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A new finite element model of a Timoshenko beam is developed to analyze the small
amplitude, free vibrations of non-uniform beams on variable two-parameter foundations.
An important characteristic of the model is that the cross-sectional area, the second
moment of area, the Winkler foundation modulus and the shear foundation modulus are
all assumed to vary in polynomial forms, implying that the beam element can deal with
commonly seen non-uniform beams having different cross-sections such as rectangular,
circular, tubular and even complex thin-walled sections as well as the foundation of beams
which vary in a general way. Thus this new beam element model enables users to handle
vibration analysis of more general beam-like structures. In this paper, by using cubic
polynomial expressions for the total deflection and the bending slope of the beam, the mass
and stiffness matrices of the element are derived from energy expressions. The element
model can accommodate various boundary conditions to represent a Timoshenko beam
accurately. Excellent agreement with other investigators’ results and a rapid rate of
convergence with relatively few elements are demonstrated. This study also brings out the
fact that the complicated form of this new beam model is necessary because of its advantage
over linear or uniform approximations of the non-uniform foundation and/or geometrical
properties of beams. The same accuracy being achieved with fewer elements is the main
advantage. Finally, an optimum design problem is illustrated to emphasize the practical
application of this element.
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1. INTRODUCTION

Beams resting on elastic foundations are very common in structural systems. Many authors
have proposed mathematical models to simulate such structural systems. In these studies
[1–4] the foundation is usually modelled on the basis of the well-known Winkler hypothesis
which postulates that a foundation behaves like an infinite series of closely spaced,
independent, linearly elastic, vertical springs. The limitation of these models is that they
assume no interaction between the springs, so the models fail to reproduce the
characteristics of a continuous medium. To overcome this problem, two-parameter models
(or Pasternak models) were developed to couple the response within the foundation.
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Mathematically all these models are equivalent, differing only in their definitions of the
foundation parameters. Using the Bernoulli–Euler beam theory, Valsangkar and
Pradhanang [5] investigated the influence of foundation continuity (or a partially elastic
foundation) on the natural frequencies of beam-columns resting on constant
two-parameter models. Eisenberger and Clastornik [6, 7] and Clastornik et al. [8] have
studied vibrations and buckling of beams on variable Winkler and two-parameter
foundations. Other authors [9–12] have solved similar problems in which the effects of
shear deformation and rotatory inertia on the natural frequencies of the beam were
included (in other words, based on the Timoshenko beam theory).

In many engineering applications, non-uniform beams with cross-sections varying in a
continuous or non-continuous manner along their lengths are used in an effort to achieve
an optimum distribution of strength and weight. Extensive work has been done on the
vibration of a non-uniform beam. With the effects of shear deformation and rotatory
inertia included, the finite element approach to this problem has been shown successfully
in several published studies [13–15]. Chehil and Jategaonkar [16] used the Galerkin method
to estimate the first few natural frequencies of a simple-supported beam with varying
section properties. They have also evaluated the natural frequencies of a non-uniform
beam with varying cross-section in a continuous or non-continuous manner along its
length under other classic boundary conditions [17]. Recently, by using the homogeneous
solutions of the governing equations for static deflections as the shape functions, Cleghorn
and Tabarrok [18] developed a finite element model for free lateral vibration analysis of
linearly tapered Timoshenko beams. However, the mass matrix they derived is only
approximate, although the stiffness matrix is exact. Tang [19] derived a second-order
finite element formulation of linearly tapered beam-column elements. In their work,
different tapering types such as width changing only, height changing only, width and
height changing at the same rate and a different rate for various section shapes were
considered.

From the above survey, it is found that part of the work has been focused on the
problem of a uniform beam resting on a constant or variably elastic foundation. As to
the field of vibration of non-uniform beams, the situation where non-uniform beams are
fully or partially embedded on elastic foundations is less well-explored. It is well known
that the governing equation for uniform foundations has constant coefficients and
analytical solutions of it can be obtained. But if the foundations vary along the beams,
in most cases the governing equation cannot be solved exactly, so numerical techniques
must be applied. Therefore, the purpose of the present paper is to develop a new finite
element model to determine the natural frequencies of a non-uniform Timoshenko beam
resting on a variable two-parameter foundation. The effects of non-linearly tapered
cross-sectional area, variable two-parameter foundations, fully or partially, shear
deformation, and rotatory inertia are all taken into account in this new beam element
model. The taper type is considered as the cross-sectional area and second moment of area
are expressed in polynomial forms. The variable two-parameter foundation also is
postulated to be of polynomial form. This element model thus allows the inertia, cross-
sectional area and the elastic foundation to vary in a general manner. Cubic polynomials
originally suggested by Thomas [20] are employed here for the element model with the total
deflection, c, total slope, c', bending slope, f, and the first derivative of bending slope,
f' as nodal co-ordinates. By using the Lagrange principle, the stiffness and mass matrices
for small amplitude, free vibrations of the beam are derived from energy expressions and
the governing matrix equation is then obtained after assembling element stiffness and mass
matrices. This model is capable of accommodating various boundary conditions such as:
(a) free end–zero bending moment and zero shear force; (b) fixed end–zero total deflection
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and zero bending slope; (c) hinged end–zero total deflection and zero bending moment,
thus representing a Timoshenko beam accurately. Numerical results based on this new
beam element model are compared with those presented by various researchers to verify
the accuracy of the model. This study also brings out the fact that the complicated form
of this new beam model is necessary because of its advantage over linear or uniform
approximations of the non-uniform foundation and/or geometrical properties of beams.
The use of fewer elements to achieve the same accuracy is the main advantage, as the
amount of numerical calculation required is thereby reduced. Finally, an optimum design
problem is illustrated to emphasize the practical application of this element.

2. DERIVATION OF ELEMENT MATRICES

The new Timoshenko beam element model with cross-section varying in a continuous
manner along its length l is shown in Figure 1. Cross-sectional area Ae(x) and second
moment of area Ie(x) are described in the polynomial forms (see Appendix B for
nomenclature)

Ae(x)=s
n2

i=0

Bixi, Ie(x)=s
n1

i=0

Aixi, (1, 2)

where x represents the co-ordinate along the beam. The variable two-parameter elastic
foundation is represented as a general polynomial in x: i.e., the varying elastic foundation,

Figure 1. The beam model. (a) Beam element; (b) definition of the nodal co-ordinates.
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characterized by two moduli, the Winkler foundation modulus ke
t (x) and the shear

foundation modulus ke
s (x), are also described in polynomial forms:

ke
t (x)=s

n3

i=0

Cixi, ke
s (x)=s

n4

i=0

Dixi, (3, 4)

Basis assumptions for the present Timoshenko beam element are as follows: (i) the beam
material is isotropic, homogeneous and linearly elastic; (ii) the vibration amplitude of the
beam is sufficiently small; (iii) the cross-section initially normal to the neutral axis of the
beam remains plane, but no longer normal to that axis after bending; (iv) the damping
is negligible.

The potential energy Ue of the beam element of length l including the effects of both
shear deformation and elastic foundation is given by

Ue=
1
2

Eg
l

0

Ie(x) 01f

1x1
2

dx+
1
2

kG g
l

0

Ae(x) 01y
1x

−f1
2

dx+
1
2 g

l

0

ke
t (x)y2 dx

+
1
2 g

l

0

ke
s (x) 01y

1x1
2

dx. (5)

By substituting h=x/l and c=y/l, Ue can be non-dimensionalized as

Ue=
1
2

E
l g

l

0

Ie(h) 01f

1h1
2

dh+
1
2

kGl g
l

0

Ae(h) 01c

1h
−f1

2

dh+
1
2

l3 g
l

0

ke
t (h)c2 dh

+
1
2

l g
l

0

ke
s (h) 01c

1h1
2

dh, (6)

where c, c', f and f' representing the total deflection, total slope, bending slope, and
the first derivative of bending slope, respectively, are the four-degrees-of-freedom at each
node, and Ae(h), Ie(h), ke

t (h) as well as ke
s (h) take the following forms:

Ae(h)=s
n2

i=0

bih
i, Ie(h)=s

n1

i=0

aih
i, ke

t (h)=s
n3

i=0

ktih
i, ke

s (h)=s
n4

i=0

ksih
i, (7–10)

For a uniform beam, it is worth noting that n1=n2=0, thus leading to Ae=b0 and Ie=a0.
By using a cubic polynomial distribution for c and f, i.e.

c=s
3

i=0

aih
i, f=s

3

i=0

bih
i, (11, 12)

and expressing the coefficients ai and bi in terms of nodal values c, c', f and f' at the
nodes i and i+1 (the prime denotes differentiation with respect to h), the following
equations can be obtained:

c=[N1 N2 N3 N4]G
G

G

K

k

ci

c'i
ci+1

c'i+1

G
G

G

L

l
, f=[N1 N2 N3 N4]G

G

G

K

k

fi

f'i
fi+1

f'i+1

G
G

G

L

l
. (13, 14)
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N1–N4 are the shape functions and have the following forms

N1=1−3h2+2h3, N2=h−2h2+h3, N3=3h2−2h3, N4=−h2+h3.

(15–18)

Upon substituting equations (13)–(18) into equation (6), the strain energy becomes

Ue=(E/2l){je}T[Ke]{ze}, (19)

where {ze}T={ci fi c'i f'i ci+1 fi+1 c'i+1 f'i+1}. The terms of [Ke] are given in
Appendix A.

The kinetic energy Te of this beam element can be written as

Te=
1
2

r g
l

0

Ae(x) 01y
1t1

2

dx+
1
2

r g
l

0

Ie(x) 01f

1t1
2

dx. (20)

After non-dimensionalization, Te becomes

Te=
1
2

rl3 g
l

0

Ae(h) 01c

1t1
2

dh+
1
2

rl g
l

0

Ie(h) 01f

1t1
2

dh. (21)

With the help of equations (13)–(18), Te can be written in the form

Te=1
2rl3{z� e}T[Me]{z� e}, (22)

in which the dot indicates differentiation with respect to time. The entries of [Me] are also
listed in Appendix A. Furthermore, when the beam is not embedded on elastic
foundations, ke

t=ke
s=0. In this case, the element matrices [Ke] and [Me] derived here will

reduce to the forms presented by Thomas [20].
Applying Lagrange’s principle to the sum of individual element energies over the whole

beam gives the dynamic equilibrium equation for small amplitude free vibration of a
non-uniform Timoshenko beam on a two-parameter elastic foundation as

[K]{j}+(rl4/E)[M]{z� }={0}, (23)

where

[K]=s
e

[Ke], [M]=s
e

[Me], {j}=s
e

{ze}, (24)

are the global stiffness matrix, the global consistent mass matrix, and the global
displacement vector assembled by adding the contributions from all the elements,
respectively. For the operations in equations (24), the matrix or vector on the right must
be expanded with zero to make it the same size as the matrix or vector on the left. When
{z} is harmonic in time with circular frequency v, equation (23) takes the standard
eigenvalue problem form

([K]−l4[M]){z� }={0}, (25)

where {z}={z� }exp(ivt) and l4=v2rl4/E. Thus the non-trivial solution of equation (25)
gives the natural frequencies and the corresponding mode shapes.
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T 1

Basic parameters used in the first two numerical examples

n 1/3
G/E 3/8
k 2/3
L 25
b0 1

bi ,i=1,...,n2 0
a0 1

ai ,i=1,...,n1 0
kti ,i=1,...,n3 0

Kt kt0L4/Ea0

ksi ,i=1,...,n4 0
Ks ks0L2/Ea0

C4 v2rb0L4/Ea0

3. ILLUSTRATIVE EXAMPLES AND DISCUSSION

In this section, the first three numerical examples are presented to demonstrate the
accuracy and convergence rate of the new element model by comparing results with those
of other authors. Data used in this example, which were presented by Yokoyama [11], are
summarized in Table 1. The structure studied in the first example is a uniform
hinged–hinged beam fully supported on a constant two-parameter foundation. It should
be noted that, for such a structure, equations (7)–(10) reduce to Ae=b0, Ie=a0, ke

t=kt0,
and ke

s=ks0, representing the fact that the cross-sectional area, the second moment of area
of the beam and the foundation are all constants. With foundation parameters
Kt=kt0L4/Ea0 and Ks=ks0L2/Ea0 varying from 1 to 104 and 0 to 2.5p2, respectively, Table 2
compares the first three frequency parameters calculated here with exact solutions
computed from the frequency equations reported in reference [9] and results presented by
Yokoyama [11]. The exact solutions reported in reference [9] were obtained from the
coupling differential equations for transverse vibrations of uniform Timoshenko beams on

T 2

Comparison of the frequency parameter C of the first three modes of a uniform
hinged–hinged Timoshenko beam fully supported on a two-parameter foundation

Present
no. of d.o.f.s

Exact Reference [11]
Mode [9] 64 d.o.f.s 8 12 20

Kt=1 Ks=0 1 3·092 3·09 3·094 3·092 3·092
2 5·881 5·88 5·970 5·888 5·882
3 8·301 8·31 8·946 8·373 8·305

Ks=2·5p2 1 4·267 4·27 4·268 4·267 4·267
2 6·795 6·80 6·862 6·800 6·796
3 9·085 9·09 9·632 9·148 9·088

Kt=104 Ks=0 1 9·984 9·98 9·985 9·985 9·984
2 10·187 10·19 10·204 10·188 10·187
3 10·903 10·90 11·220 10·935 10·905

Ks=2·5p2 1 10·044 10·04 10·044 10·044 10·044
2 10·400 10·40 10·419 10·401 10·400
3 11·278 11·28 11·588 11·311 11·280
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T 3

Comparison of the fundamental frequency parameter C of a uniform Timoshenko beam
fully supported on a two-parameter foundation

Present
no. of d.o.f.s

Exact Reference
L2 [9] [12] 8 16

Hinged–hinged beam
Kt=Ks=0 50 2·735 2·740 2·735 2·735

4000 3·134 3·135 3·141 3·134
Kt=Ks=25 50 4·170 4·194 4·170 4·170

4000 4·378 4·379 4·381 4·379
Clamped–clamped beam

Kt=Ks=0 50 3·305 3·318 3·306 3·305
4000 4·682 4·691 4·712 4·684

Kt=Ks=25 50 4·439 4·443 4·440 4·439
4000 5·324 5·324 5·367 5·326

constant elastic foundations. Yokoyama presented approximate solutions obtained from
a beam model developed by himself, in which beams and their foundations (if any) are
both restricted to be of uniform forms. As shown in Table 2, by comparing with the exact
solutions, to attain the same level of numerial error, only 20 d.o.f.s (degrees-of-freedom),
i.e., five elements, are sufficient in the present model but 64 d.o.f.s are used in Yokoyama’s
model. It should also be noted that the present results with 12 d.o.f.s approach those with
20 d.o.f.s very closely. The above numerical results reveal that the rate of convergence of
the present model is more rapid than that of Yokoyama’s model without losing accuracy
as the number of degrees-of-freedom increases.

Under the conditions used by Filipich [12], the second example again verifies the beam
element model developed here. As with the similar structure studied in the first example,
data are the same as those listed in Table 1, except k=1 and G/E=9/28. This example
considers two types of boundary conditions, hinged–hinged and clamped–clamped, under
several different sets of Kt , Ks , and L. Table 3 shows the comparison of results calculated
for the fundamental frequency parameters with the corresponding exact solutions [9] and
approximate solutions obtained by Filipich [12], who used a variant of Rayleigh’s method
to determine the natural frequencies. For both hinged–hinged and clamped–clamped
boundary conditions with various Kt , Ks , and L, the accuracy of the present beam model
is again demonstrated because the results obtained with 16 d.o.f.s in the present model
approach the exact solutions and those presented by Filipich very closely. From Table 3,
one can observe that the present results based on 8 d.o.f.s and 16 d.o.f.s are almost the
same; thus the convergence rate of this new beam model is further demonstrated.

The third example is a case of a hinged–hinged rectangular cross-section beam of linearly
varying width and depth, giving rise to non-linear variations in both the cross-sectional
area and second moment of area. Basic data and comparison results are shown in Table 4.
From Table 4, it is apparent that the discrepancy between the numerical results presented
by Jategaonkar [17] and the results based on the proposed model is relatively small. Thus
the accuray of the present model is demonstrated for the case of non-uniform beams.

Usually, while analyzing the dynamic beahviour of non-unfirom beams on foundations
varying in a general form, cross-sections and foundations are approximated to change
linearly or to be distributed uniformly in order to simplify the analysis. If such
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approximations work well in most cases, the need for the derivation of this new beam
element model is doubtful due to its complex and lengthy form, which users may feel is
difficult to use. In this example therefore, the necessity of using the exact forms of variation
on foundations and cross-sections instead of using the linear approximation is presented.
Consider a non-uniform free–free beam resting on a variable two-parameter foundation.
The original forms of kt (x), ks (x) are assumed in this example to be

kt (x)=(c1−c2)(1−x/L)3+c2, ks (x)=(c3−c4)(1−x/L)3+c4, (26, 27)

and the cross-section is assumed to be rectangular with width b(x) and depth h(x) varying
as

b(x)=[(x/L)+c5]3, h(x)=[(x/L)+c6]3. (28, 29)

When using the linear approximation, values of kt (x), ks (x), b(x), and h(x) on nodal points
are obtained from equations (26)–(29) and set to vary linearly within each element. Based
on the values of parameters given in Table 5, Figure 2 shows the first three calculated
natural frequencies obtained from the original forms and from the linear approximation
of the cross-section and foundation. The results obtained based on the original forms of
kt (x), ks (x), b(x), and h(x), have nearly converged with four elements, but those with the
linear approximation apparently converge very slowly. This shows the superior rate of

T 4

Comparison of the natural frequency vn(rad/s) of a Timoshenko beam
with both cross-sectional area and second moment of area

non-linearly varying

Present
no. of d.o.f.s

Mode Reference [17] 24 32

1 6·56 6·259 6·259
2 22·68 21·979 21·975
3 47·09 46·463 46·435
4 73·95 74·222 74·112
5 103·14 105·219 104·811
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T 5

Values of parameters used in Figure 2

n 0·3
E 3×106

r 1
k 0·85
L 9
c1 108

c2 101

c3 108

c4 101

c5 0·9
c6 0·9

convergence of the natural frequencies based on the exact forms given in equations
(26)–(29). Therefore, one can draw the conclusion that using foundation and cross-section
forms that exactly match the original ones has an advantage over the linear approximation
in that fewer elements are needed to achieve the same accuracy, thus reducing the amount
of numerical calculation required.

Figure 2. The first three circular frequencies as functions of the number of elements for a free–free non-uniform
Timoshenko beam resting on a variable two-parameter foundation. ——, Original forms of equations (26)–(29);
---, linear approximation to the original forms.
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Figure 3. A beam partially embedded in a two-parameter foundation and subjected to external stationary
loading P(t).

The final example is of an optimum design problem, to illustrate the practical application
of this new beam element model. As shown in Figure 3, a beam with circular cross-section
is partially embedded on a variable two-parameter foundation and subjected to a
stationary load P(t). Data employed in the example are E=210 GPa, n=0·3, k=0·85,
r=7840 kg/m3, L=0·5 m, Lb=0·2 m and b0=0·01p m2. The moduli of the foundation are

kt (x)=(108−10)(1−x/Lb )3+10 (N/m2), ks (x)=106(x/Lb ) (N). (30, 31)

The target of the design is to determine the profile of the beam needed to minimize the
weight. Two frequecy constraints are specified. The first constraint requires that the first
natural frequency be greater than 8 Hz and less than 14 Hz. The second constraint
demands the second natural frequency to be greater than 60 Hz and less than 65 Hz. These
frequency constraints ensure that the resonance response will not appear because P(t)
contains less energies in these frequency ranges. Assume the cross-sectional area varies as

A(x)=b0+b1(x/L)+b2(x/L)2+b3(x/L)3 (m2). (32)

Therefore, the second moment of area I(x) is

I(x)=[b0+b1(x/L)+b2(x/L)2+b3(x/L)3]2/4p (m4). (33)

The optimum design problem can be stated as follows. Minimize an objective function

f(x)=g
L

0

rA(x) dx (34)

subject to

8 HzEf1E14 Hz, 60 HzEf2E65 Hz. (35, 36)

In this example, three sets of design variables x are chosen:
Case 1: x={b1}, i.e., b1 is the design variable, b2 and b3 are assigned to be zero;
Case 2: x={b1 b2}, b1 and b2 are the design variables, b3 is set to be zero;
Case 3: x={b1 b2 b3}, b1, b2 and b3 are all design variables.

In case 1 the cross-section of the beam varies in a linear way. For case 2 one assumes
that the cross-section varies as a second order polynomial along the beam. Similarly, the
cross-section varies as a third order polynomial in case 3. Five elements are used in the



     101

T 6

Design bounds and initial values of design variables

Case Design Initial Lower Upper
no. variables values bound bound

1 b1 0 −0·01p 1
2 b1 0 −0·01p 1

b2 0 −0·01p 1
3 b1 0 −0·01p 1

b2 0 −0·01p 1
b3 0 −0·01p 1

associated finite element model with two of these elements resting on the foundation. The
optimum problem is solved with the help of the (sequential quadratic programming) SQP
method [21]. The original design has a uniform beam so that A(x)=0·01 p m2, f1=12·3 Hz,
f2=57·5 Hz, and the mass=123·2 kg. The designer wishes to adjust the natural frequencies
by changing the beam mass so that resonance will not appear. Table 6 lists the design
bounds and initial values of the design variables adopted in the optimum numerical
algorithm for each design case. The final results of optimum design are shown in Table 7,
from which it can be seen that the first two natural frequencies have been adjusted
adequately by satisfying the constraints. In each case, f1 stays finally at its upper bound,
which means that for this formulation of the optimum problem, the minimum beam mass
is obtained when either f1 or f2 reach their upper bound first. By comparing the optimum
results obtained in the three design cases, case 3 in which the cross-section is assumed to
vary as a third-degree polynomial gives a beam mass of 90 kg, a maximum reduction of
mass in the three cases nearly equal to 33 kg. From the standpoint of the optimum design
concept, the better design obtained in case 3 implies that one can search for the optimum
point more extensively due to the design space being enlarged.

4. CONCLUSIONS

A new Timoshenko beam finite element has been developed for the analysis of small
amplitude, free vibration of non-uniform beams on variable two-parameter foundation.
The cross-sectional area, the second moment of area of the beam as well as the foundations
are all assumed to be polynomial forms, so that the beam model is the only one presented
so far which is suitable for general types of beams and foundations. Other advantages of
this beam element include (i) the convergence rate of results obtained from this model is

T 7

Optimum results of the design problem in the final example

Optimum results

Case no. Design variables f1(Hz) f2(Hz) Mass (kg)

b1 b2 b3

1 −9·426×10−3 – – 14·0 60·23 104·7
2 −3·140×10−2 2·763×10−2 – 14·0 62·43 97·7
3 −3·140×10−2 −3·140×10−2 7·084×10−2 14·0 63·95 90·0

12·3* 57·50* 123·2*

* Denotes the original design (based on a uniform beam).
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rapid; (ii) use of a relatively small number of elements can obtain accurate results; (iii) both
geometric and free boundary conditions can be applied correctly, according to the
comparison results obtained in the first four examples. Therefore a Timoshenko beam can
be represented accurately. The final example of an optimum design problem illustrates the
practical appliation of this new beam element model. By using the new beam element
model to build up a finite element model as an analysis tool, a precise profile of the beam
structure is then determined while the mass of the beam is minimized and frequency
constraints are satisfied.
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APPENDIX B: NOMENCLATURE

Ae cross-sectional area of the element e
Ie second moment of area of the element e
E Young’s modulus of beam material
G shear modulus of beam material
k shear coefficient
r mass density of the material
L entire length of beam
Lb length of the part of the beam resting on a foundation
l element length
Te kinetic energy of the beam element e
Ue strain energy of the beam element e
x co-ordinate along the axis of the beam
y deflection of the centroid of the beam
f bending slope
h x/l, non-dimensional co-ordinate
c y/l, non-dimensional deflection
v angular frequency of beam vibration
ke

t Winkler foundation modulus of the beam element e
ke

s shear foundation modulus of the beam element e
Ai coefficients representing the variations in Ie(x)
Bi coefficients representing the variations in Ae(x)
Ci coefficients representing the variations in ke

t (x)
Di coefficients representing the variations in ke

s (x)
ai coefficients representing the variations in Ie(h)
bi coefficients representing the variations in Ae(h)
kti coefficients representing the variations in ke

t (h)
ksi coefficients representing the variations in ke

s (h)
n1 order of the polynomial form which describes Ie

n2 order of the polynomial form which describes Ae

n3 order of the polynomial form which describes ke
t

n4 order of the polynomial form which describes ke
s

APPENDIX A

The entries of [Ke] are given as follows:

k11=s
n2

i=0

72biS
C1

+
72l4

E
s
n3

i=0

kti (13+3i)
C6

+
72l2

E
s
n4

i=0

ksi

C1
, k12=36 s

n2

i=0

bi (10+3i)S
C2

,

k13=12 s
n2

i=0

bi (1+2i)S
C3

+
24l4

E
s
n3

i=0

kti (l+3i)
C8

+
12l2

E
s
n4

i=0

ksi

C3
, k14=36 s

n2

i=0

biS
C4

,

k15=−72 s
n2

i=0

biS
C1

+
6l4

E
s
n3

i=0

kti (54+17i+i2)
C9

−
72l2

E
s
n4

i=0

ksi

C1
, k16=6 s

n2

i=0

bi (10+i)S
C5

,
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k17=6 s
n2

i=0

bi (1−i)S
C1

−
6l4

E
s
n3

i=0

kti (13+3i)
C9

+
6l2

E
s
n4

i=0

ksi (1−i)
C1

, k18=−12 s
n2

i=0

biS
C5

,

k22=72 s
n2

i=0

bi (13+3i)S
C6

+72 s
n1

i=0

ai

C1
, k23=12 s

n2

i=0

bi (−2+3i)S
C7

,

k24=24 s
n2

i=0

bi (11+3i)S
C8

+12 s
n1

i=0

ai (1+2i)
C3

, k25=−36 s
n2

i=0

bi (10+3i)S
C2

,

k26=6 s
n2

i=0

bi (54+17i+i2)S
C9

−72 s
n1

i=0

ai

C1
, k27=6 s

n2

i=0

bi (12−i2)S
C2

,

k28=−6 s
n2

i=0

bi (13+3i)S
C9

+6 s
n1

i=0

ai (1−i)
C1

,

k33=8 s
n2

i=0

bi (2+i2)S
C10

+
24l4

E
s
n3

i=0

kti

C9
+

8l2

E
s
n4

i=0

ksi (2+i2)
C10

, k34=12 s
n2

i=0

biiS
C2

,

k35=−12 s
n2

i=0

bi (1+2i)S
C3

+
2l4

E
s
n3

i=0

kti (13+i)
C11

−
12l2

E
s
n4

i=0

ksi (1+2i)
C3

,

k36=2 s
n2

i=0

bi (18+2i+i2)S
C4

,

k37=−2 s
n2

i=0

bi (2+i2)S
C3

−
6l4

E
s
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C11
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2l2

E
s
n4

i=0

ksi (2+i2)
C3

,

k38=−2 s
n2

i=0

bi (3+2i)S
C4

, k44=24 s
n2

i=0

biS
C9

+8 s
n1

i=0

ai (2+i2)
C10

,

k45=−36 s
n2

i=0

biS
C4

, k46=2 s
n2

i=0

bi (13+i)S
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−12 s
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C3
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k47=2 s
n2
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bi (3−i)S
C4

, k48=−6 s
n2
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biS
C11

−2 s
n1

i=0

ai (2+i2)
C3

k55=72 s
n2

i=0

biS
C1

+
l4

E
s
n3

i=0

kti (78+17i+i2)
C12

+
72l2

E
s
n4

i=0
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C1
, k56=−6 s

n2

i=0

bi (10+i)S
C5

,

k57=6 s
n2

i=0

bi (−1+i)S
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C12
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E
s
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k58=12 s
n2

i=0

biS
C5

, k66=s
n2

i=0

bi (78+17i+i2)S
C12

+72 s
n1

i=0

ai

C1
,

k67=s
n2

i=0 0 6
4+i

−
13

5+i
+

6
6+i1biS, k68=−s

n2

i=0

bi (11+i)S
C12

+6 s
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i=0

ai (−1+i)
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,

k77=s
n2

i=0
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+
2l4

E
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n3
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C12
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E
s
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C5
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ai (8+3i+i2)
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Each entry of [Me ] is as follows:

m11=72 s
n2

i=0

bi (13+3i)
C6

, m12=0, m13=24 s
n2

i=0

bi (11+3i)
C8

, m14=0,

m15=6 s
n2
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bi (54+17i+i2)
C9

, m16=0, m17=−6 s
n2
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,
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C9
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C11

, m36=0,
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, m38=0,
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aiR
C9

, m45=0, m46=2 s
n1
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C11
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m48=−6 s
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m66=s
n1

i=0

ai (78+17i+i2)R
C12

, m67=0, m68=−s
n1

i=0

ai (11+i)R
C12

,

m77=2 s
n2

i=0

bi

C12
m78=0, m88=2 s

n1

i=0

aiR
C12

,

Here

C1=60+47i+12i2+i3, C2=720+1044i+580i2+155i3+20i4+i5,

C3=120+154i+71i2+14i3+i4, C4=360+342i+119i2+18i3+i4,

C5=120+74i+15i2+i3,

C6=2520+5274i+3929i2+1420i3+270i4+26i5+i6,

C7=240+508i+372i2+121i3+18i4+i5,

C8=5040+8028i+5104i2+1665i3+295i4+27i5+i6,

C9=2520+2754i+1175i2+245i3+25i4+i5,

C10=120+274i+225i2+85i3+15i4+i5,

C11=840+638i+179i2+22i3+i4,

C12=210+107i+18i2+i3, S=kGl2/E, R=1/l2.


