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Abstract

Towards the construction of multivariate spline functions, we introduce a way to set linear
restrictions in the generation of bivariate regression splines. The hyperplanes in R? are used in the role
of “knot” to slice the domain of explanatory variables; hence, we have the flexibility in domain
partition which includes rectangle, parallelogram, trapezoid and trapezium.
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1. Introduction

A standard way to approximate the cause-and-effect relationship is a single
model over the entire range of explanatory variables, for example, models for linear
or polynomial regression. In practice, it might be more realistic to partition the
range of explanatory variables as disjoint regimes and to approximate the relation-
ship by a sequence of submodels which is smoothly connected, in some sense, at the
boundaries of neighboring regimes. A useful technique for this purpose is the spline
function.

Among many approaches to define spline functions, three are widely used. The
first is the interpolating spline function, a piecewise polynomial generated com-
pletely by interpolating the data points and satisfying conditions of continuous
derivatives up to a required order. This method is useful only for fitting nonnoisy
data and is then unsuitable for statistical data analysis. The second is the smoothing
spline, a solution to an optimization problem of minimizing a sum of a least-
squares-like term and a term penalizing roughness. The other is the regression
spline which is a piecewise polynomial calculating its parameters by least-squares
technique with imposed conditions of continuous derivatives up to a required
order. For general accounts of splines, the paper by Wegman and Wright (1983)
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provides a clear review of splines of these and other kinds; the book by Eubank
(1988) provides a good introduction of the theory of smoothing splines.

Being a smooth piecewise polynomial, the regression spline has received much
attention from statisticians. Several approaches have been studied to generate
regression splines. Poirier (1973) introduced a cubic regression spline with an
excellent discussion of basic theory. Buse and Lim (1977) developed linear restric-
tions on parameter space such that the regression cubic spline is obtained by the
restricted least-squares technique. Smith (1979) showed that the cubic regression
spline can be obtained by using the “ + ” function.

About extensions of smoothing splines to the multivariate case, Meingnet (1979),
Dyn and Wahba (1982), Cox (1984) and Barry (1986) investigated the multivariate
smoothing splines by the method of penalized least squares. Poirier (1975) con-
sidered in two articles bilinear splines by the method of “ + ” function; one article
has a good application of a bilinear spline to formulate the Cobb-Douglas produc-
tion function.

Our objective is to propose a class of bivariate regression splines by the tech-
nique of restricted least squares. This topic is motivated by several reasons. Buse
and Lim (1977) pointed out that formulating a regression cubic spline by the
restricted least-squares technique is more general than the approach by Poirier
(1973), in that the number of restrictions can be varied and the validity of the
restrictions can be tested. However, the regression spline by the technique of
restricted least squares has been done for only the case of a cubic single-variable
spline. An extension of regression spline to the multivariate case is only the bilinear
regression spline of Poirier (1975). The regression regime considered in spline is
mostly the rectangular type, but Hamermesh (1970) and Otto et al. (1966) pointed
out that many economic structural changes happen only on the axis of a single
variable. In Hamermesh’s paper he considered estimation of a wage equation for
which the consumer price index is the factor affecting the structure. Otto et al.
attempted to explain the budgetary process of US government agencies where time
is considered as the index of structural changes.

Based on the development of restriction matrices that impose restrictions on the
space of regression parameters, we can design regression splines of many types and
can extend the polynomial order to arbitrary “k”. Of course, the bivariate regres-
sion spline that has changed on the axis of a single variable is considered.

The bivariate regression splines to be defined are piecewise bivariate polynomials
defined on domain of connected regime sets with continuity condition of partial
derivatives on neighborhoods of regime sets. The regime set is a partition of R? by
the slicing tool of hyperplanes that generate regression splines of many types,
including rectangle, trapezoid, trapezium and parallelogram.

In general, a hyperplane in R? can be formulated as

I.(81,62) = {x = (x3, X2): 6,x1 + 8%, = c} (1.1)

with ¢ = 0 or 1. For specification, pairs (I'; (6, 0), I'1(d4, 0)) and (I'; (0, ,), IH (0, 6,))
with d; # 0 and §, # O include vertical and horizontal hyperplanes, and the pair
(I (04, 04), Ih (4, 6,)) with 84,6, # 0 include slant hyperplanes. With various
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hyperplanes, we can choose to construct regression splines in many ways. Besides
our proposal of regression splines of some types by the restricted least-squares
technique, an important part of this work is to find linear restrictions that fulfil the
continuity conditions. In contrast to a knot in the role of a change point in
a single-variable spline function, we call the hyperplane in R? the knot space also.

In Section 2, we introduce monotone and bivariate quadrilateral regression
splines for which the knot space I'y (§;, d,) with J;, 6, # 0 is used as a slicing tool.
In Section 3, rectangle-type bivariate regression spline with knot spaces I'1(d,, 0)
with 8, # 0and I (0, 6,) with §, # Ois introduced. The linear restrictions that fulfil
the required continuity conditions are derived for all cases. A Bayesian technique
for estimating the hyperplanes is introduced in Section 4.

2. Bivariate regression spline with slant knot space I'; (44, 6,)

Let k be a positive integer. The class of degree k bivariate polynomials is
formulated as

{P P(x, ) = Z Y By xixt, Bs are real}, (2.1)
1=0j,+j.=1
where x = (x;, x,) is a vector of explanatory variables and the vector f contains
coefficients f3;,;, of the bivariate polynomial.
We introduce monotone and bivariate quadrilateral regression splines based on
slant knot space. Before this, we discuss a spline model for bivariate two-phase
regression.

Definition 2.1. Let 6 = (J,, 6,) with &, 6, # 0. The bivariate two-phase regression
model

y = P(x, YIS < 1) + P(x, BP)I(KS > 1) + ¢ (2.2)

is a bivariate two-phase slant regression spline model if it satisfies the following
continuity conditions:

P; j.(x,B%) = P; ;(x,B%) forxel () and 0 <j; +j, <k —1, (2.3)

where

ajl +j2

P; ;. x B) = m P(x, B).

The condition Py _ j(x, ﬁ ) = Py — j(x, B®) is not considered because it would result in
the fact that j_; = B%_;, j=0,...,k, where B _; and B} - j are coefficient para-
meters of P(., p°) and P(., B°) correspondmg to the term xj x5 /.

To fulfil the continuity conditions for this regression spline, we derive a sufficient
condition represented by some linear restrictions on the parameter space. The
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representation of a differentiated bivariate polynomial on knot space I(dy, d,)
leads us to find those linear restrictions.

Lemma 2.2. Let PeP and 0 <j, +j, < k — 1; the (ji, j2)th partial derivative of
bivariate polynomial P on hyperplane I't (64, 6,) with d, # O is formulated.:

k—(Jj1 +J2)
RN R >

0<c<k—{(ji+j) I=c O0<d<c

() G+ d (o + =) (1—d e=a | e
X 512—d1 d! (l_zd)! c—d ﬁjx+djz+(/_d)51 < 24)

Consider the vector f in a fixed permutation of parameters f; ;. For this
permutation there are vectors L; ; (c), ¢ = 0,1,...,k — (j; + j») such that

k—(jr+2) (=1 +d) (o +1—d)[1—d
L@f= 2L X 374 dl (- d)! (c - d)
X By, +ajy+ - 005 23

The permutation is specified in a convenient way according to its corresponding
knot space. With the above vector representation.

P (x1, ) = Y L;;(c)-Bxi. (2.6)

O0<esk—(ji+)2)

Let the parameter vectors f* and B° be arranged associated with the same
permutation of indices. Then the condition P;, (x,B%) =P, (x, p°) for
0<ji+j<k—1onTi(d,06,)is

Y L (c)(B*—B")x§ =0 forx;eRandall0 <j, +j, <k—1,

0<e<k—(ji +is)
2.7

which is equivalent to
L (B*—B"=0, 0<c<k—(ji+j)and0<j; +j,<k—1 (28

The continuity condition (2.3) can be replaced by linear restrictions in (2.8). The
bivariate two-phase regression spline is then the restricted least-squares estimator
of which the restriction matrix is the vertical joining of all vectors L, (c),
0<c<k-—(j;+ji)and 0 <j, +j, < k — 1. However, unlike the single-variable
case (see Buse and Lim, 1977), the class of L; ;,(c) in (2.8) is a linearly dependent set
having numerous numbers. We seek a maximum set of linear independent vectors
that greatly simplifies the task of finding regression splines.

Definition 2.3. Any maximum set of linearly independent vectors in set {L; ; (c):
0<c<k-—(j1+Jj)and0<j; +j, <k—1}is called a I'(d,, 6,)-based restric-
tion basis.
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For this knot space I (dy, 0,), the following theorem exactly explains the de-
pendence and gives a restriction basis.

Theorem 2.4. Suppose 6, #0. (a) Fix (r,j), 1 <r<k—1and 1 <j<r. For b,
O0<b<k—r, L_;®=(—0b+)xL_j-1(b+1)+L_ji1;-1(b) x(:/3,).
(b) The set {Lig(c): 0 <c<k—i,i=0,1,....k— 1} of number (*32) — 1 vectors
forms a I't (8,, 6,)-based restriction basis.

Assume that we have n observations (y;, x;) with xj0 < 1 fori <n; and x'60 > 1
fori>n,. Let

!

Y1 X1 Xn, +1
. . \ a X4 0

y = : y Xa = : N Xb = : . ﬂ = (gb>’ X = [ 0 Xb]' (2'9)
Vn Xn, X,

Moreover, let R be the vertical joinings of vectors of I';(,, d,)-based restriction
basis. Then the restricted least-squares estimator of the bivariate two-phase regres-
sion spline is

B =B — XX)"'RRX'X)"'R)" 'R, (2.10)
where B, = (X'X)”'X 'y, the ordinary least-squares estimator of f.
The estimated bivariate-two phase regression spline is

y = P(x, B)I(x'6 < 1) + P(x, B*)I(x'8 > 1), 2.11)

where B¢ and B° satisfy = (B¢/B®).

The number of parameters of a bivariate polynomial of order k is (*%2). With
a continuity condition imposing (*3?) — 1 linear restrictions, the degrees of freedom
of the parameter space of the bivariate two-phase regression spline is then (¥%2) + 1.
We extend this idea to a multiphase case.

Definition 2.5. (a) If a set of slant knot spaces {I'1(6"), 87,05 #0, r=0,1,...,a}
such that the class of sets

xxd/>210<j<r—landxé <1}, r=1,...,a (2.12)

forms a partition of the domain of explanatory variables x, and x,, that is, they are
mutually exclusive, then we call them slant monotone regime sets.
(b) A bivariate slant regression spline with regime sets (2.12) is defined as

f@ =Y P, pl(xs >1,0<j<r—1and x& < 1), (2.13)
=1

r

with continuity conditions
Pyj,c, B 1) = P;;(x, ") on I (6" ") (2.14)
forO0<j,+j,<k—landr=2,...,a
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We add knot spaces I'; (6°) and I';(6") only for convenience. In fact, we assume
that there is no observation falling under the hyperplane 6%x = 1 and falling above
the hyperplane 6"x = 1. The (*%2) — 1 linear restrictions are imposed associated
with each neighboring knot space and the continuity requirement does not apply
on the boundary knot spaces I'; (6") for r = 0,a. The knot spaces and the number
“a” (or “b” that is used later) are assumed to be known. Explicit formulation of the
bivariate slant regression spline is an analogous extending of (2.10) and (2.11) to the
case of “a” polynomials that we neglect.

As the parameters for the bivariate slant regression spline numbers a(*%?) in
total, so (b) of Theorem 2.4 implies that this spline has degrees of freedom
(*3%) + (a — 1). A refinement of slant monotone regime sets is the quadrilateral set.

Definition 2.6. (a) Let {5;} and {6/} represent nonzero knot vectors. If the set of
slant knot spaces {I7(6]), [ (8!};r =0,1,...,a,h = 0,1,...,b} such that the class of
sets

ex'é; ' > 1,x8, < L,x8 ' >1andx'é! <1}, r=1,...,aandh=1,...,b
(2.15)

forms a partition of the domain of explanatory variables x; and x,, then we call
them a quadrilateral regime set.
(b) A bivariate quadrilateral regression spline with regime sets (2.15) is defined as

b

y= > P, > 1,x0,<1,x0,"' > land x'd} < 1) +¢

h=1r=1
(2.16)
with the following continuity conditions.
Fixed h:
P, B~ ) =P, (x, ") onI (6, "), r=2,..,a (2.17)
Fixed r:
P, " )=P,; (x, ") onI(6 "), h=2,...,b (2.18)

forO0<j, +j,<k—-1

This quadrilateral regression spline has the property that each piece of poly-
nomial includes all regressor terms x%' x% for which j, + j, < kis satisfied. However,
the rectangle regression spline, to be introduced in the next section, has to sacrifice
some regressor terms to fulfil continuity conditions in (2.17) and (2.18). With
Theorem 2.4, we have an explicit form of the bivariate regression spline.

Let R.,, R! be the vertical joinings’ of I';(6") and I (5*)-based restriction basis’,
r=1,...,a—landh =1,...,b — 1, respectively. For these ab polynomials, to fulfil
the continuities of the polynomials on the jth row regimes the restriction matrix
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includes the submatrix that has nonzero elements on the following matrix, of which
its corresponding parameter vectors are also listed:

[~ pi1j 2j 3j
B’ B B
R, —R,

R2

ﬁa—lj ﬁaj T

—R? , j=1,...,b (219

a—1 a—1
Ru _Ru

— p—

The restriction matrix includes a submatrix that has a nonzero subset for continu-
ities of polynomials on the kth column regimes as

B ﬂkl
R;

ﬁkZ
—R!
R?

ﬁk3

— R?

Bkb—l Bkb

b—1
R,

b—1
__Rv

L k=1,...,a. (220)

The restriction matrix is R with R = (R}, R?, ...,R%’, RV, ..., R®). The matrices in
(2.19) and (2.20) contain zeros for which the corresponding parameter vectors are
not listed. Consider an arrangement, the set joining vector B/ with
B =(pY,...,B%),j = 1,...,b and further joining B with §’ = (BY, ..., B*). Let the
corresponding observation vectors and matrices be (y*, X™), r=1,...,a and
h=1,...,b. Define the extending observation vectors and matrices, y with
y =(y",...,)") where y’ satisfies y' = (p'¥,...,y*") and X = diag(X?,...,X?)
where X/ = diag(X"/, ..., X%). The restricted least-squares estimator of the bivariate
quadrilateral regression spline has the form of (2.10) where matrices y, X, and R are
the versions listed above.

The remaining important task is to list explicitly the matrix form of the
I1(6,, 0,)-based restriction basis. Before this, we consider a simple permutation of
the index set {(j;, j»): 0 <j; + j,» < k}. Define a suborder set

Sy k—mO)y(k—m—11)(k—m—22),....¢k—m—1ii),.... 00, k — m),
(2.20)

where 0 < i < k — m. S(m)is an ordered set of {(ji, j2):j1 +j» = k — m}. We define
the permutation of the index set as the horizontal joining of suborder set S(m) with
sequence m = k, k — 1,...,0; that is,

S(k) S(k — 1), ..., S(0). (2.21)
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With this index permutation, we set B as a vector of parameters f;;, permuted
according to the order (2.20), (2.21). As an example, we list the matrix form of
I'1 (64, 6,)-based restriction basis for k = 2, 3 and 4 in the following where permuta-
tion of vectors is set by way of vertical joining of subvectors:

L;o(0)

Lio(l) i=01,.. k-1

hak—ﬂ

The empty cells in the following three matrices represent zero elements and their

corresponding parameters according to a linear restriction are also listed.

Case 1: k=2
ﬂZO ﬁll BOZ ﬁlO ﬂOl ﬂOO
é; of
b= 3
8, 03
1w, &
6, 0% 5,
1 1
P 5
01
: 3,
1
6_2 1
Case 2. k=3

BSO ﬂZl ﬁlZ ﬁ03 ﬂZO ﬂll ﬂOZ

| — 0, éj -3
5, &3 33
Loosmowt s
52 622 23 52 522
1 =35 1 =28,
63 63 J, 03
1 1

ﬂlO

Bo1

Boo
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— 26, o
3 =2
0, 03
2 —w, b
0y 62 0,
1 1
o7 5!
— 20,
6 5,
2
5 2
Case 3: k = 4 (matrix is horizontally separated into two parts)
Part I
ﬁ40 B31 ﬂ22 Bl?a ﬂ04 B30 ﬂZl 512 ﬁ03
1 -4, Qf — 83 _6_{‘
o, 62 83 83
1 — 26, &f — 483 1 — 0 6_12 — 63
0 62 53 83 6, 62 63
1 — 36, 66 1 — 28, 36%
82 53 oF 5 53 8F
1 — 46, 1 — 30,
33 53 83 53
1 1
53 83
4 = 30, 2_5_% — 03
0 83 83
3 — 46, éé_% 3 = 28, 63
P 3 3 8, 83
— 36, 2 — 25,
33 33 5> 53
1
5 8
— 66, 26%
12 3, 57
6 — 45, g — 20
0, 83 0
2 2

407
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24 — 1 69,

:820 ﬁll ﬂOZ ﬁlO ﬂOl ﬂOO

zero subvector

zero subvector

—d; &
1 3
0 03
_1_ — 20, | —
0, 83 0
1 1
— — 1
83 N
zero subvector
zero subvector
2 — 04
0,
1
— 1
0,
zero subvector
zero subvector
2

zero subvector
zero subvector

where “zero subvector” is a vector of zeros.

We give the restriction basis of order k in a matrix form. The following matrices
list only the nonzero parts of which the corresponding parameters are also listed.
Let

L(0)

L(1)

R= : (2.22)

L(}<)
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where
Lk—lO(l) Lk—sO(l)
L(O) = Li-20) L(s) = Le-e-10) . os=1,...,k
Loo(k) Looltk —s + 1)

Submatrix L(0) is
ﬂkO ﬁk—ll ﬁk*ZZ"'ﬁk—i—li—l ﬂk—ii"'ﬁlk—l ﬁOk
41
(e — 12
k! — (k 1).(52

k! —(k —1)!5, 81
21 S, (k _2)'55

K== D16, (k=208 (7 =i+ DT ik — il
T = Dlo, (i—2)03 11 &1 V5
(2.23)
R T St Vi w Gk
5, 52 3% 3%

where index i =1, ..., k.
0 .
We set L(s) = [MQ), M{}), ..., M{)] where, for m = 0,1,...,s, M{3y is

1
Bk—s—ls—mﬁ(k - S)!ﬂk—s—ls—m+1 ﬂk—s—is+i—m ﬁOk—m
2

k—s! —(k—s—-Dlfs—m—1 5
5y 1! sy mHl 1 !

(k — s)! —(k-—s—l)!<s—m—1>5l m(—1)"(k—s—i)!<s+i—m>5i1

S U TS 1 e i

(2.24)

1 -1 (s—m—1 5 (=D (k—m sk
552—m 532—m+1 1 1 515—m k—s 1
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3. Patial bivariate regression spline constructed by knot spaces I;(d;,0) and
r 1 (09 52)

The vertical and horizontal knot spaces include I'y (64, 0), I'1 (0, d,), I5(d4, 0) and
I,(0, 6,). Without cancellation of some polynomial terms the continuity require-
ment on knot spaces I',(d4, 0) and I,(0, §,) produces unwanted regression splines.
To see this, we consider only the knot space (0, d,). The (i, j2)th derivative of
the bivariate polynomial on I(0, §,) is

k— (i +J2)

. —
P/ljl(xl’ ﬁ) = Z (_‘]ﬂ)i

!
c=0 c:

'Bi1 +¢j2 xcl' (31)

For fixed (j,, j,), the continuity conditions

P/l.iz(x’ B"—l) = P/ljz(x’ Br) on FO(Oa 52) (32)
imply that
Bl v, =Bl for0<c<k—(ji+Ja) (3.3)

Hence, the continuity condition (3.2) of partial derivatives induces an unpleasant
result of equating neighboring parameters. By verifying implication of (3.3) for all
0<j,+j,<k—1, all parameters of neighboring polynomials P(.,$") and
P(.,B ") except B5 and B! (the term fo, corresponding to P(.,B") and
P(.,Bp" 1)) are equal. Because of this unpleasant property, we consider only those
regression splines with knot spaces I'; (8, 0) and I';(0, J,) as the slicing tools. There
remain unpleasant implications of the use of these two knot spaces. The unpleasant
one is avoided by slight relaxation in deleting some polynomial terms. We will
study for only the knot space I'; (0, J,), the case of knot space I';(,, 0) is similar and
is skipped.

Lemma 3.1. The (jq, j,)th partial derivative of a bivariate polynomial P in P on knot
space I'1(0, 6,) with 6, # 0 has the form

k—(j1 +J2)
le.iz(xl’ ﬁ) - Z (lejz(c)'ﬁ)xci, (34)
c=0
where
k=L (G 4+ o)l — ¢ + ji)!
leh(c).ﬂ = Z : 612—¢)tc|(l _C)!JZ) ﬁj1+('_fz+l—c and

I=c¢

0<ji+j<k—1

Definition 3.2. Generated by knot spaces I;(0, §,), the maximum set of linearly
independent vectors in set {L; ;(c): 0<c<k—(j, +j2), 0<ji +j.<k—1}is
called a Iy (0, &,)-based restriction basis.
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The following theorem states a relation of linear dependence of vector L; ;,(c) and
gives a basis set.

Theorem 3.3. Suppose 6, =0. (a) Fix (j,b) where 1<j<k—b—1 and
0<b<k—-2.If0<s<k—(j+D), then vector Ljy(k — (b +j)— s) is propor-
tional to vector Loy((k — b) — s). (b) The set {Lop(c)0<c<k—b0<b<k—1}
is the I';(0, 8,)-based restriction basis.

The vector Ly, —.(c) has only one nonzero element of the form

ﬁm—c
(k — o)l
To set restriction Lo, _.(c)-(B” — B~ ) = 0 implies that B _. = B_L.. The simple

way to avoid this unpleasant property is to delete all vectors Lo, —_.(c) from the
restriction basis.

(3.5)

Definition 3.4. Generated by knot space I (0, d,), the set {Loy(c): 0 <c <k —1,
0<b<k—c—1}iscalled a Il (0, §,)-based partial restriction basis and the set
which corresponds to knot space I'1(d,,0) is called a I(d,, 0)-based restriction
basis.

This partial restriction basis numbers (*%?) elements.

First we consider a monotone regression spline when only the domain of a single
variable is partitioned. Without loss of generality, we consider that single variable
to be x,.

Definition 3.5. Let R" be the vertical joinings of vectors in I (0, 6,)-based partial
restriction basis. A x,-segmented bivariate regression spline is defined as
b

y= Y Pl p"I(x:1<x,85 1, x,05 <1)+¢ (3.6)
h=1
with continuity condition R:"!(g* — p* " 1)=0,h=2,...,a.
Joining knot spaces I'1(d;,0) and I(0, §,) produces rectangular regimes. We
define rectangular regression splines as follows.

Definition 3.6. Let R%, R be vertical joinings’ of vectors in I(d,, 0) and I (0, §,)-
based partial restriction basis’. A bivariate rectangular regression spline is defined
as

b a

y=3Y Y PG, B x> 1, x187 <1, x205 ' > 1and x84 < 1} +¢

h=1r=1
3.7

with: (a) For h, R, g™ =R, 1% r =2 ... a and
(b) for RE-1g™ = RAB™1 h =2, .. b.
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The bivariate partial regression splines on regimes slicing on only one variable
and the rectangular regimes can be analogously obtained in the form of (2.10).
Poirier (1975) considered bilinear splines other than this restricted least-squares
method. In one article he applied it to the Cobb-Douglas production function.

From examination of the linear restrictions of (a) and (b) above, the degree of
freedom of the bivariate rectangle regession spline is “ab(k + 1)”. We list the partial
restriction basis in a matrix form as

R, Loo(s)
R* = %‘ with R, =| “o1® Cs=01,... k-1, (3.8)
R, Lok —s—1(5)
and is
ﬂsk—s ﬁsk—s—l .Bsk—s—Z ﬁsh+1 ﬁsh ﬁsz le ﬁsO
1 _1 . Lo L1y
55 o5 1 FISERE 83 9,
k=s k—s—1 k—s-2 . 2
51 52 53 5
(k — s)! (k—s—1)! (k—s—2)! 20

k=52 05 k—s—3)! 05 ‘k—s—a

(k —s)! (k—s—1)! (k—s—2)! IUES )
B hk—s—m)! o5 Tk—s—h—1)! 05 ° " Z(k—s—h—2)! 5
(k —s)! (k —s — 1)!
5T 5 (k —s—2)!
k=9 (k —s— 1)! (3.9)
02

To obtain the restriction basis for a bivariate polynomial on knot space
I,(64, d,), we give a representation of the bivariate polynomial.
Lemma 35, Let 0<j;<k—1,i=1, 2 and 0<j,+j, <k —1; the (j,j2)th
partial derivative of bivariate polynomial P on hyperplane I,(6) where vector
&' = (01, 05) with 6, # 0 is formulated as

(— 1790 + ! (ja + ¢ — d)!
Z I:Osgs(- 84 dl (c—a)!

P]nj: (X) =

Osce<k—(ji+j2)

Xﬁj,+djz+c—d5c1_d}xcl- (3.10)
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Let L; ;,(c) be the vector such that

_ (= 1%+ d)'(j2 + c—d)! e—d
L.id'z(c)'ﬁ - 0s§<c 53—d d! (C —d)' xﬁj1+djz +¢'—d51 .

(3.11)
Then
P j,(x) = > L;j,(c)-Bxi. (3.12)

0<c<k—(js+)s)

The relations between the restriction vectors, and the basis class are exactly the
same as that of Theorem 2.4 with hyperplane I'1(d,, 8,), where the restriction basis
is {Lio(c):0<c<k—ii=0,1,...,k — 1}. However, unlike I'; (¢,, 3,), the hyper-
plane I'y(6) produces Ly - (0)-(f" — B~ 1) = 0, and hence B_,, = Bi-%. We de-
lete vectors L;_4(0) for s =0,...,k and set a partial restriction basis as the
following matrix:

L(0)
gee | O |
| LK)
where
[ Li—s—10(1) |
Lk—s—Z 0(2)
L(s) = : , s=0,1,....k—1 3.13
Lk—s~m0(m) ( )
| Loolk —s) _|
as follows:
ﬂk—sO ﬂk—s—ll ﬁk—s—mm ﬁlk—s-—l ,BOk—s

(k —s)! —(k—s—l)!?

2

k=9)! (k—s—1) &
m (m—=1! 5,

(== s—mp O
03

. 51 (_ l)k_s_léli_s_l (__ l)k_séli—s
5 5T 55

fors=0,1,....,k—1and where m=1,...,k —s.

1

(3.14)
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4. A Bayesian approach for estimating bivariate knot

In this section, we address the knot estimation based on a Bayesian method that
extends a Bayesian technique by Chin Choy and Broemeling (1980) for switching
linear regression model to the restricted linear regression model. For simplicity, we
consider only the 4-piece rectangle regression spline with a vertical hyperplane and
a horizontal hyperplane. Let ({:!),...,(%) be the observed values of x = (§!). For
each (u,v), 1 <u, v < n, the vector & = (44, d2) = (X4, X3,) determines a knot
vector that slice the space R? into 4 rectangle pieces. The maximum number of
pairwise distinct pairs (x,, X,,) is n%. For setting (x,,, X,,) as a knot, we require
that the number of observations x; in each rectangle is large enough so that unique
restricted least-squares estimate can be obtained. Denote by J the index set of (u, v)
that makes the restricted least-squares estimate uniquely determined. For (u, v) in J,
let (y, X) be set under the line in Section 2 with knot spaces I'; (%)) and I (()). To
determine the knot point é = (}) is now equivalent to determine the index () in J.
We further denote by R(}) the restriction matrix with knot vector (3*). Now, we set
an assumption set.

Assumption A. (a;) The knot index is uniformly distributed over the set J.
(a,) The spline parameter, f§ is assigned the improper prior

7(f) oc constant.

(a3) The error variable ¢ has normal distribution with mean zero and variance o2,
when ¢? has the well-known noninformative prior distribution

n.(6%) = 1/6® for 0 < ¢? <o0.

The following theorem provides a posterior joint probability density function of
the knot index and the regression parameters.

Theorem 4.1. Under Assumption A, the posterior probability density function of
p and knot index (}) is

(), Bly) o [(y — XB) (y — XB)] "+ 212

subject to R(;)B = 0.

To obtain the estimate of the knot index, one way with this posterior
density is by solving

arg inf; (y — XBus) (v — XBus),

where ﬁrls is the restricted least-squares estimate with restriction matrix R(}).
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Appendix

Proof of Lemma 2.2. The (j,, j,)th partial derivative of bivariate polynomial P in
Pis

k_(iﬂ'z) Z (]1 + bl)!(jZ + bZ)'

M b
P By, + by s + b, X7 X5 (A1)

.i1jz(x)= b.1h,!
1=0 b +hy=! 1:02!

As we assume that 6, # 0, the hyperplane I (d) is then

o) = {(xl, %I—’fi): X, € R}, (A2)

where we replace x, by (1 — 8;x,)/d,).
Denote the subpolynomial with degree ! of P; ;

1f2

on I1(d) by P,. Then

pi(x1) = Z Z (=1

b
by+b=l10<n<b, 0% by! b,! n

1 (i +b)!(j2 + by)! <b2>5r;

b
Xﬁ.71+’71]z+h2x1l+n‘ (A3)

We claim that p,(x,) is a one-variable polynomial of degree /. By rearrangement
of p;, we have

_ (=1 (i+ec—m(o+(U—c+n)lfl—c+n
POO= 2T el (— et "
Xﬂjl +c—nlf('+r15'{xcl- (A4)

For convenience, let d = ¢ — n; we further have

y (=D + ) (J'z+l—d)!<l—d>

p)= 2 2 TS Gt (—d \c—d

X B+ ar- a0 9x4. (A.S)

Then (A.1) and (A.5) further imply Lemma 2.2. [

The proofs of Lemmas 3.1 and 3.5 are analogous to the above and are neglected.
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Proof of Theorem 2.4. Eq. (2.5) gives

Lr—jj(b).ﬂzkir Z (_1)b~d1(r—]+d1)'(]+l—d1)'<l—d1>51{_d1

Sho<icy 0 d'(l —d,y)! b—d,
XBrjrdjra-dys (A.6)
k—r h+1—d . .
(—=1) Yr—j+d)ij+1—d)!
L_jj—q(b+1)p=
il P lgbosdlzs:b+1 A d!(l+1—d))!
l+1—d _
SR L (A7)

and

korbd b ()t e — i d W+ —dy)!

Lr—j+1j—1(b)-ﬂ=l§bdlzzl 512_d,+1 (dl—l)!(l—dl-i-l)!

I—d,+1
b—dy+1

)xa’i_d1+lﬁr—j+d1j+l—dl' (A.8)

Then

b+1—d)(l—di+1\_ 1 [(I—d
U—di+DI\b—dy +1) " I —d\b—d,

and with simplification we have

—b+DxL—j;-1(b+1)-B+ L, j11;-1(b)-B= %Lr—jj(b)°ﬁ'
2
k=,
fo(xX1) = ZO (Ljo(c)- B)xi,

where

&S (=) Ty +d1)<l—d1>
Lio(c)-B = 8B s ai—,-
110(0) I; l;c dlz=:0 512*111 d1! c _dl 1 ﬁ]1+d11 d,

Let L©, LY .. L™ be defined as in (2.22). It is easy to see that L® is the matrix
stated in (2.23) and obviously vectors of L' are linearly independent.

We derive the general form of matrix L. The ith row of L is L,_,_,(i),
i=0,1,....,k — 5. Li_y_i(i)- B is

s+i

Lo BT, (A9)

where, w.l.o.g, we let

(=) Nk —s—i+d)/l—d
hs+i-m'pm= z( ) ( 1) <i’—di

=d
4 =0 o7 " dy!

i—d
)511 lﬁk—s—i+d1+1vdl,
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m=0,1,...,s, and ﬁm’=(ﬂk—ss—mﬁk-s—ls—m+1,---,ﬁk—s—i+1 ﬁk-s—-is+i—m)-
Ly _s—(i) is the horizontal joining of {hs+;—n: m =0, 1,...,s}. By setting

h'S“m
hoyq-
(m) s+1—m
M(s) - . s
hs+i—m
we have L® = [MQ, M), ..., M]. From (A.10), for m =0,1,...,5,M{y) is the

matrix stated in (2.24). The last nonzero elements of L® corresponding to the last
nonzero elements of submatrix M(s) are {Bi-s0s PBr—s—115---» Pox—s}, r€SpPectively.
Hence, row vectors of L are linearly independent. Then vectors of matrix R are
linearly independent and vectors of R are a Iy (d,, ,)-based restriction basis. (]

Proof of Theorem 3.3. Part (a) follows easily from (3.4).
Fix(j,j'),0 <j,j' <k — 1 where j, j' can be equal. We have, from (3.4),

foylx1) = i’(

[

(j+1—rc)!
Zél c,(l cl )'Bq]+l c,)xl

l=c,

and

g +1—cy)! :
Jojlx1) = Z < Y 5{—5@——72;‘!/3(21’+1‘c2)x(12-

1=c,

Consider (¢, ¢c,) where 0 < ¢y <k —j,0<c, <k —j and ¢; # c,. Then

(J+!—c)!
Lojlc1)-B = Zmﬁclj-#—l—q
and
(J' +1—cy)!
LOJ(C2 ﬁ"‘lzc,zél ¢,y l_c)ﬂczj +1—cye

Loj(c1)-Loj(¢c2) = 0if ¢; # c,, which holds for arbitrary (j, j'). If ¢; # c,, the sets
{Loj(cy): j=0,1,....,k — ¢, } and {Lo;(c;): j=0,1,...,k — c,} are then linearly
independent. We will need to show that, for each ¢, 0 < ¢ <k, the set {Lo;(c):
0 <j <k — ¢} is a set of linearly independent vectors. Let ¢, 0 < ¢ < k; then there
are only j for which j < k — ¢ correspond to restriction vector L, ,(c) The matrix of
linear restriction vectors is formed as a vertical joining of set {Lo;(c): 0 <j <k — ¢,
0 < ¢ < k} as of (3.8) and (3.9).

The fact of linear independence follows from the fact that R, is a diagonal matrix;
hence vectors of R* of (3.8) are a I';(0, §,)-based restriction basis.

Proof of Theorem 4.1. This is done by integrating the joint probability density
function of (%), B, y, and o2 with the transformation variable (y — XB) (y — XB)/c”.
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