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Laplace-Domain Solutions for Radial Two-Zone Flow
Equations under the Conditions of Constant-Head
and Partially Penetrating Well

Shaw-Yang Yang® and Hund-Der Yeh?

Abstract: A mathematical model is presented for a constant-head test performed in a partially penetrating well with a finite-thickness
skin. The model uses a no-flow boundary condition for the casing and a constant-head boundary condition for the screen to represent tl
partially penetrating well. The Laplace-domain solutions for the dimensionless flow rate at the wellbore and the hydraulic heads in the
skin and formation zones are derived using the Laplace and finite Fourier cosine transforms. The solutions of hydraulic heads have bee
shown to satisfy the governing equations, related boundary conditions, and continuity requirements for the pressure head and flow rate
the interface of the skin zone and undisturbed formation. In addition, an efficient algorithm for evaluating those solutions is also presented
The dimensionless flow rates obtained from new solutions have been shown to be better than those of Novakowski’s solutions, especiall
when the penetration ratio is large.
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Introduction of constant-head tests. Streltsova and McKin(@984 consid-
ered an infinitesimal skin and used a skin factor to stand for the
The constant-flux and constant-head tests are two typical kinds ofskin effect. Chang and Che{1999 gave the Laplace-domain
aquifer tests. The former is required to maintain a constant well solutions of hydraulic heads and flow rates for a confined aquifer
discharge(or injection and measure the drawdowns at the obser- under the effects of finite-thickness skin and fully penetrating
vation wells. The latter, frequently employed in engineering prac- well. They presented curves representing specific capacity versus
tice for low permeability aquifers, is carried out in a single well, time to investigate the influence of low-permeability skin zone on
which maintains a constant water level inside the well and mea- the estimation of aquifer parameters. Yang and Y2002 ob-
sures the transient flow rate at the wellbore. A patchy aquifer with tained the time-domain solution for the wellbore flow rate by
a well centered in a uniform disk of transmissivity embedded using the Laplace transforms and the Bromwich integral method.
within a formation of transmissivityT, can be considered as a Considering the effects of finite-thickness skin and well partial
radial two-zone system. In addition, an aquifer may also be con- penetration, Novakowskil993 derived a Laplace-domain solu-
sidered as a two-zone system if the formation properties near thetion for dimensionless transient flow rate at the wellbore. Curves
wellbore are significantly changed due to well construction and/or of dimensionless flow rate versus dimensionless time were devel-
development. The drilling process may produce a positive well- oped to investigate the influences of finite-thickness skin and well
bore skin that has lower permeability than the undisturbed forma- partial penetration. Markle et al1995 developed a model for a
tion. Conversely, thorough well development removes fine par- partially penetrating well that has a finite-thickness skin and in-
ticles from the surrounding formation and produces a negative tersects a single vertical fracture. Their results show that the
wellbore skin with an increased permeability. In fact, the positive finite-thickness skin and partially penetrating well can affect the
wellbore skin prevails under most field conditiofidovakowski transient flow rate at the wellbore. For a mixed boundary value
1989. problem, Cassiani et al1999 developed a new semianalytic
Two types of skins, the infinitesimal and finite-thickness skins, solution for a partially penetrating well with infinitesimal skin
were used in the past to investigate the skin effect on the resultssituated in an anisotropic confined aquifer. They employed a no-
flow boundary condition along the casing and a third-type bound-
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Removal of water tance from the centerline of welt;,=well radius;r;=radial dis-

tance from the well centerline to the outer skin envelope;
=time from the start of tesK,=hydraulic conductivity in a radial
direction; K,=hydraulic conductivity in a vertical direction; and

7777777777 7777777777 S;=specific storativity.
e Zememrmems - Eearea e S L = The hydraulic heads are initially assumed to be zero within the
well and the skin and formation zones, that is
Confining layer | _
= z=L Hy(r,z,0)=Hy(r,z,00=0,r =, 3
VAL VAL
Whenr =r,,, the hydraulic head represents the well water level if
Wellbore —| <« z2= B the well loss is negligible.
\ |_—— Well screen When r approaches infinity, the boundary condition for the

formation zone gives

[T

Skin zone i

\ P, Formation zone Hy(o0,2,t) = 0 @

T

& 2= B 2 The continuities of hydraulic head and flow rate at the interface of
the skin and formation zones, respectively, require

VL r‘ (_ 7= O

Conlfining layer o k" Hi(rszt) =Hy(rgzt), t>0 ®)
s €& and
i ic di i ; ; dH4(rs,z,t IH(r,z,t

Fig. 1. Schematic diagram of the well and aquifer configurations " l(ﬁrs ) =K, Z(ﬁrs ), t>0 (6)

The no-flow boundary conditions at the bottom and upper im-

formed in a radial confined aquifer system with the finite- . . ) . .
pervious boundaries of confined aquifer are, respectively,

thickness skin and partially penetrating well is presented. The
model uses a no-flow boundary condition for the casing and AHq(r,0,t)  dH,(r,0,t)

constant-head boundary condition for the screen to represent a 7z = 7z = (7)
partially penetrating well. The Laplace-domain solutions for the

model are derived using the Laplace and finite Fourier cosine and
transforms. An efficient numerical approach, including the modi-

fied Crump method, for performing the numerical Laplace inver- Ha(r, LD = Ha(r, LD =
sion and the Shanks method for accelerating convergence when Jz Jz
evaluating the sum of terms and the Bessel functions, is also
proposed. Those solutions can be employed to predict the hydrau-
lic head in the aquifer and transient flow rate at the wellbore, to
explore the effects of the finite-thickness skin and well partial H(ry,zt) =Hd(z-2) 9
penetration on the hydraulic heads and transient flow rates, and to
identify the hydraulic parameters in aquifer data analyses.

®

The water level of well remains constantratr,,. Thus, the
inner boundary condition specified along the WeIIbore is

where Hy=constant water level around the well at any time;
3(-)=Dirac delta function; and’ =location of point source in a
direction.

. The flow rate along the screen assumes that
Mathematical Model 9

AH(ry,z,t)
- K== =q(t), B,<z<B, (10

Mathematical Statement or

Fig. 1 is a cross-sectional view of confined aquifer system with a and the no-flow boundary condition along the well casing is
well under the conditions of partial penetration and finite-
thickness skin. The system assum@s:The aquifer is homoge- -K My(rwzY) =0, z<B, z>B, (12)

neous, infinite extent, and with a constant thickné&sthe well t ar

has a finite radius; an() th_e initial head is constant a_nd uniform whereq(t)=flow rate per unit area and assumed constant along
throughout the whole aquifer. Under these assumptions, the 9OV-the well screen: an®, and B,=lower and upper coordinates,
erning equations for hydraulic head distributions in the skin and

f . el . respectively.
ormation zones can, respectively, be written as The dimensionless parameters used hereafter are defined in
PH.  KoioH (92H oH Table 1. Eqs(1)—(11) in dimensionless form are, respectively,
Knmz + 7 +Ka—a =Sy—% ry=r=r, (1)
Yoz oroar #h, 1 ahl a #hy ohy
St “li_y Isrpsrps (12
and dgp Ip (9I'D Z2
(72H2 K2 <7H2 PH, #h, 1 oh #h, oh
Ko a% o r o 2 02 SSZ fesr<e —F+ L ha, =2, Ipgsrp<® (13

ard rDarD azg o’
where the subscripts 1 and 2, respectively, denote the skin and
formation zonesH [or H(r,z,t)]=hydraulic heady =radial dis- hy(rp,zp,0) = hy(rp,zp,0) =0 (14
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Table 1. Dimensionless Expressions

Symbol lllustration
T Kot/ Sor,
I'ds r/ry
o riry,
Lp L/ry
hy Hy/Ho
h, Ha/Ho
Zn zlr,,
b, By/ry
b, B,/ry,
¢ (B2—-By)/L
Qg Ka /K1
o Kz/Kr2
Y Ki2/Kiq
13 Su/Se
ao(7) q(t)/[2m(B,~By)K 1Ho]
a1 \falwﬁ+y§p
a2 Vo wi+p
s Vyép
A0’ p
B1 —01K1 (017 ps) Ko(Gal pg) +Y82Ko( Gl ps) K1 (T ps)
B2 Gl 1(Aar ps)Ko(Gar pe) + Y02l o(01r o) Ka(Clal ps)
Bs —03K1(03r s Ko(Gal ps) +YUsKo(Aal ps) K1 (dal po)
Ba 03l 1(Asl ps)Ko(Gar ps) + YUl o(Gar o) Ka(dar ps)
Aq(rp) [—Balo(dsrp) + BaKo(dar ) 1/{dal Bl 1(al3) + B4Ka(ds) I}
Ay(rp) [-B1lo(a1rp) +B2Ko(arrp) 1/ {au[ Bal1(ar) + BoK(an) I}
Ag(Wp) [sin(wpby) = sin(wyby) 1/ w;,
Bi(rp) Ko(Qar o) /{dsr od Bal1(az) + BaKa(ds) I}
By(rp) Ko(Garp) /{aar od B1l1(an) + B2Ka(ay) I}
A(rp=1) [-Bslo(da) + B4Ko(0z)1/{ds[ Bl 1(az) + BaK1(az) I}
Ay(rp=1) [-Balo(d) +B2Ko(@) 1/ {dalB1l1(ay) +BoKa(a) T
ha(,2p,7) =0 (15
h(rps 2p,7) = Ny(rps 2p,7), 7>0 (16)
9hy(rps 2p,7) _ yf7hz(ros:ZDvT)l >0 17)
o o
hy(rp,0,7) _ dhy(rp,0,7) o 18)
9Zp 9z
dhy(rp,Lp,T) _ dhy(rp,Lp,T) _ 19
9z 9z
hy(1,2,7) =8(2p — 7p) (20
LD, b=p=h, @)
I'p
and
—wzo, zp<by, zp>Db, (22
D

Laplace-Domain Solutions

The Laplace-domain solution for dimensionless hydraulic heads
in the skin and formation zones can be obtained by taking Laplace
transforms with respect to time and the finite Fourier cosine trans-
forms with respect t@ coordinate from Eqs(12)—(22). Taking

the Laplace transforms of Eq€l2)—(22) yields

#hy ! gy,  &h,

——t oy I1<rps<r 23
0r% fodlo 1(9220 D Ds (23

= YEDTH,

Fy 1y,

+ o, —= = , sIrp<® 24
a3 rpdrp @2 oz Ph2: Tos=To 29
T]Z(OO,ZD'p) = O (25)
hy(rps 2o, P) = No(r pg Z5,P) (26)
hu(rps20.p) _ 3ho(rps Zp,p)
leZDp:'y 2(lbs Zp, P 27
<9I’D (9rD
aﬁl(rDyorp) — a’HZ(rDrolp) =0 (28)
aZD &ZD
ﬁFll(fDlLDap) _ ‘?ﬁz(rDvLDip) -0 (29
9zp 9z
~ 1
hy(1,25,p) :5 (30
dhy(1,20,p)
_—1 ZD p :qD(p)’ b]_SZngz (31)
drp
and
ahy(1,2p,
_¥:o, Zp<by, zp>h, (32
D

Applying the finite Fourier cosine and inverse finite Fourier
cosine transforms with respect to the coordinate for Egs.
(23)«(32) results in dimensionless hydraulic heads for the skin
and formation zones, respectively,

- 2>
hy =Gp(p) [¢A1(VD) + _E AZ(rD)AS(Wn)COS(WnZD):| (33

I-D n=1

and

- 2 =
h, =Gp(p) |: bBy(rp) + _E Bz(rD)A3(Wn)CO~°—(WnZD):|

Lorosne1
(34
where
[ Balo(darp) + B4Ko(Tsrp)]
A = 35
1(fo) 0l Bl 1(0s) + B4K1(ga)] 39
Aro) = [ B1lo(@arp) + B2Ko(Q1rp) ] 36

Qu[Bal1(ay) + B2Ky(ay)]
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AW, = [Sin(Wnbz)v; sin(w,by)] 37)

Ko(Oar'p)
Oar pd B3l 1(0s) + B4K1(a3)]

By(rp) = (39

and

Ko(0rp)
Qarpd B1l1(ay) + BoKy(ay)]

where p=Laplace variable(Spiegel 1965 w,=nw/Lp; and
Go(p) =dimensionless flow rate in the Laplace domain. The func-
tions of () andKy(-) are, respectively, the modified Bessel func-
tions of the first and second kinds of order zero; apn@d and
Ki(-) are the modified Bessel functions of the first and second
kinds of order one, respectively. Note that the dimensionless flow
ratep(p) in Eq. (33) is unknown and can be obtained by substi-
tuting Eq.(33) into Eq.(30) as

Ba(rp) = (39

o -1
- 1 2
Gp(p) = o bA(rp=1) + mz Ay(rp= 1)A§(Wn)}

(40

This equation has two terms; the first term accounts for the be-
havior of a fully penetrating well and the second term is associ-
ated with the effect of well partial penetration.

Proof of the Solution

This section proves that the Laplace-domain solutions of dimen-
sionless hydraulic heads satisfy the governing equations, bound-
ary conditions, and continuity requirements at the interface of the
skin zone and undisturbed formation. McLach({d®55, pp. 192—
197) gave following two formulas:

dlo(qrp) _
P =qly(arp) (41
and
#Plo(qrp) 1
Zr% = ol - EH(qu) +1lo(arp) (42

Based on Eqsi41) and(42), one can obtain

Ploarp) | 1 dlo(arp) _ ,
a2 + o o =qlo(arp) (43

Similarly,

PKo(arp) | 1 dKo(arp) _
&rzD + - ﬂfD =q Ko(qu) (44)

Based on Eqs(35), (43), and (44), the sum of the second
derivative of A;(rp) with respect tap and the first derivative of
A(rp) with respect tap divided byrp gives

ard rooanp

{_ Bs[ &lo(Gsrp) + 14l o(%'b)] + 84[ PKo(Csrp) + 1 9Ko(dsrp) ]}
iaAl(rD) 2

ag r ap

FA(rp) +
a3 o dp

Likewise, one can get

FPA(r 1 aA(r
o) L) - ) (46)
arp , drp

Substitutingﬁl of Eq. (33) into the left-hand sidéLHS) of Eq.
(23) and using Eqs(45) and (46) yields

aD(p){ ¢{a2A1(rD> L1 aAl(rD)]

a3 o dp

L2y [aZAzoD) , L oAs(ro)

a3 o dp

:|A3(Wn)COS(WnZD):|

I-D n=1

= yéphy (47)

Here, we have shown that the solution for dimensionless head
distribution in the skin zone, Eq33), satisfies the governing
equation(23). Also, one can prove that E¢34) satisfies the gov-
erning equatior(24).

For the outer boundaryy — <, one hasKy(«)=0 andK,(«)
=0; accordingly,B;(«) and B,(») in Egs. (38) and (39) equal
zero. The dimensionless hydraulic head of B34) is then equal
to zero whenrp—. Therefore, Eq.(34) satisfies the outer
boundary condition of Eq.25).
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sl B3l 1(0s) + B4K4(03)]

=0zA(rp) (495

Letting rp=rps and using the dimensionless expressioner
andB,, Eqg.(35) equals

1
Ol Bal1(a3) + B4K1(ag)]
X{03K (0 p)[K1(Aar pg) 1 o(Clal ps)
+11(0sr o) Ko(Qar ps) I} (48

Based on the formul&;(u)ly(u)+Ig(u)K;(u)=1/u (Abramowitz
and Stegun 1964and Eq. (38), Eq. (48) reduces toA(rps
=B,(rpsg). Similarly, Ax(rps)=Bs(rpg). As a result, Eq.(33) is
equal to Eq(34) atrp=rp. Here, we have shown the continuity
of dimensionless hydraulic head between the skin and formation
zones.

Taking the derivative of\(rp) in Eq. (35) with respect tarp
and lettingrp=rps produces

Ay(rpg) =

9A(rp) _ = ¥04K (04l ps) (49)
Io lrp=rp, Ao Bal1(ds) + BaK1(G3)]
Also,
Ay (rp) _ ~ Y92K1(Gor ps) (50)
Io lrp=rpe  Oarod Bala(dy) + BaKi(ay)]
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Furthermore, lettingrp=rps and multiplying by+y on both
sides after taking the derivative Bf(rp) in Eq.(38) with respect
to rp yields

N dB4(rp) - ~v94K1(0a ps) (51)
Io lrp=rpe  darpd Bali(ds) + BaKi(as)]
Likewise,
v dB,(rp) _ ~ Y92K1(Gor ps) (52
Ip rpmrp, Oirod Bala(dy) + BaKa(ay)]

Therefore, based on Eq&9—52), one can easily prove that

arp

'o="Ds "> "ps

Here, we have shown that the flow rates between the skin and

formation zones are equal.
The derivatives of the hydraulic heads in E¢33) and (34)
with respect tazy produce sine terms and become zero whgn

equals 0 ot p. Thus, the no-flow condition at the top and bottom

boundaries, Eq928) and (29), is satisfied.

Simplified Solutions

Fully Penetrating Well

For a fully penetrating well case, by settibg=0 andb,=L, one

can obtainp=1 andA;(w,) =0. Consequently, those terms with a
summation on the right-hand side of E33), (34), and(40) are

all equal to zero. Thus, the dimensionless hydraulic heads in the
skin and formation zones are, respectively,

~ 1[‘ Balo(dsrp) + B4Ko(Tsp)]

= 58
170 L= Balolt) * BaKoldo)] 58
and
~ 1 Ko(Qarp)
== 59
2 P rod = Bslo(as) + B4Ko(ds)] 9
and the dimensionless flow rate is
o = 193[Bala(ds) + B4K1(gs)] (60)

- p[- Balo(gs) + B4Ko(as)]

which indeed are equal to those Laplace-domain solutions for the
dimensionless head distribution and wellbore flux for a two-zone
aquifer system presented in Yang and Y&002. With some
minor algebraic manipulations, EG0) is the equivalent to Eq.
(14) of Novakowski(1993.

Homogeneous Aquifer and Fully Penetrating Well

The Lap|ace-d0maln solutions for dimensionless head distribution For a homogeneous aqurfer, the skin is absent and the aqu|fer

in the skin and formation zones, i.e., Eq83) and (34), and
dimensionless flow rate cross the wellbore, E)), can reduce

properties are constant throughout the whole aquifer. Accordingly,
bothy and& are equal to unity and let the variablgsandqg, in

to a simpler form if the aquifer is homogeneous or/and the wellis gqs. (58)<(60) also equal the dummy variabie. Then, both,

fully penetrating.

Homogeneous Aquifer

For the case of a partially penetrating well in a homogeneous

(single zong aquifer, bothy and & are equal to unity andy,;
=a,=1. Let the variables|; andq, equal dummy variablg and
g; andq, equal dummy variablg’; consequently, botB; andBs
become zero. Then, EqE5) and(38) turn out to be

K ’
Cy(rp) =Ag(rp) =By(rp) = ﬁ (54
and Eqs(36) and(39) become
K
Cy(rp) = Ax(rp) =By(rp) = % (55)

Then, the dimensionless hydraulic heads for the skin and forma-NOte that Eqs(33) and(34), respectively,

tion zones, Eqs(33) and(34), reduce to the solution for a homo-
geneous aquifer as

- 2
h; =Gp(p) [ GCy(rp) + _E C2(rD)A3(Wn)CO£(WnZD):| (56)

I-D n=1

and the equation representing dimensionless flow rate (4,
turns into

o -1
2 — 1\A2
Lo(by— by) gl Calrp = 1)A3(Wn):|

1
Oo(p) = B|:¢C1(rD =D+

(57

Egs.(58) and(59) reduce to

- lKo(qer)
° b Ke(d) (o1
and Eq.(60) becomes
~ K,(q')
=47 62
()= T o) (62

which are the Laplace-domain solutions, respectively, for dimen-
sionless head distribution in the aquifer and dimensionless flow
rate at the wellbore presented in Carslaw and Ja€f89 and
Jaegen(1942.

Results and Discussion

stand for dimensionless
hydraulic heads in the skin and formation zones and &)
represents the dimensionless flow rate at the wellbore. These
equations consist of the products of the Bessel functions which
can be approximated by the formulas given in Abramowitz and
Stegun (1964 and Watson(1958. Since Bessel functions are
oscillatory function and may be slowly convergent in certain
cases, the evaluations of these functions are accelerated using the
Shanks metho@Shanks 1955; Yang and Yeh 200Zhe values of

the Bessel functions in these equations are computed at least to
ten decimal places, and thus have the same accuracy as those
listed in Abramowitz and Stegui1964 and Watsor(1958. The
routine INLAP of IMSL (1987 developed based on the modified
Crump methodCrump 1976; de Hoog et al. 1982 employed to
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Symbol
d Symbol 10.00 —

7 Graph 1
QOur solution

Graph 1
Our solution

@ -G -O Novakowski's solution

L 1 11l

@ -G -O Novakowski's solution

o

1.00

1 IA\III/I\I

Dimensionless flow rate

0.10

Dimensionless flow rate

0.10 T I||IIH| T IHIHIl |||IH|I| T |I|||I|| T IIIIIH‘ T IHIHIl |||IH|I| T |IH|I|| T IIHIIIT —

10" 10° 10" 102 10° 100 108 100 107 10°

Dimensionless time

Fig. 2. Relationship for dimensionless flow rate against dimension-
less time fory=1 (no skin andLp=200 whenb=0.1, 0.4, 0.8, or 1.0

Dimensionless time

Fig. 3. Relationship for dimensionless flow rate against dimension-
less time forLp=2000,rps=10, and$=0.01 wheny=0.01, 0.1, 1
(no skin, 10, or 100

invert those Laplace-domain solutions numerically. This method
approximates the Laplace inversion by expressing the trans-
formed function in a Fourier series.

flow rate versus dimensionless time. The dimensionless flow rate
decreases rapidly with increasing dimensionless time and stabi-
lizes when dimensionless time is very lar(gay, 7> 10%). The
dimensionless flow rate increases wittat the same dimension-
The curves of dimensionless flow rate versus dimensionless timeless time. A larger dimensionless flow rate reflects the effect of
are plotted to investigate the impacts of the skin properties andthe conductivity ratioyy. Fig. 3 also displays the comparison be-
thickness on dimensionless flow rate. For ease of comparson, tween our solution and Novakowski's solution on the effects of
ay, anda, are chosen as one. In addition, all evaluations for the finite-thickness skin and well partial penetration. The dimension-
solution are in a double-precision format. Note that the aquifer less flow rates calculated based on Novakowski's solution are

Comparisons of Our Solution and Novakowski’s
Solution for Dimensionless Flow Rate

has a negative skin when the conductivity rafie.1 and a posi- smaller than those of our solution at early dimensionless time and
tive skin wheny>1; on the other hand, the two-zone aquifer larger at late dimensionless time, especially for small valug. of
system becomes a uniforfsingle-zong¢ medium wheny=1. The curves of dimensionless flow rate versus dimensionless time

Fory=1 (no skin andLp=200 (dimensionless aquifer thick-  drawn based on Novakowski’s solution for the well with a nega-
nes$ when ¢ (dimensionless screen lengt0.1, 0.4, 0.8, or 1, tive skin becomes flat when dimensionless time is small. This
Fig. 2 depicts the relationship for dimensionless flow rate against problem may also be attributed to the assumption of using the
dimensionless time. Note th&t=1 represents a fully penetrating constant-head condition for the casing in his mathematical model.
well case. The dimensionless flow rate tends to decrease rapidly
with increasing dimensionless time and stabilizes when dimen-
sionless time is very large. The dimensionless flow rate with a
partially penetrating well significantly differs from that with a
fully penetrating well. The dimensionless flow rate increases with Fig. 4 displays the plot of dimensionless hydraulic head versus
decreasingb at the same dimensionless time. A larger dimension- dimensionless distance fop=200,r,s=10,2,=100,$¢=0.1, and
less flow rate reflects the effect of screen length. Obviously, a r=1, 10%, 1%, and 18 wheny=0.1, 1, or 10. This figure dem-
smaller screen length will have a larger dimensionless flow rate onstrates the effect of skin properties on the shape of curves in a
for a constant-head test. The effect of well partial penetration partially penetrating well. The dimensionless hydraulic head in-
increases with dimensionless time. Fig. 2 also displays the com-creases with dimensionless time in both the skin and formation
parisons between our solution and Novakowski’s solution when zones; contrarily, the dimensionless hydraulic head decreases
the finite-thickness skin is absent. The dimensionless flow rates ofwith increasing dimensionless radial distance. For the case with-
our solution match with those of Novakowski's solution when out a skin zongy=1), dimensionless head gradually decreases
b=1. However, dimensionless flow rates of Novakowski's solu- when increasing radial distance. At the interface of the skin and
tion are significantly larger than those of our solution whien  formation zonesi.e., rp=rpg), the slopes of curves are markedly
< 1. In addition, the differences between our solution and Nova- different because of the contrast of hydraulic conductivity be-
kowski's solution increase with increasing dimensionless time tween skin and formation zones. Under negative skin condition,
and decreasing. the slope of curve within the skin zone is obviously smaller than

For Lp=2000,rps=10, and$=0.01 whernry=0.01, 0.1, 1(no that within formation zone due to the fact of larger hydraulic
skin), 10, or 100, Fig. 3 shows the relationship of dimensionless conductivity of the negative skin. In contrast, the slope of curve

Effect of Finite-Thickness Skin on Dimensionless
Hydraulic Head
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and results in a higher dimensionless hydraulic head. On the other
hand, a lower hydraulic conductivity of a positive skin yields a
lower flow rate at the wellbore and results in smaller dimension-
less heads of the skin and formation zones.

Conclusions

A mathematical model is presented for a constant-head test per-
formed in a well under the effects of the finite-thickness skin and

well partial penetration. The model uses a no-flow boundary con-
dition for the casing and constant-head boundary condition for the
screen to represent a partially penetrating well. Laplace-domain
solutions for both the dimensionless flow rate at the wellbore and
the hydraulic heads in the skin and formation zones are derived
using the Laplace and finite Fourier cosine transforms. The solu-
tions of hydraulic heads have been shown to satisfy the governing
equations, related boundary conditions, and continuity require-
ments for the hydraulic head and flow rate at the interface of the
skin zone and undisturbed formation. In addition, simplified so-

Fig. 4. Plot of dimensionless hydraulic head versus dimensionless |utions for the cases of homogenous aquifer and/or fully penetrat-

distance folLp=200,rp=10,25=100,$=0.1, andr=10?, 10*, 10,
and 16 wheny=0.1, 1, or 10

within the skin zone is larger than that within the formation zone

under positive skin condition. For a larger dimensionless distance,

ing well are also given. An efficient algorithm for evaluating this
new solution is also presented. The algorithm includes the modi-
fied Crump method for performing the numerical Laplace inver-
sion and the Shanks method for accelerating convergence when
evaluating the sum of terms and the Bessel functions.

For the case with a fully penetrating well and finite-thickness

the curves become flat and parallel. Obviously, the presence ofskin, the dimensionless flow rates computed from our solution

skin influences the hydraulic head distribution in aquifers for
constant-head tests with a partially penetrating well.

agree with those of Novakowski’'s solution. However, under a
partially penetrating condition, the dimensionless flow rates

Fig. 5 exhibits the curves of dimensionless hydraulic head ver- evaluated based on our solution and Novakowski’'s solution are

sus dimensionless time fay,=200,rps=10,2,=100,$=0.1, and
rp=>5, 10, and 15 whey=0.1, 1, or 10. Arp=5, 10, and 15, the
negative skin(y=0.1) produces the highest dimensionless hy-
draulic head, the no skify=1) gives the second, and the positive
skin (y=10) yields the lowest under the same dimensionless time.
Larger hydraulic conductivity of a negative skin produces a larger
flow rate toward the undisturbed formation during the well test

1.00 — Symbol I

Graph 1
— - — s

10 s

0.80 —

Dimensionless hydraulic head

Dimensionless time

Fig. 5. Effect of skin properties on the shape of curves [gy
=200,rps=10,75=100,$=0.1, andrp=5, 10, and 15 whey=0.1,
1, or 10

significantly different, especially whery<1 and v>1. This
problem may be due to the fact that Novakowski assumed the
hydraulic head to be constant even in the portion of well casing in
his mathematical model. The curve for the dimensionless head
distribution shows an abrupt change in slope at the interface be-
tween the skin and formation zones. The shape of dimensionless
hydraulic head distribution is affected substantially when the
finite-thickness skin presents. For a two-zone aquifer system, our
solutions can be used for predicting the hydraulic head distribu-
tions and the transient flow rate at the wellbore, exploring the
effects of the finite-thickness skin and well partial penetration on
either the hydraulic heads or the transient flow rate, and identify-
ing the aquifer parameters via aquifer tests and data analyses.
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