Available online at www.sciencedirect.com

INFORMATION
SCIENCECJ/DIF!ECT® znocﬂssmq

ELSEVIER Information Processing and Management 41 (2005) 275-288 MANAGEMENT

www.elsevier.com/locate/infoproman

A statistics-based approach to incrementally update
inverted files

Wann-Yun Shieh *, Chung-Ping Chung

Department of Computer Science and Information Engineering, National Chiao Tung University,
Hsinchu 300, Taiwan, ROC

Received 26 April 2003; accepted 28 October 2003
Available online 4 December 2003

Abstract

Many information retrieval systems use the inverted file as indexing structure. The inverted file, however,
requires inefficient reorganization when new documents are to be added to an existing collection. Most
studies suggest dealing with this problem by sparing free space in an inverted file for incremental updates.
In this paper, we propose a run-time statistics-based approach to allocate the spare space. This approach
estimates the space requirements in an inverted file using only a little most recent statistical data on space
usage and document update request rate. For best indexing speed and space efficiency, the amount of the
spare space to be allocated is determined by adaptively balancing the trade-offs between reorganization
reduction and space utilization. Experiment results show that the proposed space-sparing approach sig-
nificantly avoids reorganization in updating an inverted file, and in the meantime, unused free space can be
well controlled such that the file access speed is not affected.
© 2003 Elsevier Ltd. All rights reserved.

Keywords: Information retrieval; Inverted file; Incremental update; Statistical approach; Spare space

1. Introduction

For most information retrieval systems, one important challenge is that a large document
collection requires a specialized indexing structure. Equally important is that such an indexing
structure requires an efficient incremental update mechanism.

* Corresponding author.
E-mail addresses: wyshieh@csie.nctu.edu.tw (W.-Y. Shieh), cpchung@csie.nctu.edu.tw (C.-P. Chung).

0306-4573/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
d0i:10.1016/5.ipm.2003.10.004

mail to: wyshieh@csie.nctu.edu.tw

276 W.-Y. Shieh, C.-P. Chung | Information Processing and Management 41 (2005) 275-288

1.1. Current methods and problems

An indexing structure used by many IR systems is the inverted file (Zobel, Moffat, & Ram-
amohanarao, 1998; Witten, Moffat, & Bell, 1999). In an inverted file, for each distinct word (also
known as a “term”) in the text collection, there is a corresponding list (called the inverted list) of
the form (term; fierm; Do, D1, D, ..., Dy,..—1), where identifier D; indicates the document that
contains the term, and frequency fimm indicates the total number of documents in which the term
appears (Witten et al., 1999). Additionally, the location of each occurrence of the term in the
document (say word position) may be stored with the identifier. When a user sends a request
containing some query terms to an IR system, the system searches for these query terms in the
inverted file to see which documents satisfy the request, and returns these documents’ identifiers
with word positions to the user. Zobel et al. (1998) showed that in terms of the querying time, used
space, and functionality, inverted files perform better than other indexing structures.

The inverted file, however, does not support efficient incremental updates (Brown, Callan, &
Croft, 1994). When new documents are added to an existing collection, the inverted lists of the
terms appearing in those documents must be updated, ideally incrementally, by appending the
new documents’ identifiers with word positions to the tails of the lists. This update process is
difficult for an inverted file because the inverted lists in the file are typically laid out sequentially
and contiguously on disk with no free space between each other (Brown et al., 1994; Shoens,
Tomasic, & Garcia-Molina, 1994). Any increase in length of an inverted list requires complex
storage relocation and expensive free-space management.

Most conventional IR systems update the inverted file by periodically re-indexing the entire
collection or by periodically merging the old, dated inverted file with the new, batched inverted files
for newly arrived documents (Hsu & Lang, 1999). However, as the rate of new document arrivals
grows rapidly in most applications today, rebuilding or merging the inverted files becomes too
expansive and inefficient (Hsu & Lang, 1999; Ester, Kohlhammer, & Kriegel, 2000; King, 1992).

Sparing free space at the end of each inverted list for future expansion has been proposed (Brown
et al., 1994; Tomasic, Garcia-Molina, & Shoens, 1994). In Brown et al. (1994), they deal with the
word position inverted lists, and the sizes of the allocated spare space are determined by powers of
2 bytes (e.g., 24, ...,2!%), whereas in Tomasic et al. (1994), the sizes are determined by a constant
number or by the multiple of current list length (e.g., 1.5%, 2x). In case the spare space of an in-
verted list is used up, a larger space is allocated and the contents of the old list are removed to the
new space; the frequency of relocations can hence be reduced. Both of these approaches, however,
result in much wasted space in an inverted file, and also poor performance in information retrieval.

In fact, the size of the spare space allocated for each inverted list cannot be determined easily due
to a complex trade-off between relocation reduction and space utilization. If too much spare space
is allocated, the possibly wasted space enlarges the inverted file and slows down the file accesses.
Conversely, if the spare space is insufficient, frequent relocations cause high update costs. The best
policy allocates the spare space for each inverted list according to individual space requirement.

1.2. Research goal

In this paper, we propose a statistics-based approach to allocate the spare space for an inverted
list when it is relocated. This approach is based on the estimation of the space requirement in a

W.-Y. Shieh, C.-P. Chung | Information Processing and Management 41 (2005) 275-288 277

time window. The time window for an inverted list is defined as the time interval between two
sequential relocations; that is, from the time a spare space is allocated to the time the list needs to
be relocated again. Whenever a time window exhausts, a suitable size of the spare space for the
next allocation is predicted based on the statistics of the space usage and document update request
rate in this time window. The objective of the prediction is to best guarantee that an inverted list
has sufficient reserved space to amortize relocation frequency, and also to keep space utilization
high. Experiment results show that the proposed space-sparing approach significantly avoids
reorganization for an inverted file, and in the meantime, the wasted space can be well controlled
such that the performance of file accesses would not be affected.

This paper is organized as follows. In Section 2, we model the relocation frequency and space
utilization in this inverted file problem, and show how to allocate the spare space for a growing
inverted list. In Section 3, we present the experiment results. Finally, Section 4 presents our
conclusions.

2. Allocating spare space for a growing inverted list

To study the spare space allocation problem for a growing inverted list, we use two variables:
relocation frequency and wasted space, to model the update cost and space utilization, respec-
tively. By using these two variables, the trade-offs in determining the size of the spare space for an
inverted list can be clarified. Note that in this section we deal only with document-level inverted
lists that do not contain word position information for simplicity. Later in Section 3, we will show
how to apply the proposed technique to word position inverted lists.

2.1. Relocation frequency and wasted space

For a growing inverted list, relocation frequency represents how often the relocation occurs,
and wasted space represents how much allocated space is unused over time. Fig. 1 shows an
example of relocation occurrences and space usage in the ith time window (see the definition in
Section 1.2) for an inverted list. In Fig. 1(a), the horizontal axis represents time, and we assume

relocation
number free space ith time window

n; slots are relocation e

allocated occurs n-1 |
1 1

ith time window
L ob—f o & O > ¢
------- A5 = X % =
t; liv1 fi ik livy
(@) (b)

Fig. 1. For a growing inverted list: (a) the relocation occurrences in the ith time window, (b) the space usage in the ith
time window.

278 W.-Y. Shieh, C.-P. Chung | Information Processing and Management 41 (2005) 275-288

that the ith time window starts from ¢ to #,;. A vertical mark represents a relocation occurrence.
If RF; denotes the relocation frequency in the ith time window, we have

1

i1 — &

RF;, = (1)

In Fig. 1(b), the horizontal axis represents time, and A¢;, represents the time between the kth
and the (k + 1)th identifier arrivals in the ith time window. The vertical axis represents unused free
space, which starts from n; — 1 down to 0. Without loss of generality, we assume that the unit of #;
is the number of slots and each slot stores an identifier. The identifier arriving at #; triggers the
relocation, causing »; slots to be allocated for the list growth. At this time, the first identifier is
placed in the first slot, and the spare space remained is n; — 1 slots until the second identifier
arrives. Each incoming identifier is placed in a slot, causing the spare space to be used up after the
n;th arrival. The next relocation occurs at #,,; when there is no free space left and the next
incoming identifier has arrived. Let WS, denote the accumulated free space (i.e., wasted space)
over the ith time window, we have

ni—1
WS, = (m— 1) X Aty + (1, — 2) X Alig -+ 4+ 1 X Alyyy = Y (1 — k) X Aty (2)
=1

Assume that identifiers arriving to an inverted list in a time window follow a Poisson process
with rate A. The Poisson process is often used to model a sequence of events that happen randomly
and independently with a rate over time (Ross, 1996). Note that the identifier arrival rate (1) used
here is different from the document arrival rate which is the rate of documents being added into a
collection. When a new document is added into the collection, the lengths of some inverted lists
will increase but others will not. Thus the identifier arrival rate for a term’s inverted list is pro-
portional to the document arrival rate multiplied by the probability of the term appearing in a
new document. This is what a Poisson process would model because the events of a term
appearing in two documents are independent. Under the Poisson process, it is well known that the
inter-arrival time is exponentially distributed.

By the Poisson distribution, the expected relocation frequency derived from Eq. (1) is

ERF] =% ()
n;

where /; (arrivals/s) denotes the rate of identifiers being added to an inverted list over the ith time
window. Similarly, the expected wasted space in the ith time window can be expressed as

(n?—mn) 1
2 X7 4)

ni—1
E[WS] = (n — k) x E[At] =
=1
by taking expected values on both sides of Eq. (2). From Egs. (3) and (4), if we can predict 4; and
assign reasonable values to E[RF;] and E[WS,] at the start of the ith time window, then the value
of n; can be determined at the same time.
To give reasonable values to /;, E[RF;] and E[WS,], we collect the statistics from the last two
time windows for prediction. The statistics include the identifier arrival rates, relocation frequency
and wasted space over the (i — 2)th and (i — 1)th time windows.

W.-Y. Shieh, C.-P. Chung | Information Processing and Management 41 (2005) 275-288 279

For /;, we assign a predicted value, 4, to it by
Ay =max(Aio1 + Adi1-2, Ae), (5)

where Ad;_;;_» = 41 — 42, and 4. is a threshold of the low bound. In (5), if the identifier arrival
rate is increasing (or decreasing) between the last two time windows, i.e., A4;_1;—» > 0 (or <0), it is
assumed that the arrival rate will continue to increase (or decrease) by the same amount. In case
the predicted arrival rate drops to below the threshold, i.e., 4, + A4;_1;» < 4., the arrival rate is
assumed to be A, in the next time window.

For E[RF;] and E[WS;], we assign predicted values, E[RF,] and E[WS] respectively, to them
by

E[RFl]p - min(RFl'_17 RF,'_Z), (6)
and
E[Wsl]p - min(WS,’,I 3 WS,‘,Z) . (7)

Note that E[RF,] is inversely proportional to n; (see Eq. (3)). If the identifier arrival rate tends to
increase in the ith time window, assigning a smaller value to E[RF;] (as shown in Eq. (6)) will
result in either n; > n;_| or n; > n,_,. This makes RF; likely to be reduced in the future. On the
other hand, E[WS,] is proportional to (n? — n;) (see Eq. (4)). If the identifier arrival rate tends to
decrease in the ith time window, assigning a smaller value to E[WS,] (as shown in Eq. (7)) will
result in either n; < n;_; or n; < n;_». This makes WS; likely to be reduced in the future.

There are three reasons to predict 4;, E[RF;], and E[WS;] based on statistics collected in the last
two time windows. First, only one time window is not sufficient for prediction because each
observation point in this model is assumed to be the time that a relocation occurs, and we need at
least two time windows to observe the trends of identifier arrivals. Second, collecting more recent
statistics can help to measure the space requirement more accurately. From the experimental data,
we found that three or earlier time windows seem not very helpful for prediction; using dated
information is even harmful. We think the reason is that the popularities of some terms appearing
in a collection do not always follow a regular distribution. In fact, the problem of how many
previous time windows should be used for a good prediction is involved in the research scopes of
the statistical method and forecasting (Thomopoulos, 1980). We did not include those detail
experimental data in this paper for clarity. Finally, considering the prediction complexity (in-
cludes additional storage cost and computation), we suggest that two time windows are very
suitable for prediction. In the next section, we will present how n; can be determined by using
these predicted values.

2.2. Determining n;

By applying Eqs. (5)—(7) to Eqgs. (3) and (4), we have two extreme values of n;, say n; 3) and n;),
respectively. The first value n; 3, is derived from the consideration of reducing relocation fre-
quency, and the latter n; 4 is derived from the consideration of reducing wasted space. To
determine n;, we define a weighted function

np=0o-n;3)+ ﬁ *Ni4), (8)

280 W.-Y. Shieh, C.-P. Chung | Information Processing and Management 41 (2005) 275-288

where the values of o and f§ are determined by f'(a,). f(«,) should be chosen according to the
user needs; one of its simple forms may be « + ff = 1. For systems with intensive arrivals of
database updates, we suggest that o > f§ to favor larger »; for reducing the frequency of updating
inverted lists. Contrarily, for systems with intensive arrivals of information retrieval, we suggest
that « < f§ to favor smaller »; for reducing the time of retrieving inverted lists.

To implement the approach described above, an inverted list is structured as

<term;ﬁerm; ls; Ng; Ny Wsa; lp; RFp; Wsp;Dlv cee)Df[crm7 Sfmm+l) cee 7Sf1crm+ns>a

where the additional fields are shown in Table 1. These additional fields are used to store the
statistical data from the (i — 1)th and (i — 2)th time windows. With these data, all variables in Egs.
(3)-(8) can be derived.

Fig. 2 shows the algorithm to insert a document identifier (id) into an inverted list (inv_[ist). In
Fig. 2, Insert(inv_list, id) calls three functions:

(1) Create(inv_list, t,oy): creates a single-slot empty inverted list.
(2) Space_allocate(inv_list, t,,y): calculates 1, E [RF,—]p,E [WS,—]p, ni3), and n; 4), and then allocates
a spare space of size n; for inve_list by Eq. (8), where

Table 1
The added fields in an inverted list
New field Description
t Starting time of the current time window
ng Size of spare space allocated at ¢
ny Size of spare space remaining
WS, Accumulated wasted space until now
Jp Arrival rate in the previous time window
RF, Relocation frequency in the previous time window
WS, Accumulated wasted space in the previous time window
S; Spare space

Algorithm Insert(inv_list, id)

begin

1 ooy < time();

2 if (inv_list is null)

3 Create(inv_list, t,,,);

4 else if (inv_list is full)

5 Space_allocate(inv_list, t,,,);
6 put id into inv_list;

7 Update(inv_list, t,,,);

end

Fig. 2. The algorithm Insert(inv_list, id).

W.-Y. Shieh, C.-P. Chung | Information Processing and Management 41 (2005) 275-288 281
UN
A

' tnow - ts

. 1
E[RF], = min (— ,RFp>a
now N

E[WS;]) = min(WS,, WS,),

and

1+ /1 4+ 8LE[WS],
ni7(4) = 2

Note that for WS, in Table 1, we accumulate the wasted space by rows upon inserting identifiers
as shown in Fig. 3(b), instead of by columns (shown in Fig. 3(a)). This is because from Eq. (2), we
have

ni—l n;

WS, = (= k) x Aty = (ti;— 1) x 1, 9)

k=1 =2

where #; and ¢, ; denote the starting time, and the jth identifier-arrival time, in the ith time window,
respectively. Accordingly, given £, o, and ng, we can obtain the correct value of WS,.

Once a spare space is allocated, the values of 4,, RF,, WS, are replaced by 4, ——, and WS,,
respectively; that is, the parameters of the previous time window are replaced by those of the
current time window.

(3) Update(inv_list, t,,v): updates n, and WS, (by Eq. (9)) in inv_[ist after inserting id.

Because all of these three functions calculate only values for variables, the time complexity of
the algorithm (Insert(inv_list, id)) is O(1). Detailed algorithms are ignored in this paper for clarity.

In Fig. 2, when an inverted list is initially to be created (Create(inv_list, t,o)), only a single-slot
space is allocated to store the first identifier. The first relocation of this list will occur when the
second identifier arrives to the list. This means that the inverted lists which contain only one
identifier do not require additional space to store those statistical data in Table 1. This saving is
significant for our approach because these inverted lists, in fact, occupy an essential part of all
inverted lists. Other inverted lists, which contain more than one identifier, however, require

n,-—k

Al‘i,k
(@)

Fig. 3. Accumulate the wasted space: (a) by columns (b) by rows.

282 W.-Y. Shieh, C.-P. Chung | Information Processing and Management 41 (2005) 275-288

additional space to store the statistical data for spare space measurement, because in a dynami-
cally growing document collection, some low frequency terms would possibly become fashion in
the future. To avoid those additional statistical data affecting the query performance in retrieving
inverted lists, we can isolate them from an inverted file, and reference them only when the relo-
cation occurs.

3. Experiment and evaluation

The experiment is used to generate performance data. In performance evaluation, factors to be
examined include relocation occurrences, storage space, and retrieval time for an inverted file.

3.1. Experiment environment

We use parts of WT10g, about 460,000 documents, to be our test collection. (WT10g is a widely
distributed collection and has been included in TREC Web Test Collections (TREC, 2003).) We
implement a Poisson arrival model with different document arrival rates (arrivals/s) to simulate
the behavior of those documents being incrementally added into the depository. Then the pro-
posed statistics-based approach is applied in constructing the inverted file for indexing those
documents. The relocation occurrences and unused free space are monitored over time for per-
formance evaluation.

Because the experiment purpose is to evaluate the spare space allocation in updating an in-
verted file, the inverted lists have not been compressed here. Witten et al. (1999) proposed many
inverted file compression techniques. Most of them could be usefully incorporated into our ap-
proach, except compressing the statistical data in Table 1. Recall that these statistical data are to
be used only when a relocation occurs in an inverted list. To avoid them affecting the query
performance in retrieving inverted lists, we store them in an independent file, and reference this file
at the time a relocation occurs. The size of this file will be taken into account as a storage space
cost for our approach.

To simulate user query behavior, we implemented a query-term generator which picks query
terms from the inverted files. The occurrence of these terms follows the Zipf-like distribution, a
distribution widely used in recent IRS studies (Breslau, Cao, Fan, Phillips, & Shenkerm, 1999). In
this distribution, the relative probability of a request for the ith most popular term is proportional
to 1/i*, where o < 1. We let « = 0.8 in the experiments because o appears to center around 0.8 for
most traces in homogeneous environments (Breslau et al., 1999). In each experiment, we generated
100,000 user queries, and the lengths of the queries were distributed evenly from one to five terms.
Furthermore, we adopted the Boolean query model, in which the AND, OR, and NOT Boolean
operators are uniformly inserted into the generated queries.

3.2. Experiment results
Fig. 4 shows the relocation counts and space utilization in constructing the document-level

inverted lists by three approaches. The relocation count denotes the number of relocations oc-
curred in related inverted lists when adding new documents, whereas the space utilization denotes

W.-Y. Shieh, C.-P. Chung | Information Processing and Management 41 (2005) 275-288 283

500 100

e

60

400

300

Relocation count (xlO3)
Space utilization (%)

200 | (A 0o 40
WL 7 L5x —x— 1.5x
100 | 68 —o—20x 20 —o—2.0x
s : - d(1/4,3/4
JE . [proposedaiaa N I - proposed(1/4.3/4) |
1 6 11 16 21 26 31 36 41 46 1 6 11 16 21 26 31 36 41 46
4.
(a) Number of documents (x10%) (b) Number of documents (x10%)

Fig. 4. Experiment results in constructing the document-level inverted file for indexing parts of WT10g: (a) relocation
count, (b) space utilization.

the ratio of actual used space size to total inverted file size (containing those unused spare space
and statistical data). To examine how the spare space size affects the time of retrieving an inverted
list, we compare our statistics-based approach with (o, f) = (1/4,3/4) against (1) the approach
proposed in Brown et al. (1994) (denoted as “2.0x” in the figure), and (2) the approach with 1.5
times the current list length for future spare space size as proposed in Tomasic et al. (1994)
(denoted as “1.5x” in the figure).

Fig. 4(a) shows that the relocation counts of the proposed approach with («,) = (1/4,3/4) are
somewhat higher than those of the “2.0x” approach, and are significantly smaller than those of
the “1.5x” approach. On the other hand, in Fig. 4(b), the proposed approach has the highest
space utilization, about 86% on average. These results show that there indeed exists a trade-off
between the relocation count and the space utilization for “fixed-multiplier” approaches (e.g.,
1.5%, 2x). The statistics-based approach, however, can determine the spare space size for relo-
cation saving, or for space saving, depending on adaptive factors. When an inverted list involves
fast expansion, the statistics-based approach adjusts the space allocation by relocation-saving
strategy; otherwise, by space-saving strategy. This adaptability makes the proposed approach
have lower relocation counts but achieve higher space utilization.

In Fig. 4(a), we essentially use the “relocation counts™ to estimate the update costs. Considering
that it takes rather longer to relocate a long inverted list than a short one, we use the “average
number of copies per pointer in the index’ to factor in this difference, as shown in Fig. 5. In the

—_
(=]

—>— 1.5x
—— 2

.0x
—a— proposed(1/4,3/4)

o]
—

=)}

Avg. copies per pointer (x0.01)

0
1 6 11 16 21 26 31 36 41 46
Number of documents (x10%

Fig. 5. Average number of copies per pointer in constructing the document-level inverted file.

284 W.-Y. Shieh, C.-P. Chung | Information Processing and Management 41 (2005) 275-288

figure, we find that the 1.5x approach has the largest average number of copies per pointer, and
the proposed approach has it only a little larger than the 2.0x approach does. These results are
consistent with the relocation counts derived from Fig. 4(a). If each copy of a pointer requires a
fixed execution time, then the 1.5x approach takes the largest time to update the inverted file.

We also apply those three approaches to the word position inverted lists. Recall that in our
model, relocation frequency and waste space are both related to the identifier arrival rate (4;) and
the spare space size (n;) in a time window (see Egs. (3) and (4)). If we, instead, let 4; denote the rate
of “word positions” being added to an inverted list, and each word position consumes a unit of
the spare space in a time window, then the technique described in Section 2 can also work well for
modeling the updates in word position inverted lists. Fig. 6 shows the relocation counts and the
space utilization if those three approaches are all applied to the word position inverted list
updating. In Fig. 6(a), the relocation counts for all three approaches increase greatly due to the
space requirements of storing word position information in inverted lists, compared with the
results in Fig. 4(a). The proposed approach, however, obtains the smallest relocation counts when
the number of documents increases over 260,000, and still keeps the highest space utilization
(shown in Fig. 6(b)). This is because when the number of documents exceeds a scale, the fixed-
multiplier approaches (e.g., 1.5x, 2X) may overestimate space requirements for some slowly
growing inverted lists, but underestimate for some other fast growing inverted lists. From Figs. 4
and 6, we find that the statistics-based approach performs very well for both the document-level
and word-level inverted lists.

We examine if the statistics-based approach has a stable behavior under different system loads.
The system loads here are represented in terms of the document arrival rates. Given (o,) =
(1/4,3/4) in the proposed approach, Fig. 7 shows that the document arrival rate has little effect
on both performance metrics. This fact shows that the proposed approach adjusts well to different
document arrival rates in estimating the size of the spare space. This can be verified by examining
the derivation of n;. Take the relocation frequency as an example. Recall that the identifier arrival
rate for an inverted list is dependent on the document arrival rate. If an inverted list has an
identifier arrival rate (/;) increasing (or decreasing) by m times, it is obvious that its RF; will also
increase (or decrease) by m times. Increasing A; and RF; will immediately affect the predictions of
Ay and E [RF;,1], respectively in the next time window (Egs. (5) and (6)). This will cause 7, to be
increased in response (Eq. (8)). The similar assessment also applies to the wastes space. Thus the
claim stands.

1800 100

< 1600 | ~

% 1400)

= 12001 - g

= L =

I

15 i = 40

2 600} ES — 1.5x

S 400 [—e2.0x S 20t —o—2.0x

ke 5 _ S

& 200 ¢ —a— proposed(1/4,3/4) & —+— proposed(1/4,3/4)
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

1 6 11 16 21 26 31 36 41 46 1 6 11 16 21 26 31 36 41 4
(a) Number of documents (x10%) (b) Number of documents (x10*)

Fig. 6. Experiment results in constructing the word position inverted file for indexing parts of WT10g: (a) relocation
count, (b) space utilization.

W.-Y. Shieh, C.-P. Chung | Information Processing and Management 41 (2005) 275-288 285

400 100

g 300 < w0 :

3 2 60

= 200 §

= = 40

§ 100 ,,_r-,’“"“» —a— arrival rate=1 z —a— arrival rate=1

° —o— arrival rate=0.01 2 20 —— amval rate=0.01

e i —x— arrival rate=random(l, 0.01) & —>— arrival rate=random(1, 0.01)
0 ! O Il Il Il Il Il Il Il Il Il

1 6 11 16 21 26 31 36 41 46 1 6 11 16 21 26 31 36 41 46
(2) Number of documents (x10*) (b) Number of documents (x10%)

Fig. 7. Experiment results in constructing the inverted file by the statistics-based approach under different document
arrival rates (arrivals/s): (a) relocation count, (b) space utilization.

Fig. 7 shows that the proposed statistics-based approach is a relocation frequency- and space
utilization-stable method. What this implies is that

(1) there are no abrupt peaks of relocations happened at high database-update traffic,and
(2) no obvious space wastage at low database-update traffic.

These benefits are especially suited to the IR systems whose database-update traffic-loads are
usually very dynamic and unpredictable.

We examine the experiment data, and determine if the proposed statistics-based space allo-
cation approach has its advantages. Experiment data say that the statistics-based approach re-
quires about 10% more relocations than the “2.0x” approach does for document-level inverted
files. Although more relocations look like a disadvantage, there are more important factors to be
considered. What the user really cares and sees are: the inverted file constructing time, the inverted
file look-up time, and the storage space required.

Assume that the collection of 460,000 documents is ready, and we use the three approaches
(1.5%, 2.0%, and statistics-based approaches) to construct three document-level inverted files for
these documents. All documents are processed one by one. If an inverted list occurs a relocation,
the spare space is allocated at the end of the inverted file, and its size is determined by the
individual strategy of the three approaches. Without loss of generality, the freed list space (after
relocation) is discarded to avoid complex reused processing. This would not affect the calculations
for the storage space, because we can use the sum of all inverted list lengths to be the inverted file
size. After the inverted file is generated, we use the wall-clock to measure the “inverted file
constructing time” for the three approaches. Also, we use these inverted files to serve the simu-
lated queries for measuring the “average query response time”. Finally, we calculate the total size
of the inverted lists, the spare space, and the statistical data to be the ‘“‘storage space cost”.

The proposed statistics-based approach outperforms the “1.5x” and “2.0x” approaches in all
these three aspects: For the “inverted file constructing time”, the ratios of the statistics-based
approach versus the other two approaches are

Constructing_Timeuisiics-pasea : Constructing_Time, sy : Constructing_Time, o
=5422h:61.67h:6254 h=1:1.14:1.15.

286 W.-Y. Shieh, C.-P. Chung | Information Processing and Management 41 (2005) 275-288

While for the “average query response time”’, we compare the three approaches listed above with
the continuous implementation of which the inverted file does not contain any spare space. The
ratios of the average query response time are

Response_Time .oninuous : Response_Timeyisiics-basea © Response_Time, s, : Response_Time;
=505ms:573ms:6.79ms:7.18 ms=1:1.13:1.34:1.42.

And, finally, for the “‘storage space cost”, Table 2 shows the relative size of the inverted file
information, the spare space, and the statistical data for the three approaches. In Table 2, the
inverted file information is the same for all three approaches because we use the same document
collection. For the spare space, the “2.0x” approach has the highest spare space size, and the
statistics-based approach has the smallest one. For the statistical data, the ‘statistics-based”
approach requires additional space, but the “1.5x” and ““2.0x”” approaches do not. According to
the algorithm we proposed, only 83,630 terms in the inverted file whose inverted lists contain more
than one identifier require the statistical data. (The number of total terms is 214,310.) Recall that
in the Table 1, there are seven variables of the statistical data required for each inverted list, and
assume that each variable is stored in a two-byte integer. Then, we can derive that the total size of
the statistical data for our approach equals to 83,630x 7 x2, about 1.2 MB. Therefore, the ratios
of the storage space cost for the three approaches compared with the continuous implementation
of which the inverted file does not contain any spare space are

Spacecantinuaus : Spacestatistics-based : Spacel.Sx : Spac‘eZ.Ox

=116 MB:136.2 MB: 152 MB: 166 MB=1:1.17:1.31:1.43.

From the Constructing_Time and the Space ratios, we find that the proposed approach out-
performs the other two approaches. For each inverted list, the trade-off between space and
relocation count indeed exists—this is essentially to be the fundamental of the proposed approach.
The inverted file constructing time, however, is affected not only by this trade-off but also by the
total inverted file size. Recall that the inverted file constructing time is the time to construct the
whole inverted file for the collection. According to our experiment, the disk seek time and disk
transfer time (including the transfers of data and spare space for updating) even take a large part
in the inverted file constructing time. Take a slowly growing inverted list for example. If it were
allocated a larger space than actually it required, unused space during construction would affect
disk accesses for other lists; though the relocation count of that list might be reduced. This is why
the relocation count of the proposed approach lies between those of the other two approaches
(Fig. 4(a)) but its inverted file constructing time is the smallest—the proposed approach requires
the smallest storage space for the inverted file.

Table 2
Storage space cost for the three approaches
Inverted file information Spare space Statistical data
1.5x 116 (MB) 36 (MB) 0
2.0x 116 (MB) 50 (MB) 0

Statistics-based 116 (MB) 19 (MB) 1.2 (MB)

W.-Y. Shieh, C.-P. Chung | Information Processing and Management 41 (2005) 275-288 287

All of these advantages come from the fact that while the “2.0x” or ““1.5x’” approach suggests a
simple way of increasing the storage space for an expanding full inverted list, this simplicity may
result in too generous allocations for slowly growing inverted lists, but too short-sighted allo-
cations for other lists of the fashion terms. The experiment data show that most allocations are
too generously performed. With this improperly wasted storage space, its side effect is even more
devastating.

The statistics-based approach provides not only flexibility, but also stability, in spare space
allocation. The flexibility is due to that each and every inverted list, upon its running out of
expansion space, can be allocated new spare space tailored all for its specific needs. And the
stability comes from the fact that:

1. The newly allocated spare space is determined by both the previous allocation amount, and
how soon this amount was consumed. With these considerations, we are able to control the
amount of allocated spare space (or space utilization in turn) and how soon we expect the next
allocation to occur (or relocation frequency).

2. This space is also determined based on the size of two previous allocations. Referencing back to
two time windows has the following characteristics. It gives more accurate allocation log data.
It also reveals the tendency of change in allocation space requirements. While more trace-back
data may be difficult to analyze and even confusing, two sets of data are very suggestive. And
finally, the incurred calculation in making decisions is so simple that the overhead is negligible.

4. Conclusion

We proposed a run-time, statistics-based approach to allocate spare space in an inverted file for
future updates. The approach determines the size of spare space according to the trade-offs be-
tween space efficiency and space utilization. By adaptively balancing the trade-offs, the proposed
approach can incrementally update an inverted file as new documents arrive, and in the meantime,
the size of unused free space can be well controlled such that the performance of file access would
not be affected. The most important key point of the proposed approach is to use simple, and
recently statistical data to meet the space requirements for an inverted file. This is particularly
suitable for in-place updating the indexing structure of all kinds in modern large-scale IR systems,
e.g., search engines, or in real-time information systems, e.g., news servers.

References

Breslau, L., Cao, P., Fan, L., Phillips, G., & Shenkerm, S. (1999). Web caching and zipf-like distributions: evidence and
implications. IEEE INFOCOM, 126-134.

Brown, E. W., Callan, J. P., & Croft, W. B. (1994). Fast incremental indexing for full-text information retrieval. In
Proceedings of the 20th international conference of very large databases (pp. 192-202).

Ester, M., Kohlhammer, J., & Kriegel, H.-P. (2000). The DC-tree: a fully dynamic index structure for data warehouses.
In Proceeding of the 16th international conference on data engineering (pp. 379-388).

Hsu, W., & Lang, S.-D. (1999). Feature reduction and database maintenance in NETNEWS classification. In
Proceedings of database engineering and applications (pp. 137-144).

288 W.-Y. Shieh, C.-P. Chung | Information Processing and Management 41 (2005) 275-288

King, T. (1992). Dynamic data structure. San Diego, CA: Academic Press, Inc.

Ross, S. (1996). Stochastic processes. New York, NY: John Wiley & Sons, Inc.

Shoens, K., Tomasic, A., & Garcia-Molina, H. (1994). Synthetic workload performance analysis of incremental
updates. In Proceeding of the 17th international ACM SIGIR conference on research and development in information
retrieval (pp. 329-338).

Thomopoulos, N. T. (1980). Applied forecasting methods. NJ: Prentice-Hall, Inc.

Tomasic, A., Garcia-Molina, H., & Shoens, K. (1994). Incremental updates of inverted lists for test document retrieval.
In Proceeding of the 1994 ACM SIGMOD international conference on management of data (pp. 289-300).

TREC Web Test Collections (2003). Available: http://trec.nist.gov/data.html.

Witten, 1. H., Moffat, A., & Bell, T. C. (1999). Managing gigabytes—compressing and indexing documents and images
(2nd ed.). Los Altos, CA: Morgan Kaufmann Publishers, Inc.

Zobel, J., Moffat, A., & Ramamohanarao, K. (1998). Inverted files versus signature files for text indexing. ACM
Transactions on Database Systems, 23(4), 453-490.

Wann-Yun Shieh received the B.S. degree in Computer Science and Information Engineering from the National Chiao-
Tung University, Hsinchu, Taiwan, Republic of China in 1996. Currently he is pursuing the Ph.D. degree in Computer
Science and Information Engineering at the National Chiao-Tung University, Hsinchu, Taiwan, Republic of China. His
research interests include computer architecture, parallel and distributed systems, and information retrieval.

Chung-Ping Chung received the B.E. degree from the National Cheng-Kung University, Tainan, Taiwan, Republic of
China in 1976, and the M.E. and Ph.D. degrees from the Texas A&M University in 1981 and 1986, respectively, all in
Electrical Engineering. He was a lecturer in Electrical Engineering at the Texas A&M University while working towards
the Ph.D. degree. Since 1986 he has been with the Department of Computer Science and Information Engineering at the
National Chiao-Tung University, Hsinchu, Taiwan, Republic of China, where he is a professor. His research interests
include computer architecture, parallel processing, and parallelizing compiler.

	A statistics-based approach to incrementally update inverted files
	Introduction
	Current methods and problems
	Research goal

	Allocating spare space for a growing inverted list
	Relocation frequency and wasted space
	Determining ni

	Experiment and evaluation
	Experiment environment
	Experiment results

	Conclusion
	References

