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SUMMARY 
A quadratic time-domain Boundary Element Method (BEM) for two-dimensional (2-D) elastodynamic 
transient wave analysis is presented. Emphasis is focused on developing time-domain fundamental convol- 
uted kernels and methodology for quadratic temporal solution procedure which are never presented before. 
In the presented BEM method, the displacement temporal variation is assumed to be quadratic, the traction 
temporal variation is assumed to be linear (called QL method, a two-time-step piecewise continuity method), 
and the spatial variations are assumed to be quadratic variation. The QL method is compared with the LC 
method and the QC method by solving several example problems. Numerical study reveals that the QC and 
QL methods are more accurate and stable than the LC method, and the QL method is much better than the 
QC method for transient problems. 
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1. INTRODUCTION 

Boundary Element Method (BEM) has recently become an important method in engineering 
analyses of linear elastodynamic problems, for example transient analysis and non-destructive 
testing, etc. Its popularity can be attributed primarily to the reduction of dimensionality of the 
problems, high accuracy of results and automatic consideration of the radiation conditions at 
infinity.' Compared to BEM in frequency or Laplace transformed domains, the time-domain 
BEM is still quite new and rarely touched, although it has been long acknowledged that the 
time-domain BEM is more attractive, especially for non-linear problems. Cruse and Rko2  
solved 2-D transient elastodynamic problems in the Laplace transformed domain by using BEM 
and a numerical inversion scheme to obtain time-domain solutions. After that, quite a few 
researchers solved transient problems using the transformed domain formulations. 
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In the early 1980s, Niwa et aL3 solved 2-D problems using 3-D transient kernels with the 
third spatial co-ordinate playing a role of time related variable. But Mansur4 was the first 
to formulate a time-stepping algorithm using 2-D time-domain elastodynamic kernels. Later, 
Antes' also employed a similar formulation. Recently, Israil and Banerjee6-' implemented 
the numerical time-stepping technique and also gave a number of numerical solutions. In all 
these works, the temporal convolution integrals are evaluated analytically and the spatial 
integrations are carried out numerically at each time step. Wang and Takemiya' also obtained 
analytically both spatial and temporal integration for scalar wave by the Cagniard-De Hoop 
method. 

In all the time-domain BEM methods mentioned above, the temporal variation of field 
variables is assumed to be either zeroth or first order (constant or linear) and piecewise 
continuous only in one time step. Some of previous works indicate that the time-domain BEM 
analysis combining linear approximation in displacement and constant approximation in trac- 
tion field (called LC method, Israil and Banerjee' called it mixed variation) obtains better result 
than those by simply using linear variation (LL method) or constant variation (CC method). 
Besides these works, the quadratic temporal solution procedure (second-order, piecewise continu- 
ous in two time steps) is developed by the authors" for the first time. In the procedure, quadratic 
temporal variation for displacement and constant temporal variation for traction are adopted 
and spatial fields variations are assumed to be quadratic. Therefore, it is called QC method. As 
expected QC method gives better result than LL, CC and LC. Here the QL method is developed 
in the paper in which quadratic temporal variation for displacement and linear instead of 
constant temporal variation for traction are chosen, and spatial fields variations are also 
quadratic. Therefore, it is called QL method. The temporal integrations can be obtained 
analytically and the spatial integration is obtained using Gaussian quadrature method. The 
uniform subsegmentation technique is also used for the numerical integrations, since the kernels 
have singularities as well as jumps at the moving wave front. 

As for wave fronts in which the divergent integral is treated in the sense of Cauchy Principal 
Value, the finite part of the integral is evaluated in this paper by using the method of rigid body 
translation, which is an indirect integration technique and can be found in most of BEM texts for 
elastostatics; e.g. Reference 11 or 12. 

Several numerical examples are used to demonstrate the efficiency, effectiveness and numerical 
stability of the presented QL method. Some comparative studies are also made for QL method 
with QC and LC methods. 

2. BEM INTEGRAL REPRESENTATION FORMULAE 

Considering a domain V bounded by a surface S, the displacement uj({, t )  at a point 6 and at time 
t can be obtained by the dynamic reciprocal work theorem in an integral form as follows: 
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In the above equation, Cij(() is the well-known discontinuity term which is dependent on local 
geometry. And * stands for the Reimann convolution integral, t j (x ,  t)  is the traction vector, bj is 
the jth component of the body force, the overdots indicate the time derivative. The terms 
Gij(6, t; x, t) and Fij(6, T; x, t) are the fundamental solutions and represent, respectively, the 
displacements and tractions at the field point x and at time t due to a unit point force applied at 
the source point 6 and a preceding time 7. 

The governing equation (1) for elastodynamic problems represents an exact formulation 
involving integrations over the surface and the volume as well as the time history. It is also of 
interest to note that equation (1) is an implicit time-domain formulation, since the displacements 
at time t are calculated by taking account of the history of surface tractions and the history of 
displacements up to the time t .  

2.1, Fundamental Solution 

The desired 2 - D  kernel, is written for completeness as follows: 

H(czt'  +- 
c2 

2(!3 - 1 [/m dij +- r 

where H is the Heaviside function and t' = t - T is the retarded time; r denotes the distance 
Ix - 61; c1 is the velocity of dilatational wave defined by c: = (A + 2p) /p  and c 2  is the velocity of 
shear wave defined by c i  = p l p ,  A and p are the Lam& constants and p is the mass density of the 
material, and the inferior commas indicate space derivatives. The details of derivation of equation 
( 2 )  can be found in the text by Eringen and Suhubi,13 and the form was written by Israil and 
Banerjee.6*8. The F ,  kernel (the traction kernel) can be obtained using the strain-displacement 
relationship and the constitutive equations (Hooke's law) as 



954 C . 4 .  WANG, H.-C. WANG AND G.-S. LIOU 

where 

ar 
an 

Az. = nir,j  + njr,i + -(dij - 4r,ir,j) V 

A?. = -((2r,ir,j ar - 6,) - nir,j  
lJ an 

I ar 
13; = -njr. i  + rSjni + 6,- 

P an 

In equations (4)-(7), ni denotes the unit normal vector to S. The above expressions for the 2-D 
transient FiJ-kernel are the most explicit and simplest available so far. Also, one should note that 
the terms involving the delta function 6(cit' - r) represent the waves front contribution. After 
spatial integration, these terms make no contribution. 

2.2 Temporal integration 

For the numerical implementation of equation (l), discretizations in both time and space are 
required. The time integrations can be performed analytically while the spatial integrations are 
treated numerically. The salient features of the temporal integrations will be presented in what 
follows. 

In evaluating the convoluted Gij * ti and Fij * uj kernels, the computational effort can be greatly 
reduced by making use of the time-translation and causality property of the kernels. That is, at 
each time step, only the effect of the current time interval is needed to be evaluated. 

The time span of interest is discretized into N time steps with a duration A t  for one time step. 
And define t,, = n At for n = 1,2,. . . , N. The temporal variations of the functions are described 
in the following. 

2.2. I Quadratic temporal interpolation functions. The field variables are assumed to vary 
quadratically during a two time step and can be expressed as 
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wherefl(x) stands for tractions or displacements at time step n and MQF(r), MQM(r) and MQB(t)  
are quadratic temporal interpolation functions as shown in Figure l(a) and given by: 

in which t,- < r < t,, the subscripts QF, QM and QB are referred, respectively, to the forward, 
midpoint and backward temporal nodes in two time steps (2 At). 

2.2.2. Linear temporal interpolation functions. The field variables are approximated by using 
linear interpolation functions during a time step and can be expressed as follows: 

fib, d = MLF(M"(X) + M L B ( w -  '(x) (12) 

ld t I I I 
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Figure 1. Temporal interpolation functions, (a) quadratic, (b) linear, (c) constant 
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where ML&) and MLB(T) are linear temporal interpolation functions given by 

tn-1 < T < t ,  

in which the subscripts LF and LB are referred to the forward and backward linear temporal 
nodes, respectively, in a time step as shown in Figure l(b). More precisely, it is important to 
distinguish linear variation of a linear step from linear variation of a quadratic step. 

2.2.3. Constant temporal interpolation functions. If a constant variation is assumed, then the 
field variables can be expressed as follows: 

f;(x, 7) = MCF(T)f;:'(X) + MCB(T)fin-'(X) (14) 

MCF(r) = 1, MCB(T)  = f; t n -  1 < < tn (15) 

where MCF(7) and MCB(t) are constant temporal interpolation functions given by 

in which the subscripts CF and CB are referred to the forward and backward constant temporal 
nodes, respectively, in a time step as shown in Figure l(c). 

2.3. Quadratic solution procedure 

For elastodynamic problems with initial rest conditions and in the absence of the body force, 
only the surface integral in equation (1) remains. Thus, time-domain boundary element equations 
can be expressed as follows: 

Cij(Q$'(t) - I"" S (CGijtj(x9 T) - F i j U j ( X ,  ~ ) l ) d S ( x ) d ~  
( N - 2 ) a t  S 

Quadratic variation time SteD 

riationtimestep 
I QuadratCW 

?MJ 

tinearvariationtimestep 

A t = N A t  

Timestepproceeds ,-> 
Figure 2. Quadratic temporal solution procedure 
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in which RN represents the effect of past dynamic history on the current time node. The reason 
why two time steps are used in equation (16) is that the analytic integrations for quadratic 
temporal function representing boundary displacement field can be developed. However, one 
should note that only a single time step is chosen in this paper for the first time step N = 1. In 
other words, the first time step is the linear or constant step. After the first time step, fully 
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(a) Ranpstep loading cuve 

Figure 3. Boundary element discretization of a cantilever bar, L/W = 20, 88 nodes with 44 quadratic elements 
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quadratic temporal solution procedure can then be established as shown in Figure 2. Now, the 
solution procedure will be dependent upon N is even or odd. The developed methodology for 
quadratic temporal solution procedure is presented as follows. 

If N is even, let N = 2K. With the quadratic variation of temporal functions described in 
equation (8), equation (16) becomes the following form: 

R 
(x) C,(QU;~(~) = I ([G&2n+Z + G&2n]t;"(x) + [GQMij 2 K -  2 n +  2 3  $- 1 

n = i  S 

- [F$&2"+2 + F:&'"]tj'"(x) + [F$&2"'2]uf"-'(x))dS(x) (17) 

td 0.00.J 

0.00 1 .oo 2.00 3.00 4.00 5.00 
Nondimensi0ndlimeC~ t 

L 
Figure 4. Comparison of the QL with the LC and QC method for time step /3 = 1.0 
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In equation (17), one should note that every piecewise continuous function is a two-time-step 
function. In addition, the initial tractions are assumed zero everywhere at boundary surface. For 
a Heaviside loading with non-zero initial value, a term of Gi t i j t ?  in equation (17) is neglected. 

If N is odd, let N = 2K + 1. Equation (1) similarly takes the form: 
K 

C i j ( ~ ) ~ ~ K ' l ( ~ )  = 1 ([G&2n+2 + GS;2n]tP+1(~) + [G$&2n+2]ty(x) 
n = l  S 

- [FoFij 2K - 2n+ 2 4- F%i2"] tF+l (X)  + [ F ~ & j 2 n + 2 ] ~ ~ n ( ~ ) ) d S ( ~ )  

+ G&j] t,! (x) - [Fz:; + Fsij] Uf (x)) dS(x) (18) 
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Figure 5. Comparison of the QL with the LC and QC method for time step jJ = 1.0 
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1 I I I I 1 I 

N - Z n + 2  + ~ N - 2 n  2K- 2n+ 2 In the above two equations, [G&;"+' + GN-'" QBij 1, [ F Q F i j  QBij 1, [GQMij 1 and 
[F$&2"+z] are the quadratic convoluted combined kernels. The forward temporal point (QF) 
array and the backward temporal point (QB) array can be merged into one array as 
[F&i!"+2 + FG;i;"] shows with the benefit of cancelling of strong singularity for N > 2. In 
equation (18), one should also note that only the first piecewise continuous function is one-time- 
step function and the other piecewise functions are two-time-step functions. The last term in 
equation (18) represents the first-time-step effect which includes parts of linear variation contribu- 
tion and parts of quadratic variation contribution. Moreover, the fully quadratic convoluted 
combined kernels of equation (18) apparently equal that of equation (17). 

I 
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Figure 6. Comparison of the QL with the LC and QC method for time step = 2.0 
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Quadratic convolution combined traction kernels in equations (17) and (18) are defined as 
follows: 

f 2n At f @ n +  2) At 

and 

1 cd 

f! I- 
d 

2n At 

( 2 n - Z ) A t  
[F6&2n+2] = Fij(5, z; x, 2K At)MQM(~) dz 

I n  1 ..- 
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Figure 7. Comparison of the QL with the LC and QC method for time step B = 2.0 
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in which Fij  is the fundamental solution of traction in equation (3), M,, MQM and M,B are 
quadratic temporal interpolation functions defined in equations (9)-( 1 1). The quadratic convolu- 
tion combined displacement kernels and the linear convolution combined kernels can be similarly 
obtained as, for example 

n At 

[GFGY'l + G;;;] = j( Gij(g, z; x, N At)MLF(z)di 
n- 1)Af 

Gij(& G X, N At) MLB(T) d~ (21) 

Figure 8. Comparison of the QL with the LC and QC methods for time step /3 = 3.0 
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However, the convoluted Fij  * uj kernels contain terms that sometimes cause difficulty’ in 
numerical integration especially for a mesh with widely varying element lengths. But, after 
convoluted kernels are combined as demonstrated in equations (17) and (18), those strong 
singular terms cancel each other and result in well-behaved functions for N > 2. And only at 
N = 1 (for linear variation time step) or N = 2 (for quadratic variation time step) strong 
singularity of O(i) occurs at wave fronts, which can be dealt with the well-known rigid body 
method’ or the finite part method. Furthermore, the combined kernels form in equations (17) and 
(18) can save computer memory space by merging two arrays into one array. 
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Figure 9. Comparison of the QL with the LC and QC method for time step f i  = 3.0 
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I 1 I I 

2.3.1. QL mixed method solution procedure. The mixed solution procedure model is developed 
to combine different temporal displacement variations and traction variations. From the constitut- 
ive relationship, the stresses are the spatial derivative of displacements. This implies that it may be 
reasonable to employ the temporal interpolation function for displacement one order higher than 
that for traction.' The mixed variation procedure can similarly be obtained as quadratic variation 
procedure through simple manipulations. One can obtain the equivalent linear traction convoluted 
displacement combined kernels for n = 1 only, due to time translation property, as follows: 

[GtLqj + G:&j] => [G&j + G:gi;] [GZib + GEi$] [GfG! + Gfi?] (22) 

[ G t ~ ~ i j ]  => [ G t ~ i j ]  [GZFij GEBi!iI [GFFFlj + G%jl  (23) 
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Figure 10. Comparison of the QL with the QC method for time step = 4.0 
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where the subscripts qLM, qLF and qLB are linear temporal variation for equivalent quadratic 
time step’s mid-point, forward and backward temporal nodes, respectively. And the subscripts 
1LF and 1LB are linear temporal point of linear time step’s forward and backward nodes, 
respectively. It is worth to note that the analytical integral of linear variation for traction over 
quadratic time step should break into two pieces of linear time step in order to maintain the 
accuracy. The linearity of two time steps for traction convolution kernels is similar to that of one 
time step. The linear convoluted displacement kernels with quadratic temporal step are expressed 
as equivalent linear convoluted displacement kernels with linear temporal step and they are given 
by equations (27)-(29) of Appendix I. And the quadratic convolution traction combined kernels 
with quadratic temporal step are defined by equations (30)-(32) of Appendix 1. 

& Y  cd 0.00 

2.00 , 

T 
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Figure 11 .  Comparison of the QL with the QC method for time step B = 4.0 
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The QL method solution procedure can be similarly obtained by using equations (22), (23) and 
substituting linear-and-quadratic variation of [GEE; + Gitij]  with linear-and-linear variation 
of [G::;' + G:&j] into equations (17) and (18). 

For the LC method (linear temporal variation for displacement and constant temporal 
variation for traction) the solution procedure can be expressed as follows: 

N 

Cij(()~y(5) = C ([G&i;+' + Gzi j ' ] t j (~ )  - [F&+' + F~G;]u;(x)~S(X) (24) 
I= 1 I 

where the subscripts LF and LB are the forward and backward temporal nodes of linear time step 
as depicted in Figure l(b), respectively. 

0 . 0 0 J J  

0.00 1 .00 200 3.00 4.00 5.00 
Nondsmensiondlimc~ t 

L 
Figure 12. Comparison of the QL with the LC and QC method for time step j = 1.0 
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- 

-3.0 

In the above equations, the solution procedures represent an exact formulation of integrations 
over the surface, if the assumption of field variables variation were made. 

0 
A 

I I I I 1 I 

3. NUMERICAL RESULTS 

The following examples are presented to demonstrate the capability of the proposed QL method. 
The boundary geometry is modelled with continuous isoparametric quadratic elements. The 
surface traction components on both elements attached to the corner node can be different. 

In general, the spatial variation of the convoluted kernels is an Heaviside logarithmic or square 
root decay function and hence uniform subsegmentation techniques are used for accurate 
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evaluation of the spatial integrals. 12 x 32 and 8 x 10 in which the first number indicates the 
number of subsegments and the second number indicates the number of Gauss points for one 
subsegment, are selected for evaluating of the singular and non-singular time step, respectively, 
for the three (LC, QC and QL) methods used in the paper. In the following examples, the same 
spatial discretization and Gauss points are used in LC, QC and QL methods for comparison. 

The non-dimensionalized time step B is defined as 

~1 At 
BE--  

1 
where 1 is the quadratic element length, At is the time step used and c1 is the compressional wave 
velocity. Since a larger fl means less computing time, the numerical investigation about fl is also 

0.20 

0.00 

4.20 

0.00 200 4.00 6.00 8.00 10.00 

N o n d i m e n s i ~ ~ m c l  t 
L 

Figure 14. Comparison of the QL with the LC and QC method for time step j = 2.0 
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- Amtykbaction 

included in order to get insight into the numerical stability and accuracy of the results with 
respect to different B values. 1.0 6 B 6 4.0 are selected in the numerical study. 

3.1. A bar subjected to uniform ramp-step load 

A rectangular bar with left end fixed is subjected to a uniform ramp step load at the other end 
(see Figure 3). A mesh of 88 nodes and 44 quadratic elements as shown in Figure 3(c) is used. The 
lateral sides (top and bottom) are assumed to be traction-free. In order to simulate pure 1-D 
behaviour, the Poisson’s ratio of the material is assumed to be zero. This will facilitate a com- 
parison with available analytical 1-D solutions. This problem was also solved numerically by 

0.00 2.00 4.00 6.00 8.00 10.00 

N o n d i m e n s i ~ ~ m e c l  t 
L 

Figure 15. Comparison of the QL with the LC and QC method for time step /3 = 2.0 
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many authors to validate their methods. The other material constants are E = 7.8 Pa and 
c1 = 100 m s - l .  

Figures 4(b) and 5(b) show the numerical results of displacements at the free end and fixed end 
tractions of the bar for B = 1.0, respectively. The displacements at point D (see Figure 3(c) for its 
position) at the free end by all three numerical methods are almost the same as the analytical 
results as can be seen from Figure 4(b) for p = 1. But the tractions at point C exhibit a little 
fluctuation about analytic solution as shown in Figure 5(b) in which QL and LC methods, for 
a short non-dimensional time, provide a better agreement with the analytical result than QC 
method does. 

1 .00 f 0.50 

0.00 

1 .a 

I 1 I 

0.80 1 

n 

0.40 

0.00 

-0.40 

1 
-0.80 I, 

0.00 4.00 8.00 12.00 16.00 

NondmensiOndlimeC~ t 
L 

Figure 16. Comparison of the QL with the LC and QC method for time step p = 3.0 
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For p = 2, QL and QC methods show good displacement results at point D (see Figure 6(b)) 
for all 81 time steps, while LC method becomes divergent above N = 27. Besides, in the later time 
steps, QL method gives better traction results at point C than QC method does as shown in 
Figure 7(b). As seen in Figures 4-11, the accuracy of the numerical results of displacement is 
always better than that of the results of traction as mentioned in many reports regarding transient 
problems. 

For = 3, the LC method leads to divergent results in Figures 8(b) and 9(b) and the results by 
QL method are closer to analytical solution than those by QC method. 

3.0 I- 

n 

0.00 4.00 8.00 12.00 16.00 

NondimensionalTimcl t 
L 

Figure 17. Comparison of the QL with the LC and QC method for time step lJ = 3.0 
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For p = 4, the LC method becomes unstable at a much earlier time than for p = 3 which is not 
shown in Figures lO(b) and 11 (b). It is seen from those figures that the QL method gives good 
solutions, while QC method provides oscillating results and becomes divergent at later time. 
Figures 8(b) and 10(b) show that the displacement amplitude at point D becomes smaller as time 
increases, which is similiar to a damping effect happened in a viscous system. 

Referring to Figures 4-11 and comparing the accuracy and the stability of the QL method 
with that of the QC method and the LC method for p = 1,2 ,3  and 4, one can find both the QL 
method and the QC method are more accurate and stable than that of the LC method as 
indicated in these figures. The behaviour of the numerical results of Figures 8-11 after a short 

d 

0.40 

0.00 

4.40 

0.00 4.00 8.00 12.00 16.00 20.00 
Nondimensiondlimecl t 

L 
Figure 18. Comparison of the QL with the LC and QC method for time step f l =  4.0 
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non-dimensional time for >, 2 reveals that both QL and QC methods approach analytic 
solution with only a little damping effect, and the LC method gives divergent (unstable) results. In 
Figures 8-1 1, the results of LC method are not shown after a small non-dimensional time, since it 
becomes divergent. 

The discrepancy between QL results and analytical solution is smaller than that between QC 
and analytical solution and this difference reveals that the QL method is more accurate than the 
QC method. 

n 

b 
1 .o 

0.0 

-1 .o 

-2.0 

0.00 4.00 8.00 12.00 16.00 B.00 
Nondmerrsiondlimecl t 
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Figure 19. Comparison of the QL with the LC and QC method for time step f l =  4.0 
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3.2. A bar subjected to an impulsive loading 

An impulse (Dirac delta) type of load as shown in Figure 12(a) is applied at the right end of 
a rectangular bar (L/W = 20) shown in Figure 3. The lateral sides are still assumed to be 
traction-free. To simulate pure 1-D behaviour, the Poisson's ratio of the material is assumed to be 
zero. This will also facilitate a comparison with available analytical solutions. The material 
constants are E = 7.8 Pa, v = 0 and co = c1 = 100 m s-'. 

The analytical ~ o l u t i o n ' ~  for this problem with a loading amplitude P is 

u(x, t )  = p PCO ((.[t - ?$)I - .[t - ?%)I} 

a. 20 nodes, &= 

b. mng a8-w? ro 
Figure 20. Discretization of the circular cylindrical cavity, (a) 20 nodes, (b) loading curve 
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+ (.[t - (T)] - H [ r  - (%)]I -.  * .) (26) 

The numerical results by QL, QC and LC methods for the displacement at the free end and 
the traction at the fixed end are compared with analytical solution for b = 1,2,3 and 4 in 
Figures 12-19. For f i  = 1.0, one can see that all three methods give very good results at point F. 
Surprisingly, the LC method gives more stable traction solutions than QC and QL methods do, 
but it gives less than half of the analytical value at the second peak where QC and QL methods 
still give good results. 

For larger time step B = 2, 3 and 4, both QL and QC methods still give fair results, while LC 
method diverges after a few time steps. But both QL and QC methods are not able to accurately 
predict the peak of the traction due to such an impulse load with larger time step size. 

I I 

1 

I I 

1 
0.00 4.00 8.00 12.00 

NonclimensionalTme( G t )  
RO 

Figure 21. Circumferential stresses at cavity surface due to a ramgstep transient compress wave (R, = 2.0, Y = i, plane 
strain) 
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I 

3.3. Transient compression wave @om a cylindrical cavity 

Consider a circular cylindrical cavity with radius Ro in an infinite elastic medium subjected to 
a suddenly applied internal uniform pressure of intensity Po. As shown in Figure 20(b) the applied 
pressure is independent of the angular co-ordinate 8 and can be written in the form P( t )  = P o f ( t )  
with f(t) = fH[t] + (1 - $ H [ t  - K ]  (i.e. ramp-step loading). It was found that it is appropriate 
to discretize the boundary surface of the cavity into 10 quadratic elements of equal length as 
shown in Figure 20(a). The numerical input data are Ro = 2 m, E = 62000MPa, 
p = 2670.0 kgm-3, v = 1/4, L = p = 24 800 MPa, corresponding physically to a granite and time 
span T = 000454653 s, a number of time steps N = 6,12,18,20 and 30, and Po = - 690 Pa are 
selected in the example. 

This problem has been solved by Chou and Koenig” using the method of characteristics under 
plane stress conditions, by F u ’ ~  using the FEM under plane strain conditions, by Kontoni et al. 
using Laplace domain and by Mansur and Brebbia4 using time-domain BEM under plane stress 
conditions. The same problem has been solved analytically using Laplace transform method by 
Kromm” under plane stress condition and by Selberg’*# l9 under plane strain condition. Note 

I 1 

0.40 

0.00 

-0.40 

F $ 4.80 
B 

-1.20 

-1 .m 
0.00 4.00 8.00 12.00 

Figure 22. Circumferential stresses at cavity surface due to a ramp-step transient compress wave (R,, = 2-0, v = a, plane 
strain) 
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that, the plate wave velocity of plane stress, Cd = (E/p(l - v’))’/’ and v = 3 are adopted as 
corresponding plane strain case of v = 4 for non-dimensional time calculation. Results of 
Selberg” and Kromm” agree exactly with those of Chou and KoenigI5. 

The time history of the circumferential stress og at the surface of the cavity by QL method and 
other methods is plotted in Figure 21. The results by QL method are in very good agreement with 
analytical solution, except for the first time step. This is due to the difference between Heaviside 
loading and ramp step loading. Figure 21 reveals that the time history of the circumferential stress 
at the cavity surface by QL method is in better agreement than that of the Laplace domain and 
other time-domain methods. 

For a ramp-step loading with K = 2.04, the time history of the circumferential stress Oe at the 
surface of the cavity is plotted in Figure 22 against the method of the characteristic s~lut ion.’~ 
Within plotting accuracy, the results of QL method with p = 1-06 ( N  = 18), /? = 1-59 (N = 12) 
and b = 3.23 (N = 6) agree exactly with those of Chou and Koenig” using ramp input with 
K = 2.04. 

4. CONCLUSION 

After some extensive numerical study of the presented BEM scheme, the following four con- 
clusions can be drawn: 

(1) For a ramp-step loading and small time step size, such as B = 1, all QL, QC and LC 
methods give good numerical solutions. As time step size increases, for example 2, LC 
method goes divergent in a few time steps. The result by the QC method exhibits an 
oscillating phenomenon and also goes divergent later. But the QL method still gives fair 
results even for B = 4.0. 

(2) For an impulse-type loading, the use of a large time step size should be avoided for all QL, 
QC and LC methods because of the difficulty in capturing the peak of traction solution, but 
the QL method can still provide fair results for displacement. 

(3) In solving cylindrical cavity problem, the results by QL method agree much better than 
other numerical solutions with those by analytical methods. 

(4) With the same time step size, the QL method (5455-2 s on HP 9000/750) requires about only 
31.9 per cent more computing time than that by the LC method (4135-9 s) and 6.6 per cent 
more than that of the QC method (5116-2 s) for the case with 88 boundary nodes and 81 
time steps. And the QL method (308.6 s) needs about only 7.6 per cent more computing 
time than that by the LC method (286.8 s) and 6.1 per cent more than that of the QC 
method (290.9 s) for the case with 24 boundary nodes and 61 time steps. However, one 
should note that the accuracy by the QL method is much better than those by the QC and 
LC methods. So, it is possible to save computing time by using a larger time step size since 
a larger fl means less computational cost. Restated, the QL and QC methods are capable of 
saving computational cost and obtaining results much earlier than the LC method, as 
demonstrated in this present study. 
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APPENDIX I 

Time-convoluted kernels of the QL method 

for displacements and three for tractions, are presented in detail as follows. 
The six combined temporal convolution kernels of the QL method solution procedure, three 

Forward linear convoluted displacement kernels of quadratic time step [GtLFij + G:htj] for N is 
even (N = 2K). 

1 2K- 1 
CGsLFij + Gi&i'if] = - { + (*) [ + (2K - 1)cosh- 2np 2c: 

- 2(2K - 2)cosh-l 

I1 + (2K - 3)cosh-I 

+ pir*i-'ij)(:y[ +(2K - I)'/- 



TWO-DIMENSIONAL ELASTODYNAMIC TRANSIENT ANALYSIS 979 

- 2(2K - 212 /- 
+ (2K - 3)' d-1 

First time step of linear convoluted displacement kernels [GKFij + GKib] for N is odd 
( N  = 2K + I ) .  

11 - 2(2K)cosh- p'(2:)A'] + (2K - 1)cosh-' 

r 2 ( 2 K  r+ 
+ (%)[ + (2K + 1)cosh-' 

I1 - 2(2K)cosh-' p2(2:)Atj + (2K - 1)cosh-' 
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- 2(2K)’ dw + (2K - 1)’ d-31 

Middle-point linear convoluted displacement kernels of quadratic time step [GtLMij] = 
[GEFij + Gkih] for N is even (N = 2K). 

[ G i j  + GLsij 2K-1 ] =-{ 1 + (%)[ + ( ~ K ) c o s ~ - ’ {  ci(2K) At } 
2np 2c: 

11 + (2K - 2)cosh-’ 
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11 + (2K - 2 ) c o ~ h - I  

- 2(2K - 1)' /- 
+ (2K - 2)' d-1 

- 2 / = q J + / G G q 3 ] }  

First time step of linear convoluted traction kernels of quadratic time step [FtE;' 

- (2K - 1)J-I 

+ (2) (:Y [ + 2(2K + I)'/- 

+ ( K  - 5)(2K)' (2K)' - - J ( c i t y  

- (K)(2K - 2)' J-1 

+ (5K - 3) d-1 
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+(  2A,'j 4c: + A; )(&-[ +cosh-1(C1(21()At) 

- cosh-' 

- (2K - 1)J-l 

- (?)Cy[ + 2(2K + 1)' 

- (K)(2K - 2)'J-I 

-(s)[ - 4 / - - 5 ( K - 2 ) / 3  

+ (5K - 3)J-l 

- cosh-' (30) r 

Z K - 2  Forward quadratic convoluted traction kernels of quadratic time step [FSij + FQBij 1. 

- cosh- ' 
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- (2K - 3) J-1 

+ (5K - 8) /-] 
+ ($)Ey [ ( K  - 1)(2K)’/- 

- 6(2K - 2)2 /- 
- ( K  - 1)(2K - 4)2 

2A: + A$ ~ 2 ( 2 K  - 4)At 
- ( 4ci ) (&Y[ cosh- 

+ ( 3 ) [ ( 2 K  - 1)Jw - 6/- 

r 
(c2(2p)At) - cosh- ( 

-($)[ -(5K-2)/-+12/- 

+ (5K - 8) /-] 
- e) (:y [(K - 1)(2K)’ 

- 6(2K - 2)’ (2K - 2)2 - - /T 
- ( K  - 1)(2K - 4)’ (2K - 4)2 - - r----cJIl 
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Middle-point quadratic convoluted traction kernels of quadratic time step [ F i i i j ] .  

[F’“..]  Q‘‘J = -!- 2npr { - #)[ - (2K - 2) Jq clAt + (2K)J-] 

+ (y)($y [ - (K - 2)(2K)2 

+ (K + 1)(2K - 2)’ (2K - 2)2 - - J---aI 

2A& + A$ ci(2K - 2)At 
+ ( )(&>’[ - cosh-1r’(21)At) + cosh-’( r 

+ q  (“”) [ - (2K - 2) d- + (2K) J-3 
- -  6’) ey [ - ( K  - 2)(2K)2 /- 
+ (K + 1)(2K - 2)’ (2K - 2)2 - - r---mI 
- (  2Az 2ci + A$ )(-&r[ - c o s ~ - ’ (  cz(2K) At ) + ~ o ~ h - ~ ~ ’ ( ~ ~ ~ ~ ) ~ ~ ) ] }  
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