basis for k = 2, 3 and 4 in the following where permuta- 
tion of vectors is set by way of vertical joining of subvectors: 

Lio(1) 
. i = O ,  1 . . . .  , k - 1 .  

Lio(k  - i) 

The empty cells in the following three matrices represent zero elements and their 
corresponding parameters according to a linear restriction are also listed. 

Case  1: k = 2 

/ho /~,1 /~o2 /ho /~o, 

6, 6 2 
1 

62 622 

1 26, 61 
6-~ 622 1 62 

1 1 

622 62 

6, 
2 

62 

1 
1 

62 

Case 2: k = 3 

f130 fl21 il l2 f103 

3 - al ~2 - 6 ,  
1 

62 ,s~ a~ 
1 - 26, 36e 

62 a~ 623 

1 - -  36, 
6~ 63 

1 

/~oo 

f120 f i l l  f102 fllO flO! flO0 

-- 61 6 2 

62 a~ 

1 - -  26, 
62 622 

1 

622 

-- 61 

62 

1 

62 



Lin-An Chen / Computational Statistics & Data Analysis 21 (1996) 399-418 407 

- 2 6 ,  6~  

62 6 2 
2 - 26~ 

62 62 2 

1 
a2 

- 261 

a2 
2 

6-7 2 

- 6 1  

62 

1 

62 

Case 3: 

Part 1: 
[14o 

k -- 4 ( m a t r i x  is h o r i z o n t a l l y  s e p a r a t e d  into two parts )  

fl31 fl22 fl13 f104 f130 f121 fl12 ~o3 

12 

- ,51 

~2 
1 

62 

- 36~ 

(52 
3 

62 

- -  6 ( 5 1  

(52 
6 

c~2 

ae - a~ a~ 
a~ a~ a~ 

- 2 6 ~  36e - 4 6 ~  - 6 1  
1 a~ a~ a~ a~ 

1 --  36, 66~ 1 
a~ 6~ a~ a~ 

1 --  461 
a~ 6~ 

1 
a~ 

26~ - 6~ 
a~ a~ 

- 46~ 36~ 
a~ a~ 

2 - 361 
a~ a~ 

1 

61 
262 

622 
- -  461 
a~ 

2 
a~ 

a2 
a~ 
- 261 
a~ 

i 

a~ 

a3 
3612 

- 361 

a2 ~ 
1 

a~ 

- -  2 6 1  6 ~  

2 -- 261 

a2 6~ 
1 

- -  2 6 1  

~2 
2 

~2 
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24 

Part 2: 

/h0 

--  661 

62 

6 

62 

- 6 1  

62 

1 

62 

-61  
62 

1 

62 

flo2 fllo flOl floo 

zero subvector 

zero subvector  

a~ 
a22 

- 2 6 1  - 61 
1 622 a2 

1 1 
1 

a22 62 

zero subvector  

zero subvector  

zero subvector  

zero subvector  

2 

zero subvector  

zero subvector  

where "zero subvector" is a vector of zeros. 
We give the restriction basis of order k in a matrix form. The following matrices 

list only the nonzero parts of which the corresponding parameters are also listed. 
Let 

L(1) 
R = . , (2.22) 

L(k)_J 
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w h e r e  

El 
Lk- lo(1) 

L(O) = Lk-2O(2) 

Loo(k) 

F Lk-sO(1) 

L (s) = I Lk_s-10 (2) 

/ 
~. Loo(k - s + 1) 

, s = 1 , . . . , k .  

S u b m a t r i x  L(O) is 

flkO f l k - l l  i lk-22 "'" f l k - i - l i - 1  f l k - i i  "'" f l l k - 1  flOk 

k! - (k - 1)! 8_£ 
82 

k! - ( k -  1)!82( k 2 ) ! ~  
2! 81 v2 

- - 2 ) . 8 1  ( ( k - i  + 1)! k! (k 1)!81 (k - v 2 __ 1) i -1  8 i - 1  

i! ( i -  1)!82 ( i - - 2 ) ! 8  2 1! 8 i -1 

a~ 
( -- 1)'(k - i)! 8-T22 

(2.23) 

- -  61 62 ( - -  1 ) k - 1 6 ] - 1  ( - -  1 ) k s ]  

82 822 a~ a~ 

w h e r e  index  i = 1 . . . .  , k. 
= AAr(m) is W e  set L(s) = rA'f{°) A•l) Aft(s)] where ,  for  m 0,1,  ,s,~,,ts) 

L ~  (s )  , ~v~ I s )  ~ . . .  ~ ~vJ  ( s l J  . . .  

1 
~ k - s -  l s -m  8s 2-m(k  -- S)! i l k - s - i s - m + 1  "'' f l k - s - i s + i - m  "'" flOk-m 

,k ,,,(s m, 1 ,,i k ,,,(s+, 

(2.24) 

1 -1  ( s - m - 1 ) g ,  ( - E ' ? -  a~-o \k_:)a~ -" 
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3. Patial bivariate regression spline constructed by knot spaces 111 (61, 0) and 
111 (0, 62) 

The vertical and horizontal knot spaces include/1(61, 0), i[1(0 , 62) , /"0(61, 0) and 
1[o(0, 62). Without cancellation of some polynomial terms the continuity require- 
ment on knot spaces 1[o(61, 0) and 1[o(0, 62) produces unwanted regression splines. 
To see this, we consider only the knot space Fo(0, 62). The (jl, j2)th derivative of 
the bivariate polynomial on Fo(0, 62) is 

k - ( h  + .J2)  

phj , (x l  ' fl) = ~ ( j l  + c)! j2! ~=o c! fir, +,',r~x] • (3.1) 

For fixed ( j l ,  j2), the continuity conditions 

Pkj2(x,  fl v - l )  = Pj,j2(x, fl r) on 11o(0,62) (3.2) 

imply that 

r r - I  fli, +,J2 = fir, + <  fo r  0 ~ C _< k -- ( j l  + j2) .  (3.3) 

Hence, the continuity condition (3.2) of partial derivatives induces an unpleasant 
result of equating neighboring parameters. By verifying implication of (3.3) for all 
0 ~jm +j2--< k -  1, all parameters of neighboring polynomials P(.,fl~) and 
p( . , f l r -m)  except fl~k and fl~)~-i (the term flog corresponding to P(.,fl~) and 
P(., fl'-1)) are equal. Because of this unpleasant property, we consider only those 
regression splines with knot spaces F1 (61, 0) and F1 (0, 62) as the slicing tools. There 
remain unpleasant implications of the use of these two knot spaces. The unpleasant 
one is avoided by slight relaxation in deleting some polynomial terms. We will 
study for only the knot space F1 (0, 62), the case of knot space F~ (61,0) is similar and 
is skipped. 

Lemma 3.1. The ( j l ,  j2)th partial derivative of  a bivariate polynomial P in P on knot 
space Fa (O, 62) with 62 ~ 0 has the form 

k - ( J l  + J 2 )  

Phj2(Xl ,  fl) = ~_~ (L~oz(c ) . f l ) x~ ,  (3.4) 
c = O  

where 

k IV, +J2t(j 1 + C)!(I -- c + J 2 ) '  
Lj, r2(c). = Y ( i - -  c)! +'ja + , -  c and 

l = c  

0 _< J1 + J2 --< k - 1. 

Definition 3.2. Generated by knot spaces FI(0, 62), the maximum set of linearly 
independent vectors in set {L~o2(c): 0 _< c < k - ( j l  +J2),  0 ~ j l  +J2  -< k - l} is 
called a/'1 (0, 62)-based restriction basis. 
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The following theorem states a relation of linear dependence of vector LJ,j~(c) and 
gives a basis set. 

Theorem 3.3. Suppose 3 1 = 0 .  (a) Fix  ( j ,b)  where 1 < j  < k - b - 1  and 
0 < b < k - 2. I f  0 < s < k - ( j  + b), then vector Ljb(k - (b + j ) -  s) is propor- 
tional to vector Lob((k - b) - s). (b) The set {Lob(C): 0 < c < k - b, 0 _< b _< k - 1} 
is the El(O, 32)-based restriction basis. 

The vector Lok-c(c) has only one nonzero element of the form 

/Lk-c (3.5) 
(k - c)! 

To set restriction Log-c(c). (fir _ f i r - l )  = 0 implies that  tickr -c = tickr--c.1 The simple 
way to avoid this unpleasant  proper ty  is to delete all vectors Lo,-c(c)  from the 
restriction basis. 

Definition 3.4. Generated by knot  space/ '1  (0, 62), the set {Lob(C): 0 <_ c <_ k - 1, 
0 < b _< k - c - 1 } is called a F1 (0, 62)-based partial restriction basis and the set 
which corresponds to knot  space Fa(61,0) is called a Fx(61, 0)-based restriction 
basis. 

This partial restriction basis numbers  (k-~ 2) elements. 
First we consider a m o n o t o n e  regression spline when only the domain  of a single 

variable is part i t ioned. Wi thout  loss of generality, we consider that  single variable 
to be x2. 

Definition 3.5. Let R h be the vertical joinings of vectors in/"1(0, 62)-based partial 
restriction basis. A x2-segmented bivariate regression spline is defined as 

b 

y = ~ P(x, flh)I(x: 1 < X26~- 1, X26~ < 1) + e (3.6) 
h = l  

with continui ty condi t ion R~- 1 (fib __ flh- ~ ) = 0, h = 2, . . . ,  a. 
Joining knot  spaces F1(61, 0) and /'1(0, 62) produces rectangular regimes. We 

define rectangular  regression splines as follows. 

Definition 3.6. Let g~, R~ be vertical joinings'  of vectors in/'1(61, 0) and/ '1(0,  62)- 
based partial restriction basis'. A bivariate rectangular regression spline is defined 
a s  

y = ~ P(x, ~h)I (x :  X16]- 1 > 1, X~6] < 1, X26~- 1 > 1 and x26~ < 1} + e 
h = l  r = l  

(3.7) 

with: (a) For  h, R~-tIJ  "h = R~- l f l  r-in,  r = 2 , . . . , a  and 
(b) for g -l# rh = rh-1, h = 2, . . . , b .  
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The bivariate partial regression splines on regimes slicing on only one variable 
and the rectangular  regimes can be analogously obtained in the form of (2.10). 
Poirier (1975) considered bilinear splines other than  this restricted least-squares 
method.  In one article he applied it to the Cobb-Doug la s  produc t ion  function. 

F r o m  examinat ion of the linear restrictions of (a) and (b) above, the degree of 
freedom of the bivariate rectangle regession spline is "ab(k + 1)". We list the partial 
restriction basis in a matrix form as 

[ 1 [ ] 
Ro Loo(S) 

R* RI with R~ = Lox(S) = . , s = 0 , 1 , . . . , k  - 1 ,  ( 3 . 8 )  

Rk- 1 Log - s -  1 (S) 

and is 

j~s k - s  f l s  k -  s - 1  f ls  k - s -  2 " '" flsh + l ~sh  

1 1 1 
6~-s 6~-~- , 6~-~- ~ 

k - s  k - s - 1  k - s - 2  
6 k2 - s - 1  6 k2 - s - 2 (~ k2 - s - 3 

( k -  s)! (k - s - 1)[ (k - s - 2)[ 
6 ~ - ~ - 2 ( k - s - 2 ) !  6 ~ - ~ - 3 ( k - s - 3 ) !  6~-s-4(k - - S  --4)[ 

/3~,/~, /3so 

1 1 
1 

622 62 

2 
- -  1 !  
62 

2! 

( k -  s)! ( k - s -  1)! ( k - s -  2)! 
6~-~ -h (k - s_h ) !  b t ' 2 -~ -h -~ (k_s -h_  l)[ 6k2- s -h -2 (k_s_h_2)[  

(k - s)! (k - s - 1)! 
(k - s - 2)! 

62 62 2! 

(k - s)! 
62 

(h + 1)[ h! 
62 

(k - s - -  1)! (3.9) 

To obtain the restriction basis for a bivariate polynomial  on knot  space 
Fo(61, 62), we give a representat ion of the bivariate polynomial .  

L e m m a  3.5. Let 0 <-ji <- k - 1, i = 1, 2 and 0 <-jl + j 2  -< k - 1; the ( jbjz) th  
partial derivative of bivariate polynomial P on hyperplane Fo(6) where vector 
6' = (61, 62) with 62 ~ 0 is formulated as 

5,j,(x) = Y~ U Y', 
( -1 )~ -a ( j l  +d)!( j2 + c - d ) !  

• L 6c2 - e  d! (c - d)! O<_c<_k- - ( j l  +J2) O<_d<_c 

.~-67 ~ (3.10) x &  + ~ j ~ + , . _ ~  i x , .  
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Let Li,h (c) be the vec tor  such that  

Lhj2(c). fl = ,~, ( - -  1)c-a(jx + d ) ! ( j2  + c - -  d)! 
6~z -d d) (c -- d)! 

O _ < d < _ c  

Then  

(3.11) 

Pi, h(x) = ~ Lj,h(c).flx]. (3.12) 
O<_c<_k--(jl + J 2 )  

The relat ions be tween  the restr ict ion vectors,  and the basis class are exact ly the 
same as tha t  of  T h e o r e m  2.4 with hyperp lane  F1 (61, 62), where  the restr ict ion basis 
is {Lio(C): 0 < c < k - i, i = 0, 1, ... ,k  - 1}. Howeve r ,  unlike F1(61, b 2 ) ,  the hyper-  
plane Fo(6) produces  Lk-sO(O)'(fl r - - f i r - l )  = O, and  hence fl/,-so = fl[--lo. W e  de- 
lete vectors  Lk-so(O) for s = 0 . . . .  ,k  and  set a part ia l  restr ict ion basis as the 
fol lowing matrix: 

R * *  = L ( 1 )  , 

L(k)._J 

L(s) = 

w h e r e  

- L k - s -  1 o ( 1 )  - 

L k - 5 -  2 o (2) 

Lk-5- , ,  o(m) 

_ Lo o(k - s )  _ 

, s = 0 , 1  . . . .  , k -  1 ( 3 . 1 3 )  

as follows: 

~ k - s - m m  "'" ~ l k - s - 1  ~Ok-s  ilk-sO i l k - s -  1 1 "'" 

61 
(k - s)! - (k - s - 1)!62 

( k - s ) !  ( k - s - l ) !  61 
- -  . , .  

m! ( m -  1)! 62 
( - l)m(k - s - m)! 6--~ 

- 6 1  

~2 

( _ l )k -~ -~6~-~- I  (__ l)k-~6~-~ 

f o r s = O ,  1 , . . . , k - 1  and w h e r e m = l  . . . .  , k - s .  

(3.14) 
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4. A Bayesian approach for estimating bivariate knot 

In this section, we address the knot estimation based on a Bayesian method that 
extends a Bayesian technique by Chin Choy and Broemeling (1980) for switching 
linear regression model to the restricted linear regression model. For simplicity, we 
consider only the 4-piece rectangle regression spline with a vertical hyperplane and 

X I  i X l n  X l  a horizontal hyperplane. Let (x21),-.. ,(x2,,) be the observed values of x = (x). For 
each (u, v), 1 _< u, v _< n, the vector 6'--(61, 62)= (xl,, x2~) determines a knot 
vector that slice the space ~z into 4 rectangle pieces. The maximum number of 
pairwise distinct pairs (xlu, x2~) is n 2. For setting (Xlu, x2~) as a knot, we require 
that the number of observations xi in each rectangle is large enough so that unique 
restricted least-squares estimate can be obtained. Denote by J the index set of (u, v) 
that makes the restricted least-squares estimate uniquely determined. For (u, v) in J, 
let (y, X) be set under the line in Section 2 with knot spaces F1 ((~")) and o F2 (G2,)). To 

Xlu determine the knot point 6 = (x~,) is now equivalent to determine the index (~) in J. 
x~° We further denote by R(~) the restriction matrix with knot vector G~,). Now, we set 

an assumption set. 

Assumption A. (al) The knot index is uniformly distributed over the set J. 
(a2) The spline parameter, fl is assigned the improper prior 

rc(fl) oz constant. 

(a3) The error variable e has normal distribution with mean zero and variance o -2, 
w h e n  0 -2 has the well-known noninformative prior distribution 

7G(O "2) = 1/O -2 for 0 < 0-2 < ~ .  

The following theorem provides a posterior joint probability density function of 
the knot index and the regression parameters. 

Theorem 4.1. Under Assumption A, the posterior probability density function of 
fl and knot index (~,) is 

rc((~), fl lY) ~ [(Y - Xfl)'(y - Xfl)] -(n+ 2)/2 

subject to R(~,)fl = O. 

To obtain the estimate of the knot index, one way with this posterior 
density is by solving 

arg inb(y - X f i r l s ) '  ( y  - -  Xf i r l s ) ,  

where fir~s is the restricted least-squares estimate with restriction matrix R(~). 
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Appendix 

Proof of Lemma 2.2. The ( j l ,  j2)th partial derivative of bivariate polynomial P in 

k-lh+J_,l (jl +bl) l ( j2  +b2)[ b, h~ (A.1) 
PiaJ2(X) = 2 2 flil +hi.Jz+b2 XI X2" 

• / = 0  h ~ + h 2 = /  b l ! b 2 !  

P is 

As we assume that 62 4: 0, the hyperplane/ '1 (6) is then 

F 1 (6)  = X l ,  62  / .  x I e ~ , (A.2) 

where we replace Xz by ((1 - 61xl)/62). 
Denote the subpolynomial with degree l of Phh on Fa(6) by Pl. Then 

1 ( j l + b , ) ' ( J 2 + b 2 ) l ( b n )  
p,(xl) = Z Z ( - -  1)"6b---S ba[ " 6'I 

hi +b2=lONn<_ b 2 b2! 

X ~j, + hi j2 + b2 Xbl I + ". ( A . 3 )  

We claim that Pt(Xl) is a one-variable polynomial of degree l. By rearrangement 
of Pt, we have 

p , ( x l ) =  ~ ~ ( - 1 ) "  ( j l + c - n ) , ( j 2 + ( l - c + n ) ) , ( l - c + n )  
(c h3i n 

x flJl + , - , I  ,.+,,3~x~. (A.4) 

For convenience, let d = c - n; we further have 

Pt(Xl) = ~ ~ ( -1)c-a(Jl  + d)' (j2 + l - d)' ( l  - d4") 
6t2 -a dl (1 - d)! O<_c<_lO<_d<c \c u /  

x~-d c (A.5) X fljl + d l - d U 1  X1. 

Then (A.1) and (A.5) further imply Lemma 2.2. []  

The proofs of Lemmas 3.1 and 3.5 are analogous to the above and are neglected. 
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Proof  o f  Theorem 2.4. Eq. (2.5) gives 

and 

khr  

L,_jj(b).fl= E Z 
l=bO<dl<_b 

x fl~_j+a,j+(;_d,), (A.6) 

k-r _ 1)h+ l -d ,  (r - - j  + d l ) ! ( j  + 1 - dl)!  
L ,_ j j_ , (b+l ) . f l=  Z ~" ( (~12-+-l-d' d ~ ' ( l + l - d , ) !  

l=b O<_d~ <_b+ 1 

X ( ~ b l + l - d l ~ r _ j + d , j + l _ d l  , 
+ l - d 1  

k-r b+l ( __ 1)h-d, + I (r - - j  + da)!(j  + l - dx)! 
L~-j+lj_l(b).fl= Z ~ 6/2 - d ' + l  (d, 11!(/ d- l+  

l=b d1 =1 - -  - -  

X (~hl-d' + l f l r _ . j + d , j + l _ d , .  x dl + 

Then 

+ 1 l - -  d '  ~j ( b + l - d , )  - 11) (i 

and with simplification we have 

- (b + 1)xLr_j j_~(b + 1).fl + L , -~+ l j - i (b ) . f l  = ~2L~-jj(b).fl. 

k - J l  

£ '  O(X1) = E ( L h o ( C ) ' f l ) x ~ ,  
c=O 

where 

Z J l o ( C ) ' f l =  k - j ,  ( - -  l ) c - d ' ( j l  d l  ' 
l=c da=O 

(A.7) 

(A.8) 

Let L (°), L (1) . . . .  , L  (k) be defined as in (2.22). It is easy to see that L (°) is the matrix 
stated in (2.23) and obviously vectors of L (°) are linearly independent. 

We derive the general form of matrix L (s). The ith row of L (s) is Lk-~-i(i), 
i = O, 1 , . . . ,k  - s. Lk_s_i ( i ) .  fl is 

s+i 
~' h~+i_m.fl m, (A.9) 
l=i 

where, w.l.o.g, we let 

d l = 0  • t -a l  da !  



Lin-An Chen / Computational Statistics & Data Analysis 21 (1996) 399-418 417 

m = O, 1, ... ,s, and  tim' = ( f l k - s s - , , f l k - s - l s - , , ,+ , ,  . . . , f lk-s- ,+~ i lk-s-is+,- , , ) .  
Lk-s- i ( i )  is the hor izonta l  jo in ing  of  {hs+i-m: m = O, 1, ... ,s}. By setting 

MI,~) = h~+.l-m , 

h~+i-m__l 

we have L ~') r~xto) A / ( 1 )  / I / f (s ) - I  . .  ~ ' )  is the = t~,,~),~,-~) . . . . .  ~,,~)j. F r o m  (A.10), for m = 0,1, .,s,~,,(~) 
matr ix  s ta ted  in (2.24). The last nonzero  elements  of  L ~) cor respond ing  to the last 
nonzero  elements  of  submat r ix  MI]I are {fiR-sO, f l k - ~ - ~ ,  ... ,flOk-s}, respectively. 
Hence,  row vectors  of  L ~s) are l inearly independent .  Then vectors  of  matr ix  R are 
l inearly independen t  and  vectors  of  R are a Fa (6~, 62)-based restr ict ion basis. [ ]  

P r o o f  of  Theorem 3.3. Pa r t  (a) follows easily f rom (3.4). 

F ix ( j ,  j ' ) ,  0 < j , j '  < k - 1 where j ,  j '  can be equal.  We  have, f rom (3.4), 

foj(X, ) = 612-  " ' ( I  - -  c1)! 

and 

k-~' -"' ( j '  + 1 -- Ca)! 
f °J ' (X l )=  ~ (i~=12(~12-c2(1--C2)] flc2j'+l-':'x'i2" 

Cons ide r  (Cl, c2) where  0 < cl < k - j ,  0 < c2 < k - j '  and c1 # c2. Then 

Loj(Cl).fl = x (1 - -  e l ) !  r c ' J + l - c '  
I=c  tJ2 

and  

k- j '  ( j ,  -4- l -- C2)! 
Loj'(c2)" fl = Z (~12----~; -( i---~2), f l~J' + ,-c~. 

l=c2 

Loj(cl).Loj,(c2) = 0 if cl  4: c2, which holds for a rb i t ra ry  ( j , j ' ) .  If cl 4= c2, the sets 
{Loj(cl): j = 0,1 . . . .  , k -  cl} and  {Loj,(c2): j = 0 , 1 , . . . , k - c 2 }  are then linearly 
independent .  W e  will need to show that,  for each c, 0 < c < k, the set {Loj(C): 
0 < j < k - c} is a set of  l inearly independent  vectors.  Let  c, 0 < c < k; then there 
are o n l y j  for w h i c h j  < k - c co r r e spond  to restrict ion vector  Loj(C). The matr ix  of  
l inear restr ict ion vectors  is fo rmed  as a vertical jo in ing  of  set {Loj(C): 0 < j < k - c, 
0 < c < k} as of  (3.8) and  (3.9). 

The fact of  linear independence  follows f rom the fact that  Rc is a d iagonal  matrix; 
hence vectors  of  R* of  (3.8) are a / '1 (0 ,  6z)-based restr ict ion basis. 

P r o o f  of  Theorem 4.1. This  is done  by  integrat ing the jo in t  p robabi l i ty  densi ty  
funct ion of  (~),//, y, and 0 .2 with the t rans format ion  var iable  (y - XIJ)'(y - Xll)/tr a. 
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