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Laplace-Domain Solutions for Radial Two-Zone Flow
Equations under the Conditions of Constant-Head

and Partially Penetrating Well
Shaw-Yang Yang1 and Hund-Der Yeh2

Abstract: A mathematical model is presented for a constant-head test performed in a partially penetrating well with a finite-
skin. The model uses a no-flow boundary condition for the casing and a constant-head boundary condition for the screen to re
partially penetrating well. The Laplace-domain solutions for the dimensionless flow rate at the wellbore and the hydraulic he
skin and formation zones are derived using the Laplace and finite Fourier cosine transforms. The solutions of hydraulic heads
shown to satisfy the governing equations, related boundary conditions, and continuity requirements for the pressure head and
the interface of the skin zone and undisturbed formation. In addition, an efficient algorithm for evaluating those solutions is also
The dimensionless flow rates obtained from new solutions have been shown to be better than those of Novakowski’s solutions
when the penetration ratio is large.

DOI: 10.1061/~ASCE!0733-9429~2005!131:3~209!

CE Database subject headings: Ground water; Mathematical models; Thickness; Wells.
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Introduction

The constant-flux and constant-head tests are two typical kin
aquifer tests. The former is required to maintain a constant
discharge~or injection! and measure the drawdowns at the ob
vation wells. The latter, frequently employed in engineering p
tice for low permeability aquifers, is carried out in a single w
which maintains a constant water level inside the well and m
sures the transient flow rate at the wellbore. A patchy aquifer
a well centered in a uniform disk of transmissivityT1 embedde
within a formation of transmissivityT2 can be considered as
radial two-zone system. In addition, an aquifer may also be
sidered as a two-zone system if the formation properties nea
wellbore are significantly changed due to well construction an
development. The drilling process may produce a positive w
bore skin that has lower permeability than the undisturbed fo
tion. Conversely, thorough well development removes fine
ticles from the surrounding formation and produces a neg
wellbore skin with an increased permeability. In fact, the pos
wellbore skin prevails under most field conditions~Novakowsk
1989!.

Two types of skins, the infinitesimal and finite-thickness sk
were used in the past to investigate the skin effect on the re

1Associate Professor Dept. of Civil Engineering, Vanung Univ. Ch
gli, Taiwan.

2Professor, Institute of Environmental Engineering, Natio
Chiao Tung Univ. Hsinchu, Taiwan~corresponding author!. E-mail:
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sible publication on February 11, 2004; approved on August 18, 2
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$25.00.

JOU

J. Hydraul. Eng. 2005
of constant-head tests. Streltsova and McKinley~1984! consid-
ered an infinitesimal skin and used a skin factor to stand fo
skin effect. Chang and Chen~1999! gave the Laplace-doma
solutions of hydraulic heads and flow rates for a confined aq
under the effects of finite-thickness skin and fully penetra
well. They presented curves representing specific capacity v
time to investigate the influence of low-permeability skin zon
the estimation of aquifer parameters. Yang and Yeh~2002! ob-
tained the time-domain solution for the wellbore flow rate
using the Laplace transforms and the Bromwich integral me
Considering the effects of finite-thickness skin and well pa
penetration, Novakowski~1993! derived a Laplace-domain so
tion for dimensionless transient flow rate at the wellbore. Cu
of dimensionless flow rate versus dimensionless time were d
oped to investigate the influences of finite-thickness skin and
partial penetration. Markle et al.~1995! developed a model for
partially penetrating well that has a finite-thickness skin and
tersects a single vertical fracture. Their results show tha
finite-thickness skin and partially penetrating well can affect
transient flow rate at the wellbore. For a mixed boundary v
problem, Cassiani et al.~1999! developed a new semianaly
solution for a partially penetrating well with infinitesimal s
situated in an anisotropic confined aquifer. They employed a
flow boundary condition along the casing and a third-type bo
ary condition by specifying the drawdown due to pumping
skin effect along the well screen. Their solution is suitabl
aquifers having a semi-infinite vertical extent or to packer
with aquifer horizontal boundaries far enough from the te
area. Chang and Chen~2002! used the same mathematical mo
as Cassiani et al.~1999! except that the aquifer thickness is fin
and the flux entering through the well screen is a function of
and location along the screen. Their solution includes a rigo
treatment of the boundary condition at the wellbore. Howeve
accuracy of their solution may depend on the number of segm
chosen for representing the screen length.
A mathematical model describing the constant-head test per-
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formed in a radial confined aquifer system with the fin
thickness skin and partially penetrating well is presented.
model uses a no-flow boundary condition for the casing
constant-head boundary condition for the screen to repres
partially penetrating well. The Laplace-domain solutions for
model are derived using the Laplace and finite Fourier co
transforms. An efficient numerical approach, including the m
fied Crump method, for performing the numerical Laplace in
sion and the Shanks method for accelerating convergence
evaluating the sum of terms and the Bessel functions, is
proposed. Those solutions can be employed to predict the hy
lic head in the aquifer and transient flow rate at the wellbor
explore the effects of the finite-thickness skin and well pa
penetration on the hydraulic heads and transient flow rates, a
identify the hydraulic parameters in aquifer data analyses.

Mathematical Model

Mathematical Statement

Fig. 1 is a cross-sectional view of confined aquifer system w
well under the conditions of partial penetration and fin
thickness skin. The system assumes:~1! The aquifer is homoge
neous, infinite extent, and with a constant thickness;~2! the well
has a finite radius; and~3! the initial head is constant and unifo
throughout the whole aquifer. Under these assumptions, the
erning equations for hydraulic head distributions in the skin
formation zones can, respectively, be written as

Kr1
]2H1

]r2 +
Kr1

r

]H1

]r
+ Kz1

]2H1

]z2 = Ss1
]H1

]t
, rw ø r ø rs s1d

and

Kr2
]2H2

]r2 +
Kr2

r

]H2

]r
+ Kz2

]2H2

]z2 = Ss2
]H2

]t
, rs ø r , ` s2d

where the subscripts 1 and 2, respectively, denote the skin

Fig. 1. Schematic diagram of the well and aquifer configuratio
formation zones;H for Hsr ,z,tdg=hydraulic head;r =radial dis-
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tance from the centerline of well;rw=well radius;rs=radial dis-
tance from the well centerline to the outer skin envelopt
=time from the start of test;Kr =hydraulic conductivity in a radia
direction; Kz=hydraulic conductivity in a vertical direction; a
Ss=specific storativity.

The hydraulic heads are initially assumed to be zero within
well and the skin and formation zones, that is

H1sr,z,0d = H2sr,z,0d = 0, r ù rw s3d

Whenr =rw, the hydraulic head represents the well water lev
the well loss is negligible.

When r approaches infinity, the boundary condition for
formation zone gives

H2s`,z,td = 0 s4d

The continuities of hydraulic head and flow rate at the interfac
the skin and formation zones, respectively, require

H1srs,z,td = H2srs,z,td, t . 0 s5d

and

Kr1

]H1srs,z,td
]r

= Kr2

]H2srs,z,td
]r

, t . 0 s6d

The no-flow boundary conditions at the bottom and upper
pervious boundaries of confined aquifer are, respectively,

]H1sr,0,td
]z

=
]H2sr,0,td

]z
= 0 s7d

and

]H1sr,L,td
]z

=
]H2sr,L,td

]z
= 0 s8d

The water level of well remains constant atr =rw. Thus, the
inner boundary condition specified along the wellbore is

H1srw,z,td = H0dsz− z8d s9d

where H0=constant water level around the well at any ti
ds·d=Dirac delta function; andz8=location of point source in az
direction.

The flow rate along the screen assumes that

− Kr1

]H1srw,z,td
]r

= qstd, B1 ø zø B2 s10d

and the no-flow boundary condition along the well casing is

− Kr1

]H1srw,z,td
]r

= 0, z, B1, z. B2 s11d

whereqstd=flow rate per unit area and assumed constant a
the well screen; andB1 and B2= lower and upperz coordinates
respectively.

The dimensionless parameters used hereafter are defin
Table 1. Eqs.~1!–~11! in dimensionless form are, respectively

]2h1

]rD
2 +

1

rD

]h1

]rD
+ a1

]2h1

]zD
2 = gj

]h1

]t
, 1 ø rD ø rDs s12d

]2h2

]rD
2 +

1

rD

]h2

]rD
+ a2

]2h2

]zD
2 =

]h2

]t
, rDs ø rD , ` s13d
h1srD,zD,0d = h2srD,zD,0d = 0 s14d

.131:209-216.
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h2s`,zD,td = 0 s15d

h1srDs,zD,td = h2srDs,zD,td, t . 0 s16d

]h1srDs,zD,td
]rD

= g
]h2srDs,zD,td

]rD
, t . 0 s17d

]h1srD,0,td
]zD

=
]h2srD,0,td

]zD
= 0 s18d

]h1srD,LD,td
]zD

=
]h2srD,LD,td

]zD
= 0 s19d

h1s1,zD,td = dszD − zD8 d s20d

−
]h1s1,zD,td

]rD
= qDstd, b1 ø zD ø b2 s21d

and

−
]h1s1,zD,td

= 0, zD , b1, zD . b2 s22d

Table 1. Dimensionless Expressions

Symbol Illustration

t Kr2t /Ss2rw
2

rDs rs/ rw

rD r / rw

LD L / rw

h1 H1/H0

h2 H2/H0

zD z/ rw

b1 B1/ rw

b2 B2/ rw

f sB2−B1d /L

a1 Kz1/Kr1

a2 Kz2/Kr2

g Kr2/Kr1

j Ss1/Ss2

qDstd qstd / f2psB2−B1dKr1H0g
q1 Îa1wn

2+gjp

q2 Îa2wn
2+p

q3 Îgjp

q4,q8 Îp

b1 −q1K1sq1rDsdK0sq2rDsd+gq2K0sq1rDsdK1sq2rDsd
b2 q1I1sq1rDsdK0sq2rDsd+gq2I0sq1rDsdK1sq2rDsd
b3 −q3K1sq3rDsdK0sq4rDsd+gq4K0sq3rDsdK1sq4rDsd
b4 q3I1sq3rDsdK0sq4rDsd+gq4I0sq3rDsdK1sq4rDsd
A1srDd f−b3I0sq3rDd+b4K0sq3rDdg / hq3fb3I1sq3d+b4K1sq3dgj
A2srDd f−b1I0sq1rDd+b2K0sq1rDdg / hq1fb1I1sq1d+b2K1sq1dgj
A3swnd fsinswnb2d−sinswnb1dg /wn

B1srDd K0sq4rDd / hq3rDsfb3I1sq3d+b4K1sq3dgj
B2srDd K0sq2rDd / hq1rDsfb1I1sq1d+b2K1sq1dgj
A1srD=1d f−b3I0sq3d+b4K0sq3dg / hq3fb3I1sq3d+b4K1sq3dgj
A2srD=1d f−b1I0sq1d+b2K0sq1dg / hq1fb1I1sq1d+b2K1sq1dgj
]rD

JOU
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Laplace-Domain Solutions

The Laplace-domain solution for dimensionless hydraulic h
in the skin and formation zones can be obtained by taking La
transforms with respect to time and the finite Fourier cosine t
forms with respect toz coordinate from Eqs.~12!–~22!. Taking
the Laplace transforms of Eqs.~12!–~22! yields

]2h̃1

]rD
2 +

1

rD

]h̃1

]rD
+ a1

]2h̃1

]zD
2 = gjph̃1, 1 ø rD ø rDs s23d

]2h̃2

]rD
2 +

1

rD

]h̃2

]rD
+ a2

]2h̃2

]zD
2 = ph̃2, rDs ø rD , ` s24d

h̃2s`,zD,pd = 0 s25d

h̃1srDs,zD,pd = h̃2srDs,zD,pd s26d

]h̃1srDs,zD,pd
]rD

= g
]h̃2srDs,zD,pd

]rD
s27d

]h̃1srD,0,pd
]zD

=
]h̃2srD,0,pd

]zD
= 0 s28d

]h̃1srD,LD,pd
]zD

=
]h̃2srD,LD,pd

]zD
= 0 s29d

h̃1s1,zD,pd =
1

p
s30d

−
]h̃1s1,zD,pd

]rD
= qDspd, b1 ø zD ø b2 s31d

and

−
]h̃1s1,zD,pd

]rD
= 0, zD , b1, zD . b2 s32d

Applying the finite Fourier cosine and inverse finite Fou
cosine transforms with respect to thez coordinate for Eqs
~23!–~32! results in dimensionless hydraulic heads for the
and formation zones, respectively,

h̃1 = q̃DspdFfA1srDd +
2

LD
o
n=1

`

A2srDdA3swndcosswnzDdG s33d

and

h̃2 = q̃DspdFfB1srDd +
2

LDrDs
o
n=1

`

B2srDdA3swndcosswnzDdG
s34d

where

A1srDd =
f− b3I0sq3rDd + b4K0sq3rDdg

q3fb3I1sq3d + b4K1sq3dg
s35d

A2srDd =
f− b1I0sq1rDd + b2K0sq1rDdg

s36d

q1fb1I1sq1d + b2K1sq1dg
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A3swnd =
fsinswnb2d − sinswnb1dg

wn
s37d

B1srDd =
K0sq4rDd

q3rDsfb3I1sq3d + b4K1sq3dg
s38d

and

B2srDd =
K0sq2rDd

q1rDsfb1I1sq1d + b2K1sq1dg
s39d

where p=Laplace variable~Spiegel 1965!; wn=np /LD; and
qDspd=dimensionless flow rate in the Laplace domain. The f
tions of I0s·d andK0s·d are, respectively, the modified Bessel fu
tions of the first and second kinds of order zero; andI1s·d and
K1s·d are the modified Bessel functions of the first and sec
kinds of order one, respectively. Note that the dimensionless
rateq̃Dspd in Eq. ~33! is unknown and can be obtained by sub
tuting Eq.~33! into Eq. ~30! as

q̃Dspd =
1

pFfA1srD = 1d +
2

LDsb2 − b1d
o
n=1

`

A2srD = 1dA3
2swndG−1

s40d

This equation has two terms; the first term accounts for the
havior of a fully penetrating well and the second term is ass
ated with the effect of well partial penetration.
head
g
-

l
l
r

boundary condition of Eq.~25!.
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Proof of the Solution

This section proves that the Laplace-domain solutions of di
sionless hydraulic heads satisfy the governing equations, b
ary conditions, and continuity requirements at the interface o
skin zone and undisturbed formation. McLachlan~1955, pp. 192
197! gave following two formulas:

]I0sqrDd
]rD

= qI1sqrDd s41d

and

]2I0sqrDd
]rD

2 = q2F−
1

qrD
I1sqrDd + I0sqrDdG s42d

Based on Eqs.~41! and ~42!, one can obtain

]2I0sqrDd
]rD

2 +
1

rD

]I0sqrDd
]rD

= q2I0sqrDd s43d

Similarly,

]2K0sqrDd
]rD

2 +
1

rD

]K0sqrDd
]rD

= q2K0sqrDd s44d

Based on Eqs.~35!, ~43!, and ~44!, the sum of the secon
derivative ofA1srDd with respect torD and the first derivative o
A sr d with respect tor divided by r gives
1 D D D
]2A1srDd
]rD

2 +
1

rD

]A1srDd
]rD

=
H− b3F ]2I0sq3rDd

]rD
2 +

1

r

]I0sq3rDd
]rD

G + b4F ]2K0sq3rDd
]rD

2 +
1

r

]K0sq3rDd
]rD

GJ
q3fb3I1sq3d + b4K1sq3dg

= q3
2A1srDd s45d
r

ity
ation
Likewise, one can get

]2A2srDd
]rD

2 +
1

rD

]A2srDd
]rD

= q1
2A2srDd s46d

Substitutingh̃1 of Eq. ~33! into the left-hand side~LHS! of Eq.
~23! and using Eqs.~45! and ~46! yields

q̃DspdFfF ]2A1srDd
]rD

2 +
1

rD

]A1srDd
]rD

G
+

2

LD
o
n=1

` F ]2A2srDd
]rD

2 +
1

rD

]A2srDd
]rD

GA3swndcosswnzDdG
= gjph̃1 s47d

Here, we have shown that the solution for dimensionless
distribution in the skin zone, Eq.~33!, satisfies the governin
equation~23!. Also, one can prove that Eq.~34! satisfies the gov
erning equation~24!.

For the outer boundary,rD→`, one hasK0s`d=0 andK1s`d
=0; accordingly,B1s`d and B2s`d in Eqs. ~38! and ~39! equa
zero. The dimensionless hydraulic head of Eq.~34! is then equa
to zero whenrD→`. Therefore, Eq.~34! satisfies the oute
Letting rD=rDs and using the dimensionless expression fob3

andb4, Eq. ~35! equals

A1srDsd =
1

q3fb3I1sq3d + b4K1sq3dg

3hq3K0sq4rDsdfK1sq3rDsdI0sq3rDsd

+ I1sq3rDsdK0sq3rDsdgj s48d

Based on the formulaK1sudI0sud+ I0sudK1sud=1/u ~Abramowitz
and Stegun 1964! and Eq. ~38!, Eq. ~48! reduces toA1srDsd
=B1srDsd. Similarly, A2srDsd=B2srDsd. As a result, Eq.~33! is
equal to Eq.~34! at rD=rDs. Here, we have shown the continu
of dimensionless hydraulic head between the skin and form
zones.

Taking the derivative ofA1srDd in Eq. ~35! with respect torD

and lettingrD=rDs produces

U ]A1srDd
]rD

U
rD=rDs

=
− gq4K1sq4rDsd

q3rDsfb3I1sq3d + b4K1sq3dg
s49d

Also,

U ]A2srDd
]rD

U
r =r

=
− gq2K1sq2rDsd

q1rDsfb1I1sq1d + b2K1sq1dg
s50d
D Ds

.131:209-216.
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Furthermore, lettingrD=rDs and multiplying by g on both
sides after taking the derivative ofB1srDd in Eq. ~38! with respec
to rD yields

gU ]B1srDd
]rD

U
rD=rDs

=
− gq4K1sq4rDsd

q3rDsfb3I1sq3d + b4K1sq3dg
s51d

Likewise,

gU ]B2srDd
]rD

U
rD=rDs

=
− gq2K1sq2rDsd

q1rDsfb1I1sq1d + b2K1sq1dg
s52d

Therefore, based on Eqs.~49!–~52!, one can easily prove that

U ]h̃1

]rD

U
rD=rDs

= gU ]h̃2

]rD

U
rD=rDs

s53d

Here, we have shown that the flow rates between the skin
formation zones are equal.

The derivatives of the hydraulic heads in Eqs.~33! and ~34!
with respect tozD produce sine terms and become zero whezD

equals 0 orLD. Thus, the no-flow condition at the top and bott
boundaries, Eqs.~28! and ~29!, is satisfied.

Simplified Solutions

The Laplace-domain solutions for dimensionless head distrib
in the skin and formation zones, i.e., Eqs.~33! and ~34!, and
dimensionless flow rate cross the wellbore, Eq.~40!, can reduc
to a simpler form if the aquifer is homogeneous or/and the w
fully penetrating.

Homogeneous Aquifer

For the case of a partially penetrating well in a homogen
~single zone! aquifer, bothg and j are equal to unity anda1

=a2=1. Let the variablesq1 andq2 equal dummy variableq and
q3 andq4 equal dummy variableq8; consequently, bothb1 andb3

become zero. Then, Eqs.~35! and ~38! turn out to be

C1srDd = A1srDd = B1srDd =
K0sq8rDd
q8K1sq8d

s54d

and Eqs.~36! and ~39! become

C2srDd = A2srDd = B2srDd =
K0sqrDd
qK1sqd

s55d

Then, the dimensionless hydraulic heads for the skin and fo
tion zones, Eqs.~33! and~34!, reduce to the solution for a hom
geneous aquifer as

h̃1 = q̃DspdFfC1srDd +
2

LD
o
n=1

`

C2srDdA3swndcosswnzDdG s56d

and the equation representing dimensionless flow rate, Eq.~40!,
turns into

q̃Dspd =
1

pFfC1srD = 1d +
2

LDsb2 − b1d
o
n=1

`

C2srD = 1dA3
2swndG−1
s57d
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Fully Penetrating Well

For a fully penetrating well case, by settingb1=0 andb2=LD, one
can obtainf=1 andA3swnd=0. Consequently, those terms wit
summation on the right-hand side of Eqs.~33!, ~34!, and~40! are
all equal to zero. Thus, the dimensionless hydraulic heads
skin and formation zones are, respectively,

h̃1 =
1

p

f− b3I0sq3rDd + b4K0sq3rDdg
f− b3I0sq3d + b4K0sq3dg

s58d

and

h̃2 =
1

p

K0sq4rDd
rDsf− b3I0sq3d + b4K0sq3dg

s59d

and the dimensionless flow rate is

q̃D =
1

p

q3fb3I1sq3d + b4K1sq3dg
f− b3I0sq3d + b4K0sq3dg

s60d

which indeed are equal to those Laplace-domain solutions fo
dimensionless head distribution and wellbore flux for a two-z
aquifer system presented in Yang and Yeh~2002!. With some
minor algebraic manipulations, Eq.~60! is the equivalent to Eq
~14! of Novakowski~1993!.

Homogeneous Aquifer and Fully Penetrating Well

For a homogeneous aquifer, the skin is absent and the a
properties are constant throughout the whole aquifer. Accord
both g andj are equal to unity and let the variablesq3 andq4 in
Eqs. ~58!–~60! also equal the dummy variableq8. Then, both
Eqs.~58! and ~59! reduce to

h̃D =
1

p

K0sq8rDd
K0sq8d

s61d

and Eq.~60! becomes

q̃Dspd =
K1sq8d

ÎpK0sq8d
s62d

which are the Laplace-domain solutions, respectively, for dim
sionless head distribution in the aquifer and dimensionless
rate at the wellbore presented in Carslaw and Jaeger~1939! and
Jaeger~1942!.

Results and Discussion

Note that Eqs.~33! and~34!, respectively, stand for dimensionle
hydraulic heads in the skin and formation zones and Eq.~40!
represents the dimensionless flow rate at the wellbore. T
equations consist of the products of the Bessel functions w
can be approximated by the formulas given in Abramowitz
Stegun ~1964! and Watson~1958!. Since Bessel functions a
oscillatory function and may be slowly convergent in cer
cases, the evaluations of these functions are accelerated us
Shanks method~Shanks 1955; Yang and Yeh 2002!. The values o
the Bessel functions in these equations are computed at le
ten decimal places, and thus have the same accuracy as
listed in Abramowitz and Stegun~1964! and Watson~1958!. The
routine INLAP of IMSL ~1987! developed based on the modifi

Crump method~Crump 1976; de Hoog et al. 1982! is employed to
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invert those Laplace-domain solutions numerically. This me
approximates the Laplace inversion by expressing the t
formed function in a Fourier series.

Comparisons of Our Solution and Novakowski’s
Solution for Dimensionless Flow Rate

The curves of dimensionless flow rate versus dimensionless
are plotted to investigate the impacts of the skin properties
thickness on dimensionless flow rate. For ease of comparisj,
a1, anda2 are chosen as one. In addition, all evaluations for
solution are in a double-precision format. Note that the aq
has a negative skin when the conductivity ratiog,1 and a posi
tive skin wheng.1; on the other hand, the two-zone aqu
system becomes a uniform~single-zone! medium wheng=1.

For g=1 ~no skin! andLD=200 ~dimensionless aquifer thic
ness! when f sdimensionless screen lengthd=0.1, 0.4, 0.8, or 1
Fig. 2 depicts the relationship for dimensionless flow rate ag
dimensionless time. Note thatf=1 represents a fully penetrati
well case. The dimensionless flow rate tends to decrease ra
with increasing dimensionless time and stabilizes when dim
sionless time is very large. The dimensionless flow rate w
partially penetrating well significantly differs from that with
fully penetrating well. The dimensionless flow rate increases
decreasingf at the same dimensionless time. A larger dimens
less flow rate reflects the effect of screen length. Obvious
smaller screen length will have a larger dimensionless flow
for a constant-head test. The effect of well partial penetra
increases with dimensionless time. Fig. 2 also displays the
parisons between our solution and Novakowski’s solution w
the finite-thickness skin is absent. The dimensionless flow ra
our solution match with those of Novakowski’s solution wh
f=1. However, dimensionless flow rates of Novakowski’s s
tion are significantly larger than those of our solution whef
,1. In addition, the differences between our solution and N
kowski’s solution increase with increasing dimensionless
and decreasingf.

For LD=2000,rDs=10, andf=0.01 wheng=0.01, 0.1, 1~no

Fig. 2. Relationship for dimensionless flow rate against dimens
less time forg=1 ~no skin! andLD=200 whenf=0.1, 0.4, 0.8, or 1.
skin!, 10, or 100, Fig. 3 shows the relationship of dimensionless

214 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / MARCH 2005
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flow rate versus dimensionless time. The dimensionless flow
decreases rapidly with increasing dimensionless time and
lizes when dimensionless time is very large~say, t.103!. The
dimensionless flow rate increases withg at the same dimensio
less time. A larger dimensionless flow rate reflects the effe
the conductivity ratio,g. Fig. 3 also displays the comparison
tween our solution and Novakowski’s solution on the effect
finite-thickness skin and well partial penetration. The dimens
less flow rates calculated based on Novakowski’s solution
smaller than those of our solution at early dimensionless time
larger at late dimensionless time, especially for small valueg.
The curves of dimensionless flow rate versus dimensionless
drawn based on Novakowski’s solution for the well with a ne
tive skin becomes flat when dimensionless time is small.
problem may also be attributed to the assumption of using
constant-head condition for the casing in his mathematical m

Effect of Finite-Thickness Skin on Dimensionless
Hydraulic Head

Fig. 4 displays the plot of dimensionless hydraulic head ve
dimensionless distance forLD=200,rDs=10,zD=100,f=0.1, and
t=102, 104, 106, and 108 wheng=0.1, 1, or 10. This figure dem
onstrates the effect of skin properties on the shape of curve
partially penetrating well. The dimensionless hydraulic head
creases with dimensionless time in both the skin and form
zones; contrarily, the dimensionless hydraulic head decr
with increasing dimensionless radial distance. For the case
out a skin zonesg=1d, dimensionless head gradually decrea
when increasing radial distance. At the interface of the skin
formation zones~i.e., rD=rDs!, the slopes of curves are marke
different because of the contrast of hydraulic conductivity
tween skin and formation zones. Under negative skin cond
the slope of curve within the skin zone is obviously smaller
that within formation zone due to the fact of larger hydra

Fig. 3. Relationship for dimensionless flow rate against dimens
less time forLD=2000, rDs=10, andf=0.01 wheng=0.01, 0.1, 1
~no skin!, 10, or 100
conductivity of the negative skin. In contrast, the slope of curve

.131:209-216.
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within the skin zone is larger than that within the formation z
under positive skin condition. For a larger dimensionless dista
the curves become flat and parallel. Obviously, the presen
skin influences the hydraulic head distribution in aquifers
constant-head tests with a partially penetrating well.

Fig. 5 exhibits the curves of dimensionless hydraulic head
sus dimensionless time forLD=200,rDs=10,zD=100,f=0.1, and
rD=5, 10, and 15 wheng=0.1, 1, or 10. AtrD=5, 10, and 15, th
negative skinsg=0.1d produces the highest dimensionless
draulic head, the no skinsg=1d gives the second, and the posit
skin sg=10d yields the lowest under the same dimensionless t
Larger hydraulic conductivity of a negative skin produces a la
flow rate toward the undisturbed formation during the well

Fig. 4. Plot of dimensionless hydraulic head versus dimensio
distance forLD=200,rDs=10, zD=100,f=0.1, andt=102, 104, 106,
and 108 wheng=0.1, 1, or 10

Fig. 5. Effect of skin properties on the shape of curves forLD

=200, rDs=10, zD=100,f=0.1, andrD=5, 10, and 15 wheng=0.1,
1, or 10
JOU
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and results in a higher dimensionless hydraulic head. On the
hand, a lower hydraulic conductivity of a positive skin yield
lower flow rate at the wellbore and results in smaller dimens
less heads of the skin and formation zones.

Conclusions

A mathematical model is presented for a constant-head tes
formed in a well under the effects of the finite-thickness skin
well partial penetration. The model uses a no-flow boundary
dition for the casing and constant-head boundary condition fo
screen to represent a partially penetrating well. Laplace-do
solutions for both the dimensionless flow rate at the wellbore
the hydraulic heads in the skin and formation zones are de
using the Laplace and finite Fourier cosine transforms. The
tions of hydraulic heads have been shown to satisfy the gove
equations, related boundary conditions, and continuity req
ments for the hydraulic head and flow rate at the interface o
skin zone and undisturbed formation. In addition, simplified
lutions for the cases of homogenous aquifer and/or fully pen
ing well are also given. An efficient algorithm for evaluating
new solution is also presented. The algorithm includes the m
fied Crump method for performing the numerical Laplace in
sion and the Shanks method for accelerating convergence
evaluating the sum of terms and the Bessel functions.

For the case with a fully penetrating well and finite-thickn
skin, the dimensionless flow rates computed from our solu
agree with those of Novakowski’s solution. However, und
partially penetrating condition, the dimensionless flow r
evaluated based on our solution and Novakowski’s solution
significantly different, especially wheng,1 and t.1. This
problem may be due to the fact that Novakowski assume
hydraulic head to be constant even in the portion of well casi
his mathematical model. The curve for the dimensionless
distribution shows an abrupt change in slope at the interfac
tween the skin and formation zones. The shape of dimensio
hydraulic head distribution is affected substantially when
finite-thickness skin presents. For a two-zone aquifer system
solutions can be used for predicting the hydraulic head dist
tions and the transient flow rate at the wellbore, exploring
effects of the finite-thickness skin and well partial penetratio
either the hydraulic heads or the transient flow rate, and ide
ing the aquifer parameters via aquifer tests and data analys
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