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Abstract

This work analyzes the limit cycle phenomena of nonlinear sampled-data systems by

applying the methods of gain–phase margin testing, the M-locus and the parameter plane.

First, a sampled-data control system with nonlinear elements is linearized by the classical

method of describing functions. The stability of the equivalent linearized system is then

analyzed using the stability equations and the parameter plane method, with adjustable

parameters. After the gain–phase margin tester has been added to the forward open-loop

system, exactly how the gain–phase margin and the characteristics of the limit cycle are related

can be elicited by determining the intersections of the M-locus and the constant gain and phase

boundaries. A concise method is presented to solve this problem. The minimum gain–phase

margin of the nonlinear sampled-data system at which a limit cycle can occur is investigated.

This work indicates that the procedure can be easily extended to analyze the limit cycles of a

sampled-data system from a continuous-data system cases considered in the literature. Finally,

a sampled-data system with multiple nonlinearities is illustrated to verify the validity of the

procedure.
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1. Introduction

Accurately predicting the limit cycles of nonlinear control systems has been relevant
to many industrial applications using describing function method. Hydraulic and
robotic control systems with friction have been addressed in recent years [1,2]. In [3], a
car steering control with an actuator rate limit was considered. In addition, Amato et
al. analyzed pilot-in-the-loop oscillations due to positional and rate saturations [4].
Although the controller of a linearized model can be designed by any classical or

modern method, the limit cycle characteristics of the designed system must be
thoroughly analyzed, since the system is likely to exhibit undesirable limit cycles
caused by nonlinearities. Uncertain parameters in a linear control system can be
robustly analyzed by the parameter plane method or the parameter space method
[5–8]. The M-locus method can also be implemented to represent the describing
function of nonlinearities in the parameter plane or parameter space to determine the
characteristics of limit cycles [9]. The above methods can be used to decide carefully
the safe range of system parameters to avoid the generation of limit cycles.
In the frequency-domain approach, gain margin (GM) and phase margin (PM) are

two important indices for analyzing and designing practical control systems. Methods
of analyzing the gain–phase margin in a linear continuous-data system with adjustable
parameters have recently been developed [10]. This approach has been extended to
analyze a nuclear reactor system with various transport lags [11] and a proportional
navigation sampled-data control system [12]. Thereafter, the prediction of limit cycles
in some nonlinear control systems, such as a reactor system and a low-flying vehicle,
was analyzed in [13–15]. The authors of the current investigation also addressed the
gain–phase margin analysis of pilot-induced oscillations for predicting limit cycles [16].
A systematic strategy, similar to [16], is first presented to predict the limit cycles

caused by the effects of parameter variations and hard nonlinearities and, in doing
so, to extend the above results to the sampled-data control systems. A simple method
for evaluating the gain–phase margins and the M-locus in the parameter plane is also
proposed for analyzing stability by inserting a gain–phase margin tester into the
forward open-loop of a linearized sampled-data control system. Importantly, the
developed approach is very easy to implement and can provide more information on
limit cycles. Finally, two examples of nonlinear sampled-data system are given to
confirm the proposed design procedures.
The rest of this paper is organized as follows. Section 2 presents the basic

approach. Section 3 presents the first example of an aircraft pitch control system,
including one nonlinear element provided to demonstrate the design procedures.
Section 4 extends the approach to analyze a sampled-data control system with
multiple nonlinearities. Finally, Section 5 draws conclusions.
2. Conventional approach

This section addresses the conventional approach in predicting the limit cycles of
nonlinear sampled-data control systems.
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2.1. Parameter plane analysis

A sampled-data control system with m nonlinearities ðn1; n2; . . . ; nmÞ can generally
be linearized by applying the classical describing function method. The equivalent
linearized system with a gain–phase margin tester ðKe�jyÞ added to the forward
open-loop system is shown in Fig. 1. Gðz;N1R;N1I; . . . ;NmR;NmIÞ is the open-loop
transfer function, where the terms N1R; . . . ;NmR and N1I; . . . ;NmI are the real and
imaginary parts of the describing function ðNiÞ of n1; n2; . . . ; nm; respectively. The
describing functions can be represented as follows:

NiðA;oÞ ¼ NiRðA;oÞ þ jNiIðA;oÞ; i ¼ 1; . . . ;m; (1)

where A and o represent the amplitude and frequency of a sinusoidal input to one of
the nonlinearities. The characteristic equation of the linearized sampled-data control
system can be expressed as

1þ Ke�jyGðz;N1R;N1I; . . . ;NmR; . . . ;NmIÞ

¼ 1þ Ke�jy
Nðz;N1R;N1I; . . . ;NmR; . . . ;NmIÞ

Dðz;N1R;N1I; . . . ;NmR; . . . ;NmIÞ
;

¼ 0 ð2Þ

which is equivalent to

f ðzÞDDðz;N1R;N1I; . . . ;NmR; . . . ;NmIÞ

þ Ke�jyNðz;N1R;N1I; . . . ;NmR; . . . ;NmIÞ ¼ 0: ð3Þ

Let z ¼ ejoT ; where T is the sampling period; Eq. (3) is expressed as

f ðejoT Þ ¼ f ða;b; g; . . . ;K ; y; joTÞ ¼ 0; (4)

where a; b; g; . . . are variables determined by the terms ðNiR;NiIÞ in the describing
functions and/or the adjustable parameters of the linear part of the system [9].
Clearly, the designer can arbitrarily define these variables to analyze the effect of the
system parameters. If only two parameters a and b are considered, then Eq. (4) can
be classified as follows:

f ða;b; g; . . . ;K ; y; joTÞ ¼ Xaþ Ybþ Z ¼ 0; (5)
 Ke-j�

G (z, N1R, N1I ,..., NmR, NmI)

N (z, N1R, N1I ,..., NmR, NmI)

D (z, N1R, N1I ,..., NmR, NmI)
=

+ 

-

C(z)R(z)

Fig. 1. Block diagram of a linearized sampled-data control system with a gain–phase margin tester.
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where X ;Y and Z are functions of g; . . . ;K ; y and joT : Dividing Eq. (5) into two
stability equations with a real part ð f RÞ and an imaginary part ð f IÞ; yields

f Rða;b; g; . . . ;K ; y;oTÞ ¼ X 1aþ Y 1bþ Z1 ¼ 0 (6)

and

f Iða; b; g; . . . ;K ; y;oTÞ ¼ X 2aþ Y 2bþ Z2 ¼ 0; (7)

where X 1;Y 1;Z1 and X 2;Y 2;Z2 are the real and imaginary parts of X ;Y and Z.
Since a and b can be solved from Eqs. (6) and (7),

a ¼
Y 1Z2 � Y 2Z1

D
(8)

and

b ¼
Z1X 2 � Z2X 1

D
; (9)

where D ¼ X 1Y 2 � X 2Y 1:
The stability boundary can be preliminarily determined in the a vs. b plane for

various values of o by letting K ¼ 0 dB; y ¼ 0� and setting g; . . . ;T ; to constant
values. Furthermore, the locus in the a vs. b plane is a boundary of the constant gain
margin if K is assumed to be equal to another constant and y ¼ 0�: However, the
locus is a boundary of the constant phase margin if K ¼ 0 dB and y is assumed to be
equal to another constant. Additionally, when the third parameter g is considered,
the three aforementioned boundaries can also be found in parameter space for each
specific value of g [10].

2.2. Gain–phase margin analysis

In [9], the limit-cycle features of the nonlinear control system were analyzed by
plotting the M-locus of the describing functions in the parameter plane. According
to the extended definitions of M-locus [13,14], the M-locus called MGM is associated
to the gain margin for asymptotic stability and depends on A, o and K. However, the
M-locus called MPM is related to the phase margin for asymptotic stability and
depends on A; o and y: Notably, MGM equals MPM when the describing functions of
the nonlinearities depend on the amplitude and not on the frequency, but not when
they depend on both amplitude and frequency.
This study presents a simple method for determining the GM and PM and for

plotting the loci of MGM and MPM in the parameter plane. Let y ¼ 0� and adapt Eq.
(4) as follows:

f ða;b; g; . . . ;K ; joTÞ ¼ EK þ F ¼ 0: (10)

Dividing Eq. (10) into real and imaginary parts yield,

f Rða;b; g; . . . ;K ;oTÞ ¼ E1K þ F1 ¼ 0 (11)

and

f Iða; b; g; . . . ;K ;oTÞ ¼ E2K þ F 2 ¼ 0; (12)
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where E1;E2;F 1 and F2 are functions of a; b; g; . . . and oT : Thus, K can be
determined from Eqs. (11) and (12), yielding

K ¼
�F 1

E1
DK 0 (13)

and

K ¼
�F 2

E2
DK 00: (14)

If K 0 ¼ K 00 ¼ Ki for A ¼ Ai; then Ai and Ki; related to oi; can be found by varying A

from 0 to 1: For many values of o; a set (GM) of desired values of A and K can be
obtained and connected to form the MGM locus in the parameter plane. Let K ¼

0 dB; and again adapt Eq. (4) as follows:

f ða;b; g; . . . ; y; joTÞ ¼ U cos yþ V sin yþ W ¼ 0: (15)

Also dividing Eq. (15) into real and imaginary parts yield,

f Rða;b; g; . . . ; y;oTÞ ¼ U1 cos yþ V1 sin yþ W 1 ¼ 0 (16)

and

f Iða; b; g; . . . ; y;oTÞ ¼ U2 cos yþ V 2 sin yþ W 2 ¼ 0; (17)

where U1;V1;W 1;U2;V 2 and W 2 are functions of a; b; g; . . . ; and oT : Therefore, y
can be determined from Eqs. (16) and (17), which yield

y ¼ cos�1
V 1W 2 � V 2W 1

U1V2 � U2V 1

� �
D y0 (18)

and

y ¼ sin�1
U1W 2 � U2W 1

U1V 2 � U2V 1

� �
D y00: (19)

If y0 ¼ y00 ¼ yi for A ¼ Ai; then Ai and yi; related to oi; can be determined by varying
A from 0 to1: For many values of o; a set (PM) of desired values of A and y can be
obtained and connected to form the MPM locus in the parameter plane.
Based on the above analysis, after the boundaries of constant gain and phase

margins have been plotted, the gain and phase margins at the corresponding
intersections of these boundaries and the MGM and MPM loci can be determined.
Moreover, the GM and the PM can both be plotted against A: If any two adjustable
parameters in the asymptotically stable region are considered to analyze the stability
margin, then GMmin and PMmin defined as the minimum values of GM and PM are
the minimum amounts by which the loop gain and phase shift should be increased to
produce a limit cycle solution.
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3. One nonlinearity analysis

A block diagram of an aircraft pitch sampled-data control system with one
nonlinear element is shown in Fig. 2. The following numerical data are used [17].

G1ðzÞ ¼
Kcz

ðz � zcÞ
; (20)

G2ðsÞ ¼
1

s þ 10
; (21)

G3ðsÞ ¼
1

s
; (22)

G4ðsÞ ¼
3 s þ 0:4ð Þ

s2 þ 0:9s þ 8
: (23)

The transfer function of the zero-order hold (ZOH) is given as

GhoðsÞ ¼
1� e�Ts

s
; (24)

where the sampling period T ¼ 0:1 s:
The nonlinearity N represents the relay with hysteresis. Assume that the input

signal to N is xðtÞ ¼ A sin ot and the describing function is as follows [18]

NðAÞ ¼ NRðAÞ þ jNIðAÞ

¼
2M

pA
1�

d2

A2

� �1=2

� 1�
p2

A2

� �1=2
 !

þ j �
2Mðp � dÞ

pA2

� �
; A4p; ð25Þ

where M ¼ 1; p ¼ 0:1 and d ¼ 1:

Remark 3.1. N observably depends on amplitude rather than on frequency, so only
one M-locus needs to be considered ðMGM ¼ MPMÞ:
G1(z)
+

-

�c (s) � (s)x

Digital controller

T

+
ZOH

ZOH
T T

T
ZOH

-

N

d

M
G2(s)

G3(s)

G4(s)p

Fig. 2. Block diagram of an aircraft pitch sampled-data control system.
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The overall open-loop transfer function is

GðzÞ ¼
G1ðzÞZtf ½GhoðsÞG2ðsÞ
NðAÞZtf ½GhoðsÞG4ðsÞ


1þ Ztf ½GhoðsÞG2ðsÞ
NðAÞZtf ½GhoðsÞG3ðsÞ
Ztf ½GhoðsÞG4ðsÞ


¼
KcNðAÞzð0:0183z2 � 0:0358z þ 0:0175Þ

ðz � zcÞðz4 � 3:21z3 þ 3:795z2 � 1:926z þ 0:336þ NðAÞð0:0018z � 0:00175ÞÞ
;

ð26Þ

where Ztf ½�
 denotes ‘‘the z-transform of ½�
:’’ When the gain–phase margin tester is
cascaded to the open-loop system, the characteristic equation becomes

f ðzÞ ¼ ðz � zcÞðz
4 � 3:21z3 þ 3:795z2 � 1:926z þ 0:336

þ NðAÞð0:0018z � 0:00175ÞÞ

þ Ke�jyKcNðAÞzð0:0183z2 � 0:0358z þ 0:0175Þ

¼ Ke�jyNðAÞzð0:0183z2 � 0:0358z þ 0:0175ÞKc þ ð�1Þðz4 � 3:21z3

þ 3:795z2 � 1:926z þ 0:336þ NðAÞð0:0018z � 0:00175ÞÞzc

þ zðz4 � 3:21z3 þ 3:795z2 � 1:926z þ 0:336þ NðAÞð0:0018z � 0:00175ÞÞ

¼ Xaþ Ybþ Z ¼ 0; ð27Þ

where a ¼ Kc and b ¼ zc are adjustable parameters,

X ¼ Ke�jyNðAÞzð0:0183z2 � 0:0358z þ 0:0175Þ; (28)

Y ¼ �ðz4 � 3:21z3 þ 3:795z2 � 1:926z þ 0:336þ NðAÞð0:0018z � 0:00175ÞÞ

(29)

and

Z ¼ zðz4 � 3:21z3 þ 3:795z2 � 1:926z þ 0:336þ NðAÞð0:0018z � 0:00175ÞÞ:

(30)

Substituting z ¼ ejoT into Eq. (27), enables a and b to be plotted according to the
boundaries with fixed amplitude A (with o varied from 0 to 1) and fixed frequency
o (with A varied from 0 to 1) in the Kc vs. zc plane, as shown in Fig. 3. These
boundaries distinguish two regions, one of which is the asymptotically stable region
and the other of which is the limit-cycle region. Two curves (A ¼ 1 and o ¼ 7) pass
through Q1 (limit cycle region: Kc ¼ 14:5; zc ¼ 0:32), and one limit cycle can be
determined. If another point, Q2 (asymptotically stable region: Kc ¼ 2; zc ¼ �0:4), is
also selected, then the time simulation of these two points is shown in Fig. 4, which is
consistent with Fig. 3.
Secondly, two parameters a ¼ NRðAÞ and b ¼ NIðAÞ are selected. Then, the

stability boundary (K ¼ 0 dB; y ¼ 0�) of Q2 can be determined in the NR vs. NI

plane and is represented as a thick solid line in Fig. 5. The stability boundary does
not intersect the M-locus in the parameter plane, so no limit cycle is formed. When
the gain or phase is increased, an intersection may arise and the limit cycle will then
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be produced. Finally, the relationship between the gain–phase margin and the
characteristics of the limit cycles can be determined by the following analysis.
Let y ¼ 0�; Eq. (27) is rearranged as follows:

f ðzÞ ¼ KcNðAÞzð0:0183z2 � 0:0358z þ 0:0175ÞK þ ðz � zcÞðz
4 � 3:21z3 þ 3:795z2

� 1:926z þ 0:336þ NðAÞð0:0018z � 0:00175ÞÞ;

¼ EK þ F ¼ 0; ð31Þ



ARTICLE IN PRESS

0 2 4 6 8 10
-10

-5

0

5

NR

7.8dB

20dB

0dB 0deg.

28.6deg.

59.1deg.

-- o-- M-locus

-- ---- Gain (dB)

-. -. -.  Phase (deg.)

A = 0.12

N
I

Fig. 5. M-locus and boundaries of constant gain–phase margin in the parameter plane.

B.-F. Wu et al. / Journal of the Franklin Institute 342 (2005) 175–192 183
where

E ¼ KcNðAÞzð0:0183z2 � 0:0358z þ 0:0175Þ (32)

and

F ¼ ðz � zcÞðz
4 � 3:21z3 þ 3:795z2 � 1:926z þ 0:336

þ NðAÞð0:0018z � 0:00175ÞÞ: ð33Þ

Substituting z ¼ ejoT into Eq. (31) and varying A from 0 to 1 yields a set of Ai and
Ki; related to oi; can be obtained directly from Eqs. (11) to (14). Let K ¼ 0 dB: Eq.
(27) is rearranged as follows

f ðzÞ ¼ KcNðAÞzð0:0183z2 � 0:0358z þ 0:0175Þ cos y

þ KcNðAÞzð0:0183z2 � 0:0358z þ 0:0175Þð�jÞ sin y

þ ðz � zcÞðz
4 � 3:21z3 þ 3:795z2 � 1:926z þ 0:336

þ NðAÞð0:0018z � 0:00175ÞÞ

¼ U cos yþ V sin yþ W ¼ 0; ð34Þ

where

U ¼ KcNðAÞzð0:0183z2 � 0:0358z þ 0:0175Þ; (35)

V ¼ KcNðAÞzð0:0183z2 � 0:0358z þ 0:0175Þð�jÞ (36)

and

W ¼ ðz � zcÞðz
4 � 3:21z3 þ 3:795z2 � 1:926z þ 0:336

þ NðAÞð0:0018z � 0:00175ÞÞ: ð37Þ
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Substituting z ¼ ejoT into Eq. (34) and varying A from 0 to1 enables a set of Ai and
yi; related to oi; to be directly obtained from Eqs. (16)–(19).
Based on the analysis in the above paragraph, if Q2 ðKc ¼ 2; zc ¼ �0:4Þ is to be

analyzed, then the margins of gain and phase associated with the limit cycle are
obtained from Fig. 6. Therefore, two curves (GMmin ¼ 7:8 dB and PMmin ¼ 28:6�Þ
are tangent to the M-locus and produce the limit cycle. The amplitude and the
frequency of the limit cycles due to other values of GM ðKÞ and PM ðyÞ can be
directly obtained from Fig. 6. The time responses of the limit cycle obtained by
substituting K ¼ 7:8 and 20 dB are shown in Fig. 7. However, the time responses of
the limit cycle obtained by substituting y ¼ 28:6� and 59:1� are shown in Fig. 8. The
simulation results in Figs. 7 and 8 are consistent with Fig. 6.
4. Analyzing multiple nonlinearities

This section will address the limit cycle analysis of a nonlinear sampled-data
system with multiple nonlinearities. The related block diagram is displayed in Fig. 9.
The following numerical data are used [14].

G1ðzÞ ¼
Kcz

ðz � zcÞ
; (38)

G2ðsÞ ¼
1

ð10s þ 1Þ2
; (39)
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G3ðsÞ ¼
1

s
; (40)

G4ðsÞ ¼
10s

0:5s þ 1
; (41)
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G5ðsÞ ¼
1

2s2 þ s
: (42)

where the sampling period is T ¼ 1 s:
The nonlinearities N1 and N2 represent the saturation with a dead zone. Assume

that the input signals to N1 and N2 are x1ðtÞ ¼ A1 cos ot and x2ðtÞ ¼ A2 sin ot;
respectively, and the describing functions are as follows [18]

NmðAmÞ ¼
2km

p
sin�1

bm

Am

� �
� sin�1

dm

Am

� �
þ

bm

Am

1�
b2m

A2
m

 !1=2
0
@

�
dm

Am

1�
d2

m

A2
m

 !1=2
1
A; Am4bm; m ¼ 1; 2; ð43Þ

where k1 ¼ 1; b1 ¼ 3; d1 ¼ 1; k2 ¼ 1; b2 ¼ 2 and d2 ¼ 1:

Remark 4.1. If x2ðtÞ is adopted as the reference input signal for analysis, then A1 can
be expressed as a function of A2 and o; A1 ¼ A2=o; so N1 depends on the amplitude
and the frequency when A2 and o are specified, revealing that MGM and MPM must
be considered, respectively.

The overall open-loop transfer function is

GðzÞ ¼
G1ðzÞZtf ½GhoðsÞG2ðsÞ
N2ðA2ÞZtf ½GhoðsÞG5ðsÞ


1þ Ztf ½GhoðsÞG2ðsÞG3ðsÞ
N1ðA1ÞZtf ½GhoðsÞG4ðsÞ


¼
0:001KcN2ðA2Þzðz

6� 1:16z5� 1:44z4þ1:85z3þ 0:4z2� 0:73zþ0:087Þ

ðz � zcÞðz9� 6:36z8þ 17:4z7� 26:62z6þ24:76z5�14:19z4þ4:8z3 � 0:85z2

þ 0:055þ N1ðA1Þð0:032z8 � 0:019z7 � 0:26z6 þ 0:59z5 � 0:5z4 þ 0:14z3

þ 0:02z2 � 0:014ÞÞ: ð44Þ
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When the gain–phase margin tester is cascaded to the open-loop system, the
characteristic equation becomes

f ðzÞ ¼ ðz � zcÞðz
9 � 6:36z8 þ 17:4z7 � 26:62z6 þ 24:76z5 � 14:19z4 þ 4:8z3

� 0:85z2 þ 0:055þ N1ðA1Þð0:032z8 � 0:019z7 � 0:26z6 þ 0:59z5

� 0:5z4 þ 0:14z3 þ 0:02z2 � 0:014ÞÞ þ Ke�jy0:001KcN2ðA2Þzðz
6 � 1:16z5

� 1:44z4 þ 1:85z3 þ 0:4z2 � 0:73z þ 0:087Þ

¼ Xaþ Ybþ Z ¼ 0: ð45Þ

Firstly, two adjustable parameters a ¼ Kc and b ¼ zc are selected. Then substituting
z ¼ ejoT into Eq. (45), enables a and b to be determined from Eqs. (6)–(9). Taking
K ¼ 0 dB and y ¼ 0� enables solutions for a and b to be plotted from the boundaries
with a fixed amplitude A2 (with o varied from 0 to 1) and a fixed frequency o (with
A2 varied from 0 to 1) in the Kc vs. zc plane, as shown in Fig. 10. These boundaries
distinguish two regions, one of which is the asymptotically stable region and the
other of which is the limit-cycle region. Four curves (A2 ¼ 1:5 and 56, o ¼ 0:08 and
0.27) pass through Q1 (limit cycle region: Kc ¼ 3:7; zc ¼ 0:33), and two limit cycles
can be determined as follows:
(1)
 stable limit cycle ðA2 ¼ 56; o ¼ 0:08Þ;

(2)
 unstable limit cycle ðA2 ¼ 1:5; o ¼ 0:27).
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Fig. 10. Limit cycle loci in the parameter plane.
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The time simulation in Fig. 11 depicts the results associated with point Q2

(asymptotically stable region: Kc ¼ 0:5; zc ¼ �0:2) from Fig. 10.
Two parameters a ¼ N2ðA2Þ and b ¼ N1ðA1Þ are similarly considered. Accord-

ingly, the stability boundary of Q2 can be identified in the N2 vs. N1 plane and is
represented as a thick solid line in Fig. 12. Notably, the stability boundary does not
intersect the M-loci (MGM and MPM) in the parameter plane and no limit cycle is
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generated. However, if the gain or phase is increased, the limit cycles can be
predicted since the intersection occurs.
Finally, the gain–phase margin analysis of the nonlinear system is considered.

Rearranging Eq. (45) and letting y ¼ 0� yield

f ðzÞ ¼ 0:001N2ðA2Þzðz
6 � 1:16z5 � 1:44z4 þ 1:85z3 þ 0:4z2 � 0:73z þ 0:087ÞK

þ ðz � zcÞðz
9 � 6:36z8 þ 17:4z7 � 26:62z6 þ 24:76z5 � 14:19z4 þ 4:8z3

� 0:85z2 þ 0:055þ N1ðA1Þð0:032z8 � 0:019z7 � 0:26z6 þ 0:59z5

� 0:5z4 þ 0:14z3 þ 0:02z2 � 0:014ÞÞ

¼ EK þ F ¼ 0: ð46Þ

Substituting z ¼ ejoT into Eq. (46) and varying A2 from 0 to 1 enables a set of A2i

and Ki; related to oi; to be obtained directly from Eqs. (11) to (14). Let K ¼ 0 dB:
Eq. (45) can be rearranged as follows:

f ðzÞ ¼ 0:001KcN2ðA2Þzðz
6 � 1:16z5 � 1:44z4 þ 1:85z3 þ 0:4z2 � 0:73z

þ 0:087Þ cos yþ 0:001KcN2ðA2Þzðz
6 � 1:16z5 � 1:44z4 þ 1:85z3

þ 0:4z2 � 0:73z þ 0:087Þð�jÞ sin yþ ðz � zcÞðz
9 � 6:36z8 þ 17:4z7

� 26:62z6 þ 24:76z5 � 14:19z4 þ 4:8z3 � 0:85z2 þ 0:055þ N1ðA1Þ

�ð0:032z8 � 0:019z7 � 0:26z6 þ 0:59z5 � 0:5z4

þ 0:14z3 þ 0:02z2 � 0:014ÞÞ

¼ U cos yþ V sin yþ W ¼ 0: ð47Þ

Substituting z ¼ ejoT into Eq. (47) and varying A2 from 0 to 1 enables a set of A2i

and yi; related to oi; also to be obtained directly from Eqs. (16)–(19).
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The relationship between the gain–phase margins and the amplitude of the limit
cycle of Q2 is shown in Fig. 13. Two conditions of gain margin (GMmin ¼ 10:25 dB
and GM ¼ 15:5 dB) in Fig. 13 are illustrated to check the accuracy. In Fig. 14, when
K is increased to 10.25 dB, a limit cycle is yielded implying that the system shifted
from an asymptotically stable region to a limit cycle region. Again, increasing the
gain to 15.5 dB yields two limit cycles of which one is stable and the other one is
unstable. Notably, the unstable limit is not easily observed, so Fig. 14 depicts only
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one stable limit cycle. Two other phase margin (PMmin ¼ 41� and PM ¼ 57�)
conditions are considered and the simulation results in Fig. 15 match those in
Fig. 13.
5. Conclusions

Some effective methods, including gain–phase margin tester technology, the M-
locus method and the parameter plane method, were integrated to predict the limit
cycles of a nonlinear sampled-data control system. A simple method for determining
the gain–phase margins and plotting the M-locus for limit cycle analysis is
developed. The results of this study demonstrate that the gain–phase margin analysis
of limit cycles of a nonlinear continuous-data system can be easily extended to a
sampled-data system using the proposed approach.
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