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Abstract

Chaos, control, anticontrol and synchronization of chaos for an autonomous rotational machine system with a hex-

agonal centrifugal governor and spring for which time-delay effect is considered are studied in the paper. By applying

numerical results, phase diagram and power spectrum are presented to observe periodic and chaotic motions. Linear

feedback control and adaptive control algorithm are used to control chaos effectively. Linear and nonlinear feedback

synchronization and phase synchronization for the coupled systems are presented. Finally, anticontrol of chaos for this

system is also studied.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

During the past two decades, chaos of a large number of nonautonomous systems have been observed and studied

[1–3]. In comparison, the number of chaotic autonomous systems discovered is far fewer than the former. The centrif-

ugal governor is a device that automatically controls the speed of an engine and prevents damage caused by a sudden

change of load torque. It plays an important role in many rotational machines such as the diesel engine, steam engine

and so on. When the parameter of an engine system is varied, the speed of the engine will change. In order to decrease

the change of engine speed, and to avoid chaotic motion emerging in the operational process of the engine, in this paper

the regular and chaotic dynamics and chaos control of an autonomous rotational machine system with a hexagonal

centrifugal governor are studied in detail. If the chaotic dynamics of this system is used to some chaos application (like

secure communication), anticontrol and synchronization of chaos are also presented in this paper.

For the mass-spring system shown in Fig. 1, suppose m is not a particle. It has a length P2 � P1. When the spring

force acts on m at P1 in some instant t, m does not move immediately. Because, when a force acts on the surface P1 of m,

the stress waves propagate inside m. Usually the stress waves start from P1 and are reflected at P2. After crisscross of

stress waves inside m, the acceleration of m becomes uniform, and m actually begins to move at this time. Let the time

interval between the instant of exertion of the force onm and the instant at which m actually moves be s, the equation of

motion of the time-delay system is given as m€xðtÞ þ kxðt � sÞ ¼ 0. This kind of time-delay is considered in this paper.
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Fig. 1. A mass-spring system.
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The first aim is to present the detailed dynamics of this autonomous mechanical system. Many modern techniques

are used in analyzing deterministic nonlinear system behavior. Computational methods, such as phase diagrams, time

history and power spectrum, are employed to obtain the characteristics of the nonlinear system. Since chaos is often

undesirable in mechanical systems, two methods are used to control chaos. Later in the papers, attention is shifted

to chaos synchronization and anticontrol of chaos. The chaos synchronization of coupled systems is an important topic

for chaos study because of its possible application to secure communications [4–9]. The linear and nonlinear feedback

based approaches are discussed. Both complete synchronization and phase synchronization of two coupled chaotic sys-

tems are studied by the linear and nonlinear feedback based approaches. Anticontrol of chaos is also studied.
2. Equations of motion

The rotational machine with centrifugal governor is depicted in Fig. 2. Some basic assumptions for the system are

(1) neglect the mass of the rods and the sleeve;

(2) viscous damping in rod bearing of the fly-ball is represented by the damping constant c.

From Fig. 2, the system considered can be modeled by the following delay differential equations:
_/ ¼ u

_u ¼ r
l
x2 cos/ þ x2 sin/ cos/ � 2k

m
ð1� cos/t�sÞ sin/ � g

l
sin/ � cu

_x ¼ q cos/ � F

ð2:1Þ
where l, m, r and / represent respectively, the length of the rod, the mass of fly-ball, the distance between the rotational

axis and the suspension joint, and the angle between the rotational axis and the rod. x is the angular velocity of the

governor, q > 0 is the proportionality and F is an equivalent torque of the load [10].
Fig. 2. Physical model of the system.
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3. Regular and chaotic dynamics of time-delay system

In nonlinear dynamical systems, variation of system parameters may cause sudden change in the qualitative behav-

ior of their state. The state change is referred to as a bifurcation and the parameter value at which the bifurcation occurs

is called the bifurcation value. Denoting / = x, _/ ¼ y, x = z, Eq. (2.1) is rewritten in the form
_x ¼ y

_y ¼ r
l
z2 cos xþ z2 sin x cos x� 2k

m
ð1� cos xt�sÞ sin x�

g
l
sin x� cy

_z ¼ q cos x� F

ð3:1Þ
Here q is considered as the control parameter to be varied when the values of parameters r, l, k, m, F, c are given as 0.4,

2, 20, 2, 1.942, 0.4, respectively.

The phase portrait is the evolution of a set of trajectories emanating from various initial conditions in the state space.

When the solution reaches steady state, the transient behavior disappears. By numerical integration, the phase portrait

of the system, Eq. (3.1), is plotted in Fig. 3(a) for q = 3. Clearly, the motion is periodic. But Fig. 3(b) for q = 5.5 shows

the chaotic state. Furthermore the power spectrum is a continuous broad-band as shown in Fig. 4(b) for q = 5.5. The

noise-like spectrum is characteristic of a chaotic dynamical system.
Fig. 3. (a) Phase portrait for q = 3 (b) q = 5.5.

Fig. 4. (a) Time history for q = 5.5, (b) power spectrum for q = 5.5.



Fig. 5. Controlled system via adaptive feedback.
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4. Controlling chaos

Several interesting nonlinear dynamic behavior characteristics of the system have been discussed in previous sec-

tions. It has been shown that the time-delay autonomous system exhibits both regular and chaotic motion. Usually

chaos is unwanted or undesirable. In order to improve the performance of a dynamic system or to avoid the chaotic

phenomena, we need to control chaotic motion to become a periodic motion which is beneficial for working at a specific

condition. It is thus of great practical importance to develop suitable control methods. Much interest has been focused

on this type of problem––controlling chaos [11]. For this purpose, two methods are used to control our system from

chaos to order.

4.1. Controlling chaos by an adaptive control algorithm (ACA)

A simple and effective adaptive control algorithm is suggested [12], which utilizes an error signal proportional to the

difference between the goal output and actual output of the system. The error signal governs the change of parameters

of the system, which readjusts so as to reduce the error to zero. This method can be explained briefly. The system mo-

tion is set back to a desired state Xs by adding dynamics on the control parameter P through the evolution equation,
_P ¼ eGðX � X sÞ ð4:1Þ
where the function G depends on the difference between Xs and the actual output X, and e indicates the stiffness of the

control. The function G could be either linear or nonlinear. In order to convert the dynamics of system (3.1) from cha-

otic motion to the desired periodic motion Xs, the chosen parameter q is perturbed as
_q ¼ K1ðX � X SÞ ð4:2Þ
If K1 = 0.5, the system can reach the period-1 trajectory easily as shown Fig. 5. It is clear that the desired periodic mo-

tion can be reached by the adaptive control algorithm.

4.2. Controlling chaos by linear feedback control

A linear feedback control with a special form is used in this method. It is assumed that the input signal u(t) disturbs

only the third equation in (3.1). and
Fig. 6. (a) Phase portrait of controlled system via linear feedback control for K2 = 0.5, (b) K2 = 5.
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uðtÞ ¼ K2½yiðtÞ � yðtÞ� ¼ K2DðtÞ ð4:3Þ
Here, y(t) is the chaotic output signal, yi(t) is the periodic motion of system. The difference D(t) between the signal yi(t)

and y(t) is used as a control signal. Here K2 is an adjustable weight of the feedback. By selecting the weight K2, we can

convert chaotic behavior to periodic motion. We can control the chaotic behavior to period-1 and period-2 motion by

choosing K2 = 5 and 0.5, respectively, as shown in Fig. 6.
5. Chaos synchronization

A characteristic property of chaotic dynamics is its sensitive dependence on initial condition. Different initial con-

ditions will cause different trajectories for the system. However, Pecora and Carroll [13] showed that synchronization

can be achieved for chaotic systems. This interesting phenomenon plays a significant role in the chaotic dynamics of

communication signals and may be applied to the real-time recovery of signals that have been masked in a strange

attractor and thus to encode communication. Other applications of synchronization of chaos also have expectant

potential [14]. A natural way to develop synchronization for chaotic systems is through system decomposition. The cha-

otic system is decomposed into two subsystems as follows:

Drive system:
_x1 ¼ y1

_y1 ¼
r
l
z21 cos x1 þ z21 sin x1 cos x1 �

2k
m

ð1� cos x1t�sÞ sin x1 �
g
l
sin x1 � cy1

_z1 ¼ q cos x1 � F

ð5:1Þ
Response system:
_x2 ¼ y2

_y2 ¼
r
l
z22 cos x2 þ z22 sin x2 cos x2 �

2k
m

ð1� cos x2t�sÞ sin x2 �
g
l
sin x2 � cy2

_z2 ¼ q cos x2 � F

ð5:2Þ
In the following, linear and nonlinear feedback based approaches are discussed.

5.1. Linear feedback synchronization

In this approach, the error between the output of the identical drive and response is used as the control signal. For

the unidirectional case, where only the first equation of response (5.2) is combined with a linear feedback, while the

equations of drive remain the same [13].
_x2 ¼ y2 þ Kðx1 � x2Þ

_y2 ¼
r
l
z22 cos x2 þ z22 sin x2 cos x2 �

2k
m

ð1� cos x2t�sÞ sin x2 �
g
l
sin x2 � cy2

_z2 ¼ q cos x2 � F

ð5:3Þ
where K is the constant feedback gain. With K = 3, the trajectories of subsystems and the synchronization errors, ex =

x2 � x1, ey = y2 � y1, and ez = z2 � z1, are shown in Fig. 7. In this case, K = 2.75 is a critical value, below which no syn-

chronization occurs.

Then we consider the two identical systems which are coupled together. The mutually coupled chaotic systems by

adding linear coupling term are written as

Drive system:
_x1 ¼ y1 þ Kðx2 � x1Þ

_y1 ¼
r
l
z21 cos x1 þ z21 sin x1 cos x1 �

2k
m

ð1� cos x1t�sÞ sin x1 �
g
l
sin x1 � cy1

_z1 ¼ q cos x1 � F

ð5:4Þ



Fig. 7. Chaos synchronization via a unidirectional linear feedback approach for K = 3.

Fig. 8. Chaos synchronization via a mutual linear feedback approach for K = 1.5.
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Response system:
_x2 ¼ y2 þ Kðx1 � x2Þ

_y2 ¼
r
l
z22 cos x2 þ z22 sin x2 cos x2 �

2k
m

ð1� cos x2t�sÞ sin x2 �
g
l
sin x2 � cy2

_z2 ¼ q cos x2 � F

ð5:5Þ



Fig. 9. Chaos synchronization via a mutual linear feedback approach for K = 3.
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The simulation result show that generalized synchronization occurs when K = 0.8–2.75, and two chaotic systems are

in complete synchronization when K > 3.75. With K = 1.5 and 3, the synchronization errors are shown in Figs. 8 and 9,

respectively.

5.2. Nonlinear feedback synchronization

The mutually coupled chaotic systems by adding nonlinear coupling term are written as

Drive system:
_x1 ¼ y1 þ K sinðx2 � x1Þ

_y1 ¼
r
l
z21 cos x1 þ z21 sin x1 cos x1 �

2k
m

ð1� cos x1t�sÞ sin x1 �
g
l
sin x1 � cy1

_z1 ¼ q cos x1 � F

ð5:6Þ
Response system:
_x2 ¼ y2 þ K sinðx1 � x2Þ

_y2 ¼
r
l
z22 cos x2 þ z22 sin x2 cos x2 �

2k
m

ð1� cos x2t�sÞ sin x2 �
g
l
sin x2 � cy2

_z2 ¼ q cos x2 � F

ð5:7Þ
With K = 1.5, the trajectories of subsystems and the synchronization errors are shown in Fig. 10.

5.3. Phase synchronization

Recently, the concept of phase, as well as phase synchronization, has been discussed in detail for chaotic oscillators

[15,16]. If we project the attractor on plane (x,y), it has one rotation center shown in Fig. 3(b). The phase of the system

can be defined as:
/ ¼ arctan
y � yc
x� xc

ð5:8Þ
where the point (xc,yc) is the rotation center. The phase can be easily calculated for each subsystem, and the mean fre-

quency are defined as [16]:



Fig. 10. Chaos synchronization via a mutual nonlinear feedback approach for K = 1.5.
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X ¼ h _/i ¼ lim
T!1

/ðT Þ � /ð0Þ
T

ð5:9Þ
Phase synchronization occurs when the phases of two oscillators have the relationship /1(t) � /2(t) with time, i.e., fre-

quency-locking state for DX = X1 � X2 ! 0.

We study two coupled centrifugal governor systems with strength of coupling K,
_x1;2 ¼ y1;2 þ Kðx2;1 � x1;2Þ

_y1;2 ¼
r
l
z21;2 cos x1;2 þ z21;2 sin x1;2 cos x1;2 �

2k
m

ð1� cos x1;2t�sÞ sin x1;2 �
g
l
sin x1;2 � cy1;2

_z1;2 ¼ q cos x1;2 � F

ð5:10Þ
To examine phase synchronization, we modulate the coupling parameter K in Eq. (5.10). Some numerical results are

given in Fig. 11. For the unidirectional case, Fig. 11(a) shows the maximum absolute difference of mean frequency be-

tween two trajectories. Obviously, the phases of two systems are synchronizing in the region K > 3.9. Fig. 11(b) shows

the maximum absolute difference of mean frequency between the mutually coupled chaotic systems. When K > 1.4, they

are phase synchronization. Therefore, phase synchronization is easily achieved in mutually coupled chaotic systems.
6. Anticontrol of chaos

Sometimes, chaos is not only useful but actually important. Besides secure communication and information process-

ing, chaos is desirable in many applications of liquid mixing while the required energy is minimized. For this purpose,

making a non-chaotic dynamical system chaotic is called ‘‘anticontrol of chaos’’ [17,18]. For our system (3.1), it is peri-

odic motion with q = 3. The feedback controller used is a simple triangle function shown in Fig. 12(a), the periodic

motion becomes chaotic shown in Fig. 12(b).
7. Conclusions

The autonomous rotational machine system with a hexagonal centrifugal governor and spring with time-delay

exhibits a rich variety of nonlinear behaviors as certain parameters are varied. Due to the effect of nonlinearity, regular



Fig. 12. (a) A sawtooth function, (b) phase portrait of controlled system.

Fig. 11. The maximum absolute difference of mean frequency between two chaotic subsystems.

Z.-M. Ge, Ching-I Lee / Chaos, Solitons and Fractals 23 (2005) 1855–1864 1863
or chaotic motion may occur. In this paper, the periodic and chaotic motion of the autonomous system with time-delay

are obtained by the numerical methods such as phase trajectory, time history and power spectrum. The changes of

parameters play a major role for the nonlinear system.
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In order to improve the performance of a dynamical system or avoid the chaotic phenomena, two methods, adaptive

control algorithm and linear feedback control, are used to control the chaotic motion to periodic motion effectively.

Synchronization of two chaotic oscillators is studied in this paper. For two chaotic systems, increase of coupling

strength leads to the occurrence of complete synchronization and phase synchronization. Finally, anticontrol of chaos

is also studied.
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