
IEEE TRANSACTIONS ON RELIABILITY, VOL. 54, NO. 1, MARCH 2005 169

A Hierarchy of Importance Indices
F. K. Hwang

Index Terms—Birnbaum importance, component importance,
cutset, optimal assignment, pathset, structural importance.

SUMMARY AND CONCLUSIONS

An importance index measures the relative importance of a
component in comparison to other components with respect to
the system reliability. We survey many importance indices pro-
posed in the literature, and some new ones of our own, to show
how they relate. Our results can be used in two situations:

1) When components are functionally interchangeable,
then more reliable units should go to the more impor-
tant components.

2) When there is a fixed budget to improve the system
reliability, the more important components should get
first attention if everything else is equal.

NOTATION

cutset
(pathset)

A subset of components whose collective inop-
eration (operation) causes the inoperation (oper-
ation) of the system.
The set of cutsets; if the total number of
inoperative components is .
If is minimal (no proper subset is a cutset).
The set of cutsets containing ; if is given.
The set of cutsets not containing ; if is
given.
The number of minimum cutsets whose union
contains and is of size .
The set of pathsets; if is given.
If is minimal.
The set of pathsets containing ; if is
given.
The set of pathsets not containing ; if
is given.
The complement of the subset .
The cardinality of the set .
The reliability of a system whose component
has reliability .
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Fig. 1. A simple system.

I. INTRODUCTION

Assumption:

1) Components are functionally interchangeable.
2) Both the system and components are bi-state, either

operative or not.
An importance index measures the relative importance of a

component, in comparison to other components, with respect
to the system reliability. The contribution of a component to
the system reliability has two sources: 1. the reliability of the
physical unit installed at the location of the component; 2. the
location itself.

This paper concentrates on Source 2. Because of Assump-
tion 1, the physical units (with different reliabilities) can be
arbitrarily assigned to the locations in the system. An impor-
tance index then serves as a guide as to where the more reliable
units should go.

Let denote the set of components of a binary system.
Most of the commonly used importance indices are defined in
terms of either cutsets or pathsets. This paper studies the spec-
trum of importance indices, including some new ones, based on
cutsets and pathsets, their relations, and their relevance to the
assignment problem.

II. CUTSETS AND PATHSETS

Two examples demonstrate the concepts of cutsets and path-
sets, which also help to illustrate many results in this paper.

Example. 2.1: The system consists of three components ,
, as shown in Fig. 1. The system is operative if and are

connected.
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Example. 2.2:

Fig. 2. Another simple system.

Lemma 2.3: is a cutset if and only if is not a pathset.
Proof: Suppose to the contrary that is a cutest, and

a pathset. Consider the case that a component is operative if
and only if it is in . Then the system would be simultaneously
operative, and inoperative: an absurdity.

Corollary 2.4: .
Proof: For any of the subsets containing a given

component, either it is a cutset or its complement is a pathset.
Corollary 2.5:

In Examples 2.1 and 2.2, the eight subsets are arranged into
two halves; those containing component are in the left half,
and their complements are in the right half. The cutset column
in one half is complementary to the pathset column of the other
half, thus illustrating Lemma 2.3.

III. IMPORTANCE INDICES BASED ON CUTSETS AND PATHSETS

Component is -absolutely more important than compo-
nent if , and -absolutely more important if

. These two concepts are not equivalent, because in Example
2.1, component is -absolutely more important than compo-
nent , but not -absolutely, and vice versa in Example 2.2.
These two types of dominance cannot coexist.

Theorem 3.1: No component can be both -absolutely, and
-absolutely, more important than another component in a non-

trivial system.
Proof: If is a cutset, then is not a pathset in a non-

trivial system. Hence is a cutset containing but not .
If is not a cutset, then is a pathset containing but
not .

Reference [2] proposed an importance index which is slightly
weaker than the absoluteness index, but stronger than other in-
dices proposed in the literature.

Component is more critical than component if for any
subset not containing or , . This
section shows that -criticality, and -criticality, are the same
thing.

Theorem 3.2: Component is more critical than component
if and only if for any not containing
and .

Proof: Suppose . Then ,
where . Note that being critical than implies

. Hence . The converse can be similarly
proved.

Theorem 3.3: Both -absolutely, and -absolutely more im-
portant imply more critical.

Proof: being -absolutely more important than implies
the nonexistence of a set , containing neither nor , such that

is a cutest. Hence the requirement of being more critical
is trivially met.

The part involving -absoluteness can be similarly proved.
Reference [8] considered “more important” in its strict sense

and proved that “ -absolutely more important” implies more
critical.

Component is more H-important than component if
for all . Again, using cutsets or pathsets in

the definition is immaterial.
Theorem 3.4: Component is more H-important than com-

ponent if and only if for all .
Proof: By Corollary 2.5,

where the last equality is obtained by subtracting these
-pathsets containing neither nor , and adding these con-

taining both.
Theorem 3.5: More critical implies more H-important.

Proof: Theorem 3.5 follows immediately from the fact
that every not containing is coupled to a distinct .

The Birnbaum importance [1] was originally defined in the
larger framework where component reliabilities, and component
locations, are both considered. To be comparable to the other
importance indices discussed here, the reliability part is stripped
off by assuming each component has the constant reliability .
Then component is Birnbaum more important than compo-
nent if

This is defined as -Birnbaum importance; and -Birn-
baum importance is defined as

(1)

We strengthen a result of [7] to prove.
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Theorem 3.6: H-more-important implies both types of Birn-
baum more important.

Proof:

Hence is -Birnbaum more important than if and only if

(2)

which, on the other hand, is clearly implied by the condition

for all

Similarly, use the alternative condition of H-more-important,
i.e.,

for all

to prove -Birnbaum importance.
Because the Birnbaum importance is very hard to compare,

[4] proposed the half-line importance, which is much easier to
handle mathematically, and also practical in applications. Com-
ponent is half-line more important than component if (2)
holds for all , a condition easily met in practice. Similar
to Birnbaum importance, we can split the half-line importance
into the -type, and the -type.

The -Birnbaum importance, and the -halfline importance,
reduce to the so-called combinatorial importance when

, which can also be defined as

Theorem 3.7: Component is combinatorial more important
than component if and only if .

Proof: By Corollary 2.4

The implication relations among the importance indices dis-
cussed in this section is shown in Fig. 3.

IV. IMPORTANCE INDICES BASED ON

MINIMAL CUTSETS OR PATHSETS

By substituting for in (1), the -Birnbaum impor-
tance can be written as a function of ,

Fig. 3. A hierarchy of importance indices.

Reference [3] called component to be more cut-important
than component if the vector is lexicograph-
ically larger than the vector . [3] also proved
that

Meng [8] proved that strictly more critical implies strictly more
cut-important. This section shows that his proof works under a
weaker condition. Component is said to be more -important
than component if for all . Clearly, more
critical implies more -important by the coupling argument.

Theorem 4.1: More -important implies more cut-
important.

Proof: Suppose that component is more -important
than component . Then

for all

If the equality holds throughout, then

and and are equivalent. Otherwise, there exists an ,
, such that

for all

Then

for all and all

because each minimal cutset contributing to the -sum is of size
. It follows that

and

Hence is more cut-important than .
Similarly, path-importance is defined by using minimal path-

sets instead of minimal cutsets. By Theorem 3.2, the notion
of criticality can be expressed in terms of pathsets. Therefore,
mimic the proof of Theorem 4.1 to obtain the following.
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Fig. 4. Relations among importance indices based on minimal cutsets or
pathsets.

Theorem 4.2: More critical implies more path-important.
A specification of the component-states will be called an

inoperative sample point if it causes a system inoperative-
ness. [11] and [6] proposed the VF importance of location
as the probability that a random inoperative sample point con-
tains a minimum cutset in . Again, to compare locations, only
the case for all is considered. In the special case

, the VF-importance is called structural VF-importance,
and abbreviated by SVF. [9] gave a quite complicated proof that
“strictly more critical” implies “strictly more VF-important.”
Ignoring strictness, then the result easily follows from the cou-
pling property of comparing criticality. [9] also defined a pathset
version of VF-importance. Thus Theorem 4.3 follows.

Theorem 4.3: More critical implies more -VF-important,
and more -VF-important.

Computing the vector , or its pathset counter-
part, can be a tedious task. [10] introduced the notion of “first-
term invariance” by comparing the number of minimum cutsets
of two assignments. Thus the notion of first-term importance,
which compares two components and only by comparing

with , is derived.”
Recently, [5] introduced the notion of rare-event importance,

which is the counterpart of first-term importance, by comparing
with . Rare-event importance is relevant when .

Although is not a practical assumption for most real-world
problems, the rare-event importance serves as a useful tool to
disprove a Birnbaum importance inequality because all we need
is a counterexample under the rare-event importance. Further-
more, if an inequality is proved under the half-line importance, or
for both the first-term importance and the combinatorial impor-
tance, then proving it further under the rare-event importance is
a strong indication that the inequality might hold under the Birn-
baum importance because is now covered from both ends.

The relations discussed in this section are summarized by
Fig. 4.

V. APPLICATIONS TO THE ASSIGNMENT PROBLEM

Due to the coupling, if component is more critical than com-
ponent , then clearly a more reliable unit should go to location

than location . [3] also pointed out that for , then
more cut-important than dictates a more reliable unit goes to

rather than . The first-term, and the rare-event importance,
apply in the two extreme cases , and , respectively.
The dependence of assignment on the importance indices from
H-importance down to combinatorial importance is more intu-
itive than exact. They are mostly used in devising heuristics for
optimal assignments. Namely, the more important component
gets a more reliable unit, at least in the first try.
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