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Abstract

We propose in this paper a quantum correction transport model for nanoscale double-gate metal-oxide-
semiconductor field effect transistor (MOSFET) device simulation. Based on adaptive finite volume, parallel do-
main decomposition, monotone iterative, and a posteriori error estimation methods, the model is solved numerically
on a PC-based Linux cluster with MPI libraries. Quantum mechanical effect plays an important role in semicon-
ductor nanoscale device simulation. To model this effect, a physical-based quantum correction equation is derived
and solved with the hydrodynamic transport model. Numerical calculation of the quantum correction transport
model is implemented with the parallel adaptive finite volume method which has recently been proposed by us in
deep-submicron semiconductor device simulation. A 20 nm double-gate MOSFET is simulated with the developed
quantum transport model and computational technique. Compared with a classical transport model, it is found that
this model can account for the quantum mechanical effects of the nanoscale double-gate MOSFET quantitatively.
Various biasing conditions have been verified on the simulated device to demonstrate its accuracy. Furthermore, for
the same tested problem, the parallel adaptive computation shows very good computational performance in terms
of the mesh refinements, the parallel speedup, the load-balancing, and the efficiency.
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1. Introduction

Development of nanoscale metal-oxide-semiconductor field effect transistors (MOSFETs) has recently
been of great interest, in particular for the double-gate MOSFETs shown inFig. 1 [3,4,15,16,18–20,24,25].
As these semiconductor devices are further scaled into the nanoscale regime (device channel length
< 100 nm), it becomes extremely necessary to consider quantum mechanical effects when performing
device modeling and simulation[1,3,9,15,16,18,19,22,24]. It is known that the growth of computational
theory, method, and algorithms is an essential element in computational science and engineering. Parallel
and adaptive computing methods for macroscopic semiconductor device models, such as Poisson, drift-
diffusion (DD) and hydrodynamic (HD) equations are playing a crucial role in modern semiconductor
device simulation[7,8,10,12,13]. Physically, the most accurate way of incorporation the quantum effect in
the inversion layers is to solve the coupled Schrödinger–Poisson (SP) equations subject to an appropriated
boundary condition at the interface of semiconductor and insulator[1,9,22], but it encounters numerical
difficulties, such as convergence problem when coupling with DD or HD models, and is a time-consuming
task in multi-dimensional nanodevice simulation[1,15,24]. There have been different approaches to
modeling of quantum effects; one of them is adding quantum corrections to the classical transport models,
such as Boltzmann, DD, and HD models[1,3,4,15,18,19,24].

Based on our recent works[9,14,15,24], in this paper, a new quantum correction model for nanodevice
simulation is presented and solved with the parallel adaptive finite volume method on a PC-based Linux
cluster with MPI libraries. Along they direction, shown inFig. 1, this model efficiently accounts for the
quantum mechanical effects on the interface of gate oxide and silicon substrate(SiO2/Si). Together with a
two- or three-dimensional (2D or 3D) macroscopic transport model, it can be solved numerically by using
the parallel adaptive finite volume method on triangular mesh. Numerical calculations are performed on
a 20 nm double-gate n-type MOSFET with the developed quantum transport model and computational
technique. Compared with a classical transport model, it is found that this model successfully characterizes
the quantum effects of the nanoscale double-gate MOSFET quantitatively.Various biasing conditions have
also been verified on the simulated device to demonstrate its accuracy. Furthermore, for the same tested
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Fig. 1. A cross-section view of the simulated double-gate MOSFET device.
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problem, the parallel adaptive computation shows very good computational performance in terms of the
mesh refinements, the parallel speedup, the load-balancing, and the efficiency on our constructed 16-
nodes PC cluster system. The mesh refinement mechanism precisely traces the errors of potential and
carrier’s density so that the quantum mechanical effects can be calculated accurately.

This article is organized as follows. Section 2 states the model to be solved. Section 3 describes the
computing techniques. Section 4 shows the numerical results illustrating the preliminary model accuracy
and efficiency of the method with different simulation cases. Section 5 draws the conclusions.

2. A quantum correction transport model

In classical transport models, there are more than three coupled partial differential equations (PDEs)
have to be solved for a deep-submicron device simulation[2,8,12,13,21,23]. For example, the DD model
includes: the Poisson equation, the electron current continuity equation, and hole current continuity equa-
tion. For the HD model, 5 PDEs have to be solved for the electrostatic potential, electron–hole densities,
and electron–hole temperatures[21,23], respectively. Based on a phenomenological investigation from
the SP solution[9,11,14,15,22,24]within the inversion regions of the SiO2/Si interfaces, as shown in
Fig. 1, the classical electron density is currently modeled to reflect the quantum confinement effect.
Therefore, the DD and HD models can be directly applied to the nanoscale double-gate MOSFET de-
vice simulation without suffering numerical difficulties which is risen from the SP model. The proposed
quantum correction equation for the quantum corrected inversion-layer charge densitiesnQM is

∇ · (ε∇�) = −q(p − nCL + N+
D − N−

A ) (1)

and
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All the symbols and physical quantities used here are followed[2,6–8,11–13,21,23], nCL is the classical
electron density solved from the Poisson equation (1).�=y/�th and�th = (h̄2/2m0kBT )1/2 is the thermal
wavelength,̄h is the reduced Planck constant,m0 is the electron rest mass,kB is the Boltzmann constant,
T is the absolute temperature and�0 = Tsi/2�th is for both the symmetric and asymmetric double-gate
structures (“symmetric” meansVG1=VG2 and “asymmetric” isVG1 �= VG2). The three model parameters
a0, a1, anda2 are functions of oxide thickness (Tox), Si film thickness (Tsi), and gate voltage (VG) for
both the SG and DG MOSFET structures. Together with the auxiliary equation (2), the conventional
DD or HD model[2,6–8,10,12,13,21,23]forms a quantum correction transport model. The associated
boundary condition for the model is the same with the DD or HD model depending on which model has
been considered[2,6–8,10,12,13,21,23]. They not only can be solved numerically as usual but also can
provide proper quantum correction to electron density quantitatively. This quantum correction approach
for single-gate nanoscale MOSFET simulation has been used in our recent works[9,11,14,15,24].
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3. Parallel adaptive computational method

To solve the 2D quantum correction DD and HD models for the nanoscale double-gate MOSFET,
the parallel adaptive computing technique is applied. This simulation methodology has been success-
fully developed and applied to deep-submicron MOSFETs simulation in our recent works[7,8,10,12,13].
Based on the Gummel’s decoupling algorithm and the finite volume discretization over the unstruc-
tured triangular mesh[6,21], the quantum corrected 2D DD (and HD) model is decoupled and ap-
proximated. Therefore, a corresponding system of nonlinear algebraic equations is obtained for each
decoupled and discretized PDE. We solve the nonlinear system by means of the monotone iterative
(MI) method [7] instead of the conventional Newton’s iteration (NI) method[21] on our cluster sys-
tem. The MI method is a constructive technique for the numerical solutions of PDEs. Compared with
the NI method, application of the MI method to nanodevice simulation has some merits: (1) global
convergence, (2) easier implementation, and (3) ready for parallelization[7,8,10,12,13]. By estimating
the variations of the computed electrostatic potential and carrier’s density, the error indicators and a
global error estimator are calculated and tested for the convergence and mesh refinement[5,13,17,26].
The whole set of decoupled PDEs is solved self-consistently to obtain the convergent results. In paral-
lelization, the dynamic domain decomposition approach is adopted and performed on our 16-nodes PC
cluster system. The Linux cluster utilized for the simulation consists of 16 Pentium 1.7 GHz CPU with
512 MB memory and Intel 100 MBit fast Ethernet which are connected with 100 MBit 3Com fast Ethernet
switch.

4. Results and discussion

By simulating a 20 nm double-gate MOSFETs, as shown inFig. 1 , on our PC-based cluster system,
several numerical testing examples are organized to demonstrate the model accuracy and achieved

Fig. 2. Initial mesh. It contains 156 nodes.
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Fig. 3. The 3rd refined mesh. It has 794 nodes.

Fig. 4. There is 3104 nodes in the 5th refined mesh.

computational efficiency. Simulation considers the proposed 2D quantum correction HD model. The
channel length of the device is 20 nm (total length is 40 nm), the thickness of Si film is 20 nm, and the
oxide thickness on both sides is 2 nm. The doping profile on both the source and drain is 1020 cm−3 and
the channel doping is with 1017 cm−3.

First of all, theFigs. 2–5shows the process of mesh refinements. The mechanism of mesh refine-
ment is based on the estimation of solution error element by element. Starting from an initial triangular
mesh, it is found that the mesh refinement adaptively focuses on both the top and bottom regions near
the interfaces of SiO2/Si. Therefore, the mesh is automatically concentrated on the inversion regions
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Fig. 5. The 7th refined mesh. It has 8437 nodes.

Fig. 6. The number of nodes (and elements) in Log scale versus the refinement levels.

to locate vary shape variation of carrier density.Fig. 6 reports the relationship of the number of nodes
(and elements) versus the refinement levels. The increasing rate of the number of nodes (and elements)
gradually becomes slow when the refinements increase. Therefore, it confirms the computational effec-
tiveness of the adaptive computing method in the numerical simulation of the quantum correction transport
model.

Figs. 7–14show the computed potential and electron density for the device with different bias condi-
tions, respectively.Figs. 7and8are the computed potential of the device under symmetric bias conditions
VG1 = VG2 = 1.0 V and different biasesVDS = 0 and 0.5 V, respectively. Ultra-thin regions on the both
top and bottom sides are precisely calculated (red colors) with the quantum correction model. The adap-
tive refinement precisely locates the solution variation near the device surface efficiently. Similarly,



Y. Li, S.-M. Yu / Journal of Computational and Applied Mathematics 175 (2005) 87–99 93

Fig. 7. Contour plots of the simulated potential of the 20 nm double-gate MOSFET with different biasing conditions:VDS= 0 V
andVG1 = VG2 = 1.0 V.

Fig. 8. Contour plots of the simulated potential of the 20 nm double-gate MOSFET with different biasing conditions:VDS=0.5 V
andVG1 = VG2 = 1.0 V.

Figs. 9and10 are the results for the asymmetric cases. As shown inFigs. 11–14, the corresponding
electron densities are reported with the same biasing conditions of theFigs. 7–10. The peak location of
electron density has about 1 nm shift from both the top and bottom sides[1,9,14,15,18,19,22,24].

To verify the parallel performance of the domain decomposition method for the nanoscale double-gate
MOSFETs simulation, the same device underVG1 = VG2 = 1.0 V andVDS = 0 V is considered for the
following cases.Table 1reports the details of the achieved sequential and parallel time, efficiency, and
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Fig. 9. Contour plots of the simulated potential of the 20 nm double-gate MOSFET with different biasing conditions:VDS=0 V,
VG1 = 0.5 V, andVG2 = 1.0 V.

Fig. 10. Contour plots of the simulated potential of the 20 nm double-gate MOSFET with different biasing conditions:VDS=0.5 V,
VG1 = 0.5 V, andVG2 = 1.0 V.

speedup with respect to different number of nodes. It is performed on an 8-CPUs PC-based Linux cluster
system. In our numerical experience, a 7.22 speedup factor is obtained on the tested 8-nodes system.
Fig. 15 is the maximum difference versus the number of nodes. The maximum difference is defined
as the maximum difference of the code execution time divided by the maximum execution time[13].
For the simulation with 2-,4-,8-, and 16-CPUs, the maximum difference decreases and tends to a stable
value when the number of nodes increases. It shows a good dynamic load balancing for the domain
decomposition.Fig. 16is the achieved speedup and efficiency, where the speedup is the ratio of the code
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Fig. 11. Contour plots of the simulated electron density of the 20 nm double-gate MOSFET under both gates with different
biasing conditions:VDS = 0 V andVG1 = VG2 = 1.0 V.

Fig. 12. Contour plots of the simulated electron density of the 20 nm double-gate MOSFET under both gates with different
biasing conditions:VDS = 0.5 V andVG1 = VG2 = 1.0 V.

execution time on a single processor to that on multiple processors. Efficiency is defined as the speedup
divided by the number of processors[13]. The speedup is about 12.2 for the simulation running on a
16-CPUs system and 75% efficiency is maintained. InFig. 17, we indicate the current–voltage (I–V )
characteristic difference by comparing the calculated current of the 20 nm double-gate MOSFET with
and without the quantum correction transport model. This comparison shows that the classical mode
overestimates the calculation ofI–V curves and demonstrate more than 30% difference in comparing
with the result of the quantum correction model[3,19].
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Fig. 13. Contour plots of the simulated electron density of the 20 nm double-gate MOSFET under both gates with different
biasing conditions:VDS = 0 V, VG1 = 0.5 V, andVG2 = 1.0 V.

Fig. 14. Contour plots of the simulated electron density of the 20 nm double-gate MOSFET under both gates with different
biasing conditions:VDS = 0.5 V, VG1 = 0.5 V, andVG2 = 1.0 V.

5. Conclusions

We have demonstrated in this paper a quantum correction transport model for nanoscale double-gate
MOSFET simulation. Based on an the adaptive finite volume, the parallel domain decomposition, the
monotone iterative, and a posteriori error estimation methods, the model has been solved numerically on
a PC-based Linux cluster with MPI libraries. Simulation of a 20 nm double-gate MOSFET has shown the
accuracy of the developed model and computational efficiency successfully. Compared with a classical
transport model, it is found that this model has accounted for the quantum effects of the nanoscale
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Table 1
A list of the achieved sequential and parallel time, efficiency, and speedup with respect to different number of nodes

Nodes Sequential time (S) Parallel time (S) of Speedup Efficiency (%)
the 8-processors system

1000 9.4 4.1 2.29 28.66
4000 87 26.1 3.30 41.67
8000 367 83.6 4.39 54.87

16 000 794 179.2 4.43 55.39
32 000 4041 735.6 5.49 68.67
64 000 9403 1993.6 5.30 66.27
90 000 27 775 4487 6.19 77.38
250 000 151 016 20 906 7.22 90.29

Performed on an 8-processors PC-based Linux cluster system.

Fig. 15. The maximum difference versus the number of nodes.

double-gate MOSFET quantitatively. Various biasing conditions have been verified on the simulated
device to demonstrate its accuracy. Furthermore, for the same tested problem, the parallel adaptive com-
putation reported very good computational performance in terms of the mesh refinements, the parallel
speedup, the load-balancing, and the efficiency.
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Fig. 16. The parallel speedup and efficiency versus the number of processors.

Fig. 17. A comparison of the calculated current of the 20 nm double-gate MOSFET with and without the quantum correction
transport model.
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