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Application of Two-Dimensional Nonuniform Fast
Fourier Transform (2-D NUFFT) Technique to
Analysis of Shielded Microstrip Circuits

Ke-Ying Su and Jen-Tsai Kuo, Senior Member, IEEE

Abstract—A two-dimensional nonuniform fast Fourier trans-
form (2-D NUFFT) technique is developed for analysis of
microstrip circuits in a rectangular enclosure. The 2-D Fourier
transform of a nongrid point is approximated by Fourier bases
in a square neighborhood with (g + 1) by (¢ + 1) grid points.
The square neighborhood can be reduced to an octagonal region
with g*/2 + 3q + 1 grid points without sacrificing accuracy
if g is sufficiently large. This technique allows an arbitrary dis-
cretization scheme on conductors and shows a great flexibility for
the analysis. Asymmetric rooftop functions are inevitably used
to expand surface current densities on conductors. Based on the
spectral-domain approach, all elements of the final method-of-mo-
ments matrix are double summations of products of a weighted
Green’s function and trigonometric functions. By using the pro-
posed technique, the double summations at all sampled points can
be obtained via the 2-D NUFFT. The scattering parameters of a
compact miniaturized hairpin resonator, an interdigital capacitor,
and a wide-band filter are calculated. The calculated results show
good agreement with measurements.

Index Terms—Method of moments (MoM), nonuniform fast
Fourier transform, spectral-domain approach (SDA).

1. INTRODUCTION

HARACTERIZATION of microstrip discontinuities is an
C important task in computer-aided design (CAD) of mi-
crostrip circuits. Many methods for modeling the discontinuities
have been developed, such as the finite-difference time-domain
(FDTD) method [1], [2], spectral-domain approach (SDA) [3],
[4], finite-element method (FEM) [5], method of lines [6], [7],
integral equation (IE) [8], [9], and mode-matching technique
[10].

The method of moments (MoM) is a core engine for anal-
ysis of microstrip circuits [3], [4], [8], [9], [11]-[15]. Most of
CPU time is consumed in evaluation of the MoM matrix ele-
ments since the Green’s functions converge slowly and a large
number of basis functions are required for expanding surface
current densities on conductors. In [11], the MoM matrix ele-
ments are linear combination of elements of precomputed index
tables that are computed from the two-dimensional discrete fast
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Fourier transform (2-D FFT). In this method, however, the mesh
scheme is restricted to be uniform. Obviously, uniform grids
are very inefficient for analysis of a general microstrip circuit
because electric currents have rapid variations along microstrip
edges, thus, fine local discretization becomes a must for accurate
analysis of the whole circuit. In [12], for reducing the number
of unknowns, the currents are expanded by a linear combination
of the current distributions at the first few resonant modes of the
circuit. However, very fine discretization and a 2-D FFT of large
size are still required to find solutions at the resonant modes.

In[13], microstrip discontinuities on a lossy multilayered sub-
strate are analyzed based on the electric-field integral-equation
(EFIE) formulation. The conductors are uniformly discretized.
At least two important points in regard to convergence of results
are reported. One is that required number of summation terms in
calculating the MoM matrix elements must be at least 1.25 times
the total number of segments, and the other is that the mesh sizes
must be no larger than A, /175 and A\, /25, respectively, in trans-
verse and longitudinal directions for accurate calculations.

Nonuniform meshes are used in the mixed-potential inte-
gral equation (MPIE) [14] to overcome the large-size matrix
problem caused by uniform discretization. The acceleration
procedure is at a Green’s function level, and efficient MoM
techniques with rectangular, but nonuniform and nonfixed,
meshes can be constructed.

In this paper, a two-dimensional nonuniform fast Fourier
transform (2-D NUFFT) [15] incorporated with the SDA is
developed for analysis of microstrip circuits. The mesh scheme
for the microstrip circuit can be very flexible, although each
subdivision must be rectangular. This idea is extended from the
NUFFT algorithms in [16] and [17]. The concept for evaluating
the FFT of one-dimensional (1-D) nonuniform data is to approxi-
mate the exponential function at each nonuniform sampled point
by interpolating oversampled uniform Fourier bases with ¢ + 1
coefficients. The order of arithmetic operations is found to be
O(cN log, N) with ¢ being the oversampling rate and N being
the FFT size. The accuracy of the approximation is increased as
c and q are increased. The increase of ¢, however, will increase
the size of the FFT, thus, c is usually chosen tobe 2. When ¢ = 8,
accuracy of the data obtained by a least square error sense [17] is
more than one order higher than that calculated by the method
in [16]. In [18], the authors apply the NUFFT technique to
analysis of multiple coupled microstrip lines.

The 2-D NUFFT for two-dimensional nonuniform data in the
x—y-plane can be established by employing two 1-D NUFFTs
in the z- and y-directions. The (g + 1)? interpolated coefficients
of oversampled 2-D FFT bases are simply the products of two

0018-9480/$20.00 © 2005 IEEE
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Fig. 1. 2-D NUFFT algorithm: exponential function at a nonuniform sample
point (x¢, ¥, ) is approximated by Fourier bases at (¢ + 1) X (¢ + 1) uniform
oversampled grids (X;,Y}) in a square neighborhood or by those in an
octagonal neighborhood.

sets of ¢ + 1 coefficients. However, it is found that the 1-D co-
efficients decay exponentially, as the bases are far away from
the sample point [16]. It means that these coefficients have only
negligible contribution and the number of the required coeffi-
cients can be significantly reduced to save a lot of operations
without deteriorating accuracy.

In this paper, Section II formulates the 2-D NUFFT algo-
rithm and Section III incorporates the 2-D NUFFT in the SDA
for microstrip circuit analysis. Section IV addresses the accu-
racy of the 2-D NUFFT and presents calculation examples in-
cluding a microstrip hairpin resonator, an interdigital capacitor,
and a wide-band filter. The results are also validated by mea-
surements.

II. 2-D NUFFT ALGORITHM

In Fig. 1, the cross is a nonuniform sample point
(vt,ys),—m <z < mand —7 < y, < m, and the circles and
large black dots are (¢ + 1) X (¢ + 1) uniformly oversampled
grids (X;,Y;), which are called the square neighborhood of
(2+,ys) herein. We are going to evaluate the following 2-D
Fourier transform:

M/2-1 N/2-1

Yo D Gupe™mre™ (1)

m=—M/2n=—N/2

Dst =

where Dg; and G,,,,, are finite complex sequences and M and N
are even integers. The first step of the 2-D NUFFT algorithm is
to determine the (¢ + 1)? interpolation coefficients 7, for ap-
proximating the following exponential function with accuracy
factors @,y ’s:

q/2 a/2

Z Z Tpg(xt:ys)

p=—q/2g=—q/2
> 61',(1)t+p)27rm/c1\161',(u5+g)27‘rn/(',N (2)

imxy inys
e g =

Pmn€

where vy = [z,cM/27] and us = [yscN/2w| denote the inte-
gers nearest to z.cM /27 and y,cN /2, respectively. The accu-
racy factors p,,,,’s are chosen to minimize error of (2) in a least
square sense [17].
Substituting (2) into (1) yields
/2 /2
Da= > > rpg(we,ys)Hpg(s,1) 3)
p=—q/29=-q/2
where
M/2-1 N/2-1
> Y Ganenn
m=—M/2n=—N/2
> ei(vt+p)27rm/c]\/[ei(us+g)27rn/cN. )

Hpy(s,t) =

Calculation of (4) can be performed by a regular 2-D FFT of
size cM x ¢N.In (3), the 2-D interpolated coefficients 7,4 can
be obtained by two sets of ¢ + 1 1-D NUFFT coefficients, i.e.,
the square neighborhood in Fig. 1. It is found that some of 7,
have negligible magnitudes, as they are away from (¢, ys ), and
these points have to be removed from the approximation for
computation efficiency. If the coefficients associated with these
insignificant grid points are directly removed from the square
neighborhood, however, the accuracy of (3) can be significantly
reduced. The accuracy can be recovered if the coefficients of
selected grid points are derived in a least square error sense, as
the 1-D case in [17]. Let the coefficients be expressed as

"'r(xtvys) = F;lpr(xhys)~ 5)

One efficient way to obtain closed forms of the reduced square
regular Fourier matrix F,. and reduced column vector P,. is to
extract them from a full regular Fourier matrix F; and a full
column vector Py with (¢ + 1) grid points. Here, F; and P
can be obtained by extending the 1-D method in [17]. The pro-
cedure for determining F,. and P,. is as follows.

1) Define a vector product ® as

,bn]
= [a1b17a2b17....amb1 ..... albn,agbn7...,ambn] (6)

’ ’ ’
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be rows of the regular Fourier matrix for 1-D problem,
where p,g =0,1,...,q. The [g(¢+ 1) + (p + 1)]th row
of F s then equals V), ® V. It is noted that F' y depends on
¢, M, N, and q, but is independent of z;, ys, m and n.

2) Choose @, = cos(mm/cM)cos(nm/cN); then the
[9(g + 1) 4+ (p + 1)]th element of P ; can be derived as

Pf (xtv yS)g(q+1)+(P+1)

(5 laferseref)

1 — eidar[2{ 555 Y+ —2p+d]

g et )

1 — i {455 M Ha—2g+d]

d=—1,1

P>

d=-1,1

©)

where {z} = = — [z].

3) Extract F,. and P, from F; and Py, respectively. The
indices of (¢ + 1)? square grid points are [1,2,...,(q +
1)?], and the indices of ¢?/2 + 3¢ + 1 octagonal grid
points, the large black dots in Fig. 1, called octagonal or
nonsquare neighborhood herein, are [¢/2,q/2+1,q/2 +
3¢/2 + 2]. Let this index sequence be v, then the (4, j)th
element of F,. is the (v(¢), v(j))th element of F ¢, and the
ith element of P, is the v(¢)th element of P .

4) Evaluate H,,, in (4) by aregular 2-D FFT of size cM xcN..

5) Calculate Dg; in (3) using Hp, and the q2/2 +3¢q+1
interpolated coefficients 7.

We test 218 pairs of (1, y,) generated by the random number
generator of MATLAB software, and compare the 2-D NUFFT
results with that obtained by direct summation (1). It is found
that, when ¢ > 6, the coefficients associated with grid points in
the reduced neighborhood are sufficient to provide results with
accuracy of the same order as that in the square neighborhood.
Additional results will be presented and discussed in Section IV.

III. INCORPORATING THE 2-D NUFFT INTO THE SDA

For a microstrip circuit enclosed in a rectangular shielded box
of dimensions a X b X ¢, one of the spatial-domain Green’s
functions can be written as [11]

= Z Z Gaw cOS(kym') sin(kyny')

X 08 (kaem®) sin(kyny)

GZ-T (a:'? ‘/1:/7 y? yl)
(10)

where k.., = mn/a,ky, = nn/b, and G, is the Green’s
function in the spectral domain [19]. Other Green’s functions
of the structure can be expressed in a similar manner.

In the solution procedure, asymmetric rooftop functions are
used to expand current densities on conductors, and the half-
rooftop functions in [20] are used for modeling those at source
and load terminals. Let the current densities be expressed as

= Z Aro Jza (.Z‘, y) + Z by,ﬁ‘]yﬁ(xv y)

(11

where a.o and b, g are unknown constants to be determined. The
Fourier transform of the basis functions can be easily derived.
For example, let the ath basis function for the current in the
x-direction be

Jza = zz(waxa)ny(yaya) (12)
where
u xa‘f‘l; .ZZ'Q—A.Z’alSLITSLI?a
A:Eozl
Jrz(T,10) = xa—:v+17 To <2< To~+ ATao
ALEQQ
0, otherwise
(13a)
_ ]-~, ya_Aya/2SySya+Aya/2
Jay(Y:Ya) = {0, otherwise.
(13b)
Their 2-D Fourier transforms can be derived as
o c08(kymTa) — €08 (kum (Ta — Aza1))
e Az k2,
cos (kTma:(,) — co8(kpm (o + A:c(,g)) (142)
A:Eagk%m
i cos (kyn(ya — Aya/Q)) cos (k'yn(ya + Aya/2))
Ty — - .
kyn kyn
(14b)

It is important to note that the transforms (14) are trigonometric
functions weighted by powers of k., or ky,,. It can be validated
that the transforms of basis functions for currents in the y-direc-
tion can be expressed in a similar way.

The Galerkin’s procedure is used to set up the final MoM
matrix, of which the (d, e)th element can be expressed as

ZZG” m,n)

After some algebraic manipulations with simple trigonometric
identities, evaluation of Z,,(d, €) can be reduced to

Zyy(d,e) Id(m n)jme(mm) (15)

M/2-1 N/2-1 =
> X g
k.g kh
m=—M/2n=—N/2 ™"

X { Sin (k‘Lm(xd :I: .275)) COS(kyn (yd :t ye)) (16)

cos (kmm(xd + xe)) sin(kyn (yd + ye))

where u,v = x, or y and g and h = 2, 3, or 4.

Fig. 2 summarizes the procedure for establishing the final
MoM matrix. First, partition the circuit and find the required
2-D NUFFT interpolation coefficients for four sets of sampling
points (24 £ ., Y4 & y.). Second, evaluate the double summa-
tions of products in (16) by the 2-D NUFFT. If the impressed
and load currents are in the same directions, only five calls of
2-D NUFFTs will be needed. Finally, recombine the five sum-
mations to set up the final MoM matrix.

When the currents on input and output feed lines are obtained,
the complex amplitudes of the incident and reflected current
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Fig. 3. Hairpin resonator in shielded box and its mesh scheme in analysis.

Structure parameters are £, = 10.2,L; = 0.7,L, = 1.01,L3 = 2.74, L, =
8,Ls =6,w; = 1,ws, =1.19,9; = 0.2, and g> = 0.8. All dimensions are
in millimeters.

waves can be extracted by using the generalized pencil-of-func-
tion (GPOF) method [21], and the scattering parameters can be
obtained via standard circuit theory.

IV. RESULTS

Three examples are used to demonstrate the proposed tech-
nique for analyses of microstrip circuits. They include a com-
pact miniaturized hairpin resonator [22], microstrip interdig-
ital capacitor, and wide-band bandpass filter [23]. Consider a
hairpin resonator with a mesh scheme shown in Fig. 3. The
thickness of dielectric substrate is ¢ = 1.27 mm, and the dimen-
sions of shielding box are 23.6 x 18.15 x 16 mm?®. To reflect
rapid current density variations near edges of conductors, the
sampling points are chosen according to (s/2)[1+ cos(kw /T)],
where k = 0,1,2,...,T, and s can be the length or width of
the conductor. A uniform sampling, however, is used herein on
feeding lines in the z-direction, as indicated in the plot, which
is required by the GPOF method.

Table I lists the CPU seconds and L, errors in analysis of the
hairpin resonator obtained by the 2-D NUFFTs with octagonal
and square neighborhoods for ¢ = 4,6,8, and 10. The CPU
time is measured with a MATLAB program of version 5.3 on a
personal computer with a Pentium IV processor of 1.6 GHz.

TABLE 1
COMPARISON OF CPU TIME AND Ls ERROR OF ONE CALL OF
THE 2-D NUFFT IN ANALYSIS OF A HAIRPIN RESONATOR

Hairpin Square 2D-NUFFT Octagonal 2D-NUFFT
resonator | CpU seconds| Z, eror |CPU seconds| Z, error
g=4 79.61  |3.9479x10%|  65.80  |3.9603x10°
g=6 152.85 |5.5135x10° 116.22 5.5314x107
g=38 257.03 |6.7144x10° 184.63 6.7381x10°
g=10 381.52 |7.9671x107 256.18 7.9879x107
10
0 y =
8 20
A
T 40 | s
g ------- ]
% . . .2D-NUFFT, g = 4
-60 ) s 2D-NUFFT, ¢ = 6
S 2D-NUFFT, ¢ =8
§{ —— 2D-NUFFT, ¢ =10
-80 1 ] L L
2 2.2 2.4 2.6 2.8 3
Frequency (GHz)
Fig. 4. Measured and calculated S-parameters of the hairpin resonator.

The calculation of the L error is based on the results obtained
by direct computation of (1).

Both the square and octagonal schemes have identical reg-
ular Fourier matrices and column vectors for determining the
interpolated coefficients, which have closed-form expressions
and are independent of frequency. It means that the interpola-
tion coefficients can be stored in computer memory once the
mesh scheme is defined. Thus, the CPU time for steps 1-3 is
not included in Table I. In step 4, the CPU time for one regular
2-D FFT with size 2'" x 2'',ie,c = 2and M = N = 2%,
takes 3.02 s. The CPU time in Table I accounts for the calcula-
tion of Dy, in (3) using H,,, and the ¢?/2 + 3¢ + 1 interpolated
coefficients.

Comparing the CPU seconds listed in Table I, one can see that
the octagonal 2-D NUFFT uses only 76%, 72%, and 67% of that
for the square neighborhood for ¢ = 6, 8, and 10, respectively.
In comparison with the L errors, the octagonal and square 2-D
NUFFTs have very close values for all listed ¢ values. Note
that the Loy errors decrease about one order in magnitude as ¢
is increased from 4, 6, 8, to 10.

Fig. 4 compares the simulation results with measurement data
of the hairpin resonator. The shielding box is included in the ex-
periment. The peak and deep frequencies of the |So1 | curve for
q = 4 have the least accuracy, while those for ¢ = 6,8, and 10
have close values and a good agreement with the measured data.
Away from these two frequencies, the three curves have 4-5 dB
and 3—4 dB away from the measurement at 2.1 and 2.9 GHz, re-
spectively. Since the results for ¢ = 6, 8, and 10 have very good
consistency, ¢ = 6 is used for simulation herein.
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Fig. 6. Microstrip interdigital capacitor and its discretization in analysis.
Structure parameters are ¢, = 10.2,L; = 8, L, = 1.6,L3; = 0.8,Ly =
1.2,Ls =79,d =04,e = 0.4, g = 0.2, and s = 0.2. All dimensions are
in millimeters.

Fig. 5 plots magnitudes of the current densities on the hairpin
at resonance. Both |J,| and |J, | are normalized with respect to
the maximum |.J;| in the circuit. The currents show relatively
large magnitudes at edges and corners of the resonator. It re-
flects flexibility and necessity of the nonuniform mesh scheme
in efficient analysis of a planar microstrip circuit.

Fig. 6 plots the discretization of the interdigital capacitor. The
dimensions of the shielded box are 18.6 x 18.6 x 16 mm?. This
circuit is chosen for demonstration due to its electrically small
alternative fingers and gaps, and it is tough for simulation. In
our nonuniform discretization, 327 cells are generated.

Fig. 7 shows the S-parameters of the interdigital capacitor ob-
tained by the octagonal 2-D NUFFT with ¢ = 6. The simulation
results obtained by the proposed method have a good agreement
with the measurements including the enclosure. The CPU time
for a frequency point is 123.69 s.

The structure is also simulated with the commercial soft-
ware SONNET and the results are incorporated into Fig. 7. In
SONNET simulation, two uniform discretizations are used. In
the first, Az = 0.076 mm and Ay = 0.1 mm, and it results in
1274 subdivisions. One frequency point takes 5 s in total. The
second discretization uses Az = Ay = 0.02 mm, and it results
in 3865 subdivisions. The Fourier transform, matrix filling, and
matrix solver take 12, 55, and 63 s, respectively. One frequency
point takes 130 s. Both cases have very close results. It can be

(b)

Normalized currents on the hairpin resonator at resonant frequency f = 2.473 GHz. (a) | J.(z, y)|. (b) | J,(z, y)|.

4

—_ 74

o 8 1S

R 1of _ 2D-NUFFT

E— —— Measured
16l oo SONNET
'20 . ! 1 1 L 1 1 I L E

1 23 456 7 8 910111

Frequency (GHz)

Fig. 7. Measured and calculated S-parameters of the interdigital capacitor.

seen from Fig. 7 that the three sets of plots are in a reasonable
agreement.

Comparing with the CPU seconds used in SONNET, we sug-
gest that source codes for the FFT and matrix solver be imple-
mented in a low-level computer language for saving the com-
putation time. It is noted that our codes are developed under the
MATLAB environment.

The third example is a microstrip wide-band filter in a
shielded box of sizes 30.352 x 30.352 x 16 mm?®. The dimen-
sions of circuit layout are adopted from [23]. Fig. 8 shows
the circuit division in our analysis. The reason why the circuit
is chosen for demonstration is that the structure consists of
two pairs of coupled microstrips with a very narrow linewidth
and gap size of 0.125 mm and a section of wide microstrip
of 7.74-mm width. Such a structure consists of strong dis-
continuities at impedance junctions, which definitely need a
fine discretization for simulation. Again, if a uniform mesh is
used, either the narrow coupled lines will have insufficient cells
for accurate analysis or the final MoM matrix may have an
unacceptably large size for fine discretizations. Here, only 353
nonuniform cells are used, and 344 and 306 basis functions are
used for .J, and .J,,, respectively.

Fig. 9 plots the simulation and measured S-parameters for the
filter. The distance between the circuit and sidewalls L5 is over
1.45 times the width of the low-impedance microstrip, and the
top cover height is over 24 times the substrate thickness. These
two sizes are chosen to approximate the circuit in an open space,
as in [23]. The calculated results show a reasonable agreement
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Fig. 8. Shielded microstrip wide-band filter and its associated mesh. L;
8,Ly = 0.56,L3 = 0.576,L4 = 0.69, Ly = 0.3605,Ls = 0.125, L,
0.125,Ly = 0.125, Ly = 5.19,L,, = 4.88,L; 0.38,L1»
2.06,L;3 =19, L4 =7.75,L15 = 11.3,t = 0.635,¢ = 16,¢,. = 10.
All dimensions are in millimeters.
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Fig. 9. Measured and calculated S-parameters of the wide-band filter.

with the measurements given in [23]. The CPU time for gener-
ating a frequency point is 122.31 s.

V. CONCLUSION

A 2-D NUFFT technique incorporated with the SDA has been
proposed for efficient analysis of microstrip circuits in a rect-
angular enclosure. In this method, the mesh scheme has good
flexibility since conductors can be discretized into fine cells near
the edges and relatively large cells in regions with smooth cur-
rent densities. The 2-D NUFFT algorithm can be implemented
with grid points in a square or octagonal, i.e., reduced neighbor-
hood. The convergence of the 2-D NUFFT algorithm has been
discussed. As compared with a square neighborhood, the approx-
imation with octagonal grid points leads to a smaller MoM matrix
and preserves accuracy of results. In analysis of three microstrip
circuits, each entry in the final MoM impedance matrix has five
types of double summations, and all entries of each type can be
obtained via one call of the 2-D NUFFT. The scattering param-
eters of the hairpin resonator, an interdigital capacitor, and a
wide-band filter are calculated and validated by measurements.

The 2-D NUFFT algorithm has been proven as a useful ad-
vance in the efficiency of MoM calculation. It may have wide-
spread applications in science and engineering.
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