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A Stimulus–Response Model of
Day-to-Day Network Dynamics

Hsun-Jung Cho and Ming-Chorng Hwang

Abstract—A general structure of stimulus–response formula is
presented to specify the interacted network dynamics under the
assumption of a daily learning and adaptive travel behavior. By
taking the time derivative of system variable as a response term,
the evolution is formulated as a dynamic system. Issues of exis-
tence, uniqueness, and stability for the proposed differential equa-
tions are briefly discussed. Approximation of a time-varying route-
choice model is derived from the addressed path-flow dynamics.
Threshold effects on path-flow dynamics are encapsulated into the
proposed general structure by incorporating a discontinuous stim-
ulus term. Then, the quasi user equilibrium is achieved when all
users feel indifferent between the experienced and predicted travel
time provided by intelligent transportation systems, i.e., the whole
system dynamics stay within a bounded range. The derived quasi
user equilibrium is reduced to Wardrop’s user equilibrium as the
threshold effects of path-flow dynamics vanish.

Index Terms—Day-to-day network dynamics, dynamic traffic
assignment, Lyapunov stability, stimulus–response formula,
threshold effect.

I. INTRODUCTION

THE ABILITY to forecast how the information predicted
and provided by advanced traveler information systems

(ATIS) influences time trajectories of network flows is essen-
tial in the era of intelligent transportation systems (ITS). The
concentration of this paper is to develop an analytical approach
that captures the effects of travel information on network flow
evolutions, especially the day-to-day interactions among traffic
variables, network performances, and travel information. Net-
work flow evolution has been studied analytically in [1]–[4] or
simulation-oriented in [5]–[10]. An analytical approach is able
to derive theoretical properties and to foresee asymptotic be-
haviors of simplified system based on a well-established mathe-
matical foundation. On the contrary, complex manners of travel
decisions are possibly handled by a simulation method. How-
ever, it is not easy to achieve a fully satisfied mathematical base
pertaining to issues of existence, uniqueness, and stability for
simulation-based approaches.
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Some other researchers were concerned about formulations
and solution algorithms of the dynamic traffic assignment
(DTA) problem to compute the flow pattern of system optimum
[11], dynamic user equilibrium [12], or dynamic user optimum
[13], [14]. These studies did not simulate the evolutions of
network flows, but only provide a unique flow solution that
coincided with some optimal criteria.

Flow evolution models are able to capture the transition
states of system and, consequently, reach equilibrium if the
simulation time period is long enough. They are classified into
two broad categories according to the time scale of system
adjustments, the transitions of system variables within each
single day (intraday or time-of-day dynamics) and between
subsequent “days” or, more generally, observation periods
of similar characteristics (interday or day-to-day dynamics).
The experiments on route-choice behaviors of commuters
directed by Chang and Mahmassani [5]–[7] had indicated that
the learning and adaptive processes for this choice may take
weeks, partly because of the dynamic feedbacks from the traffic
system and can indeed be lengthened by complex switching
that resulted from the provision of better information. Friesz et
al. in [4] addressed Chang and Mahmassani’s design theoret-
ically by introducing a tatonnement process for modeling the
fluctuations of disequilibria from one state to another without
touching the existence and uniqueness of the proposed models.
Cho and Hwang [18] developed a system of differential equa-
tions to characterize the time-varying interdependence between
vehicular flows and predicted travel information with a partially
similar concept presented in Carey [15], Smith [2], and Friesz
et al. [4]. This work provided a congestion-sensitive evolution
behavior of network dynamics with multiple user classes and an
easy way to derive the Wardrop’s user equilibrium [16] directly
from the steady state of a dynamical system with entirely ana-
lytical materials about the existence, uniqueness, and stability
of solutions. We refer readers to Peeta and Ziliaskopoulos [22],
Mahmassani [23], Ben-Akiva et al. [24], and Boyce et al. [25]
for a more-detailed and well-organized review.

Most of the studies discussed have sought to solve the pre-
sumed unique user equilibrium or evolution toward such a user
equilibrium state without a positive indication of the validity of
this presumption. Alternative behavioral rules founded on the
bounded-rationality notion and the associated satisfying deci-
sion rules had been explored by Mahmassani and Chang [26] for
the departure time choices of urban commuters in the context
of computer-simulation experiments. Boundedly rational user
equilibrium (BRUE) is attained when all users given a system
satisfied with their current travel choices; thus, they feel no
need to improve their outcome by changing decisions. How-
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ever, the existence of a BRUE is not guaranteed, depending on
the specific decision rule followed by users and the characteris-
tics of corresponding system. For example, in the departure-time
choices pursued in Mahmassani and Chang [26], the indiffer-
ence band of tolerable schedule delay had to exceed a certain
threshold before a BRUE commuting pattern could exist. Fur-
ther analytical exploration on system dynamics, particularly the
convergence to and stability of equilibrium, remains vacuum in
this study.

A general structure of stimulus–response formula (SRF) is
proposed in this paper to specify the interacted day-to-day net-
work dynamics under the assumption of a daily learning and
adaptive behavioral process. In particular, by defining a discon-
tinuous stimulus, path-flow dynamics encapsulating threshold
effect are formulated successfully. The remainder of this paper
is organized as follows. In Section II, we mention the assump-
tions, variable definitions, and basic framework of stimulus–re-
sponse function. Developments of network dynamics in terms of
SRF are described in Section III and analysis of the steady state
is presented in Section IV. Issues of existence, uniqueness, and
stability are briefly discussed in Section V, based on the results
of Cho and Hwang [18]. Numerical examples are demonstrated
in Section VI and the conclusion of this research is outlined in
Section VII.

II. ASSUMPTIONS, NOTATION, AND

STIMULUS–RESPONSE FORMULA

A. Assumptions

Interday dynamics of peak-period commuter trips are exam-
ined in this paper. The learning and adjustable behavior process
is assumed to guide daily travel decisions. This process is speci-
fied that travel information about the upcoming day’s travel time
for an origin–destination (O–D) pair is provided with users and
compared with the actual travel time experienced by all corre-
sponding path users. The deviation between provided and expe-
rienced travel time results in path-flow adjustments of the next
day. Experienced travel time is estimated by a link travel-time
function in terms of an average in peak period. Predicted travel
time of an O–D pair is assumed similarly to adjust as the dif-
ference between travel demand and the sum of corresponding
path flows is detected. Link cost function is assumed to be a
smooth and strict monotone function of link flow. In addition,
travel demand is presumably fixed in this study under the sup-
position of no structural changes from competing transportation
facilities over the entire period of interest. The authors are con-
cerned that the variations of path flow and path travel time are
much more sensitive than that of O–D demand if travel informa-
tion provided by ATIS is the only perturbation of transportation
system. In order to prevent any links from oversaturation, it is
also assumed that travel demands of all O–D pairs do not jointly
violate any capacity constraints of links.

B. Notation

Some notation based on typical equilibrium models of com-
muter route choice are employed and augmented to meet our

TABLE I
NOTATION

concerns. In particular, we take all vectors to be column vec-
tors. Vectors and matrices are expressed in boldface. Notation
common throughout this paper is summarized in Table I.

C. Stimulus–Response Formula

The general structure of SRF is composed of stimulus, re-
sponse, and sensitivity. The basic equation of these models is of
the form

Response Sensitivity Stimulus (1)

which can be interpreted as that a response is in proportional
to the magnitude of stimulus at time and begins after a time
lag . A well-known application of SRF in traffic analysis is
the car-following model [20]. The response term in (1) usually
represents the acceleration (or deceleration) of the following ve-
hicle, while the stimuli is often expressed by the velocity differ-
ence between the leading vehicle and the following one. The
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variants of car-following models concentrate on the representa-
tion of sensitivity.

In the learning and adaptive behavior process of daily com-
muter trips, the stimuli is specified by the travel discrepancy
between experienced and predicted (expected) travel time and
results in path-flow diversion the next day, which is denoted as
the response. Sensitivity is the propensity of path-flow diversion
due to travel discrepancy. For the adjustment of predicted travel
time of an O–D pair, the stimuli is described by the difference
between predicted travel demand and the actual sum of corre-
sponding path flows and causes predicted travel time changed
in the next time point interpreted as the response. Sensitivity is
supposed to be the tendency of predicted travel time to adapt
due to corresponding stimuli. Based on this analysis, a general
model encapsulating stimulus–response nature to specify the in-
teracted network dynamics in a day-to-day time scale can be
shown as

Path flow diversion at day Sensitivity

the difference between experienced travel time and

predicted expected O-D travel time at day (2)

and

Predicted travel time adjustment at day

Sensitivity the difference

between predicted travel

demand and the actual sum of corresponding

path flows at day (3)

where and are functional and Sensitivity and
Sensitivity denote sensitivities of path-flow dynamics and
predicted travel time evolutions, respectively.

III. MODELLING NETWORK DYNAMICS

A. Path-Flow Dynamics

Path-flow dynamics are formulated by further developments
of (2). Time lag is obviously equal to 1 d. Let us take the time
derivative of path flow as a reaction in the stimulus–response
equation; then, we transform (2) into a differential equation. The
stimulus in (2) can be expressed as

Stimulus (4)

The congestion effect is considered in sensitivity to reflect
that the propensity of path-flow evolution is dependent on the
path-flow state. If we further suppose that sensitivity obeys a
linear function of path flow, it can be illustrated as

Sensitivity function (5)

From (1), (4), and (5), path-flow dynamics are derived as

(6)

where

(7a)

(7b)

and

(7c)

The minus sign in (6) meets the general rule of least travel-time
seeking. The right-hand side (RHS) of (6) can be interpreted as a
pseudo travel-time saving (or loss) perceived by all path users
at day [18]. Parameter , consequently, means time-change
rate of path flow when one unit amount of this pseudo value is
generated. (7a) and (7b) ensure that (6) avoids the infeasibility
of nonnegative path-flow and link-capacity constraints. It is ob-
vious that the inequalities (7a) and (7b) are naturally satisfied if

is carefully calibrated from the empirical data. in
(7c) can be interpreted as the estimation of total perceived travel
time loss (or savings) for all users selecting path of the O–D
pair at day .

B. Predicted Travel-Time Dynamics

Predicted travel-time dynamics are accomplished by similar
treatments. We take the time derivative of predicted travel time
as a response in (3). Stimulus in (3) is replaced in our notation
as

Stimulus (8)

The RHS of (8) is interpreted as excess demand in [4], [15],
and [18] to note the relative scarcity (or surplus) of resources.
Sensitivity of predicted travel-time dynamics is assumed to be
an O–D pair specific constant and is expressed as

Sensitivity (9)

From (1), (8), and (9), predicted travel-time dynamics are de-
noted as

(10)

where

(11)

if we further suppose that the travel time in the next time point
for an O–D pair is transformed from the current status at a rate
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scaled to Stimulus . Inequality (11) guarantees that all pre-
dicted travel times stay in the feasible region without being
greater than , the travel time at maximal flow, or less than

, the travel time at free flow, for O-D pair . We define

(11a)

and

(11b)

As mentioned in (8), predicted travel-time dynamics attempt to
forward network traffic to a steady status by tuning itself in ac-
cordance with the relative scarcity (or surplus) of transportation
facilities [4], [18]. Accordingly, parameter is positive and
means that the time-change rate of predicted travel time when
one unit amount of excess demand is deviated.

Therefore, the final version of network dynamics is proposed
as (6) and (10) with constraints (7a), (7b), and (11), which are
collected as shown in the equations at the bottom of the page for
all O–D pairs at day .

C. Approximation of the Time-Dependent Route-Choice Model

The path-flow dynamics discussed previously do not touch
individual route-choice behavior, but directly formulate the col-
lective outcomes path-flow adjustment based on network per-
formance. The following context is the derivation of an approxi-
mated time-varying route-choice model based on the mentioned
path-flow dynamics.

Route-choice behavior had been formulated as a stochastic
model in [8]–[10] or as a deterministic model in [5]–[7] and
[21]. The essential results of these models are to predict the
peak-period (or some other time intervals of interest) path flows
for the upcoming day. This measure can be expressed in our
terms as

(12)

for stochastic models, where
user index of O-D pair ;

Pr probability;
probability of choosing path in at day ;
probability of user choosing path at day ;
utility of user choosing path ;

or as

(13)

for deterministic models, where
proportion of selecting path in
at day ;
if user selecting path at day ,
otherwise zero;
attributes of user at day ;
route decision function, is equiva-
lent to [21].

Rewriting (6) in a difference equation and replacing
with , we have

(14)

Let (14) divided by ; then we have

(15)

Furthermore, the definitions of (12) and (13) imply that

(16)

and

(17)

respectively. Equations (16) and (17) are aggregate dynamic
route-choice models approximated by the proposed path-flow
dynamics.

D. Threshold Effect on Path-Flow Dynamics

Based on the results in (6), the response term here is reformu-
lated as a path-flow adjustments prompt only if
or . is a positive real number to denote
the threshold value of stimulus. This supposition tells us that
path-flow evolution is not fully sensitive to stimulus. If experi-
enced travel time is not good enough to attract users or severely
ill to be abandoned by users, the system will remain tranquil.
This idea is fulfilled by defining a discontinuous stimulus in (6),
depicted as

if

if
(18)

and
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IV. ANALYSIS OF THE STEADY STATE

A. Steady State of Network Dynamics in (6) and (10)

It is useful to recall the definition of Wardrop’s static-user
equilibrium in our terms before elaborating on the steady state
of the proposed network dynamics. Let the symbol “ ” denote
the steady-state or equilibrium point. The Wardrop’s user equi-
librium can be described as

(19)

which states a condition that is stable only when no traveler can
improve his travel time by unilaterally changing path. All path
travel times with positive flow of the same O–D pair are equal
and minimal at this status.

The steady state of (6) and (10) implies that and
for all O–D pair . After some algebraic

reasoning, we have the following conditions jointly equivalent
to the steady state of (6) and (10):

or
or (20)

for all O–D pairs . in (20)
never happens due to violating nonnegative flow constraint. If
initial conditions with positive path flows are assumed,

in (20) will be infeasible. The third equilibrium
state in (20) is evidently held on. Then, we refine the critical
components in (20) as

(21)

for all O–D pairs . It is easy to infer that the
experienced travel time is equal to the predicted travel time and
is minimal among all positive-flow paths of an O–D pair simul-
taneously in (21). The travel demand of an O–D pair is equal to
the sum of corresponding path flows. Based on these results,
we claim that the steady state of (6) and (10) is identical to
Wardrop’s user equilibrium.

B. Steady State of Network Dynamics in (18)

The steady state of (18) implies

(22)

for all O–D pairs . in (22)
never prompts if the initial conditions with positive path flows
are provided. Then, we have an equilibrium state of (10) and,
together with (22), as

(23)

for all O–D pairs . Two facts in (23) are ob-
served. The first is that path flow is zero if the experienced travel
time is larger than the predicted travel time plus threshold value.
The second one is that positive path flow implies that the experi-
enced travel time lies within the close set . Equa-
tion (23) is not identical to Wardrop’s user equilibrium. But the
less the threshold value is, the closer (23) reaches to Wardrop’s
user equilibrium. Or we can say that Wardrop’s user equilibrium
is a special case of (23) with zero threshold value, i.e., .
Now we conclude that as (18) and (10) settle down, the experi-
enced travel times of paths with positive flow are not necessarily
the same, but with deviations less than twice of threshold value

. Now we give a new definition called quasi user equilibrium
and the corresponding theorem to state the relationship between
(23) and Wardrop’s user equilibrium.

Definition. (Quasi User Equilibrium): No travelers desire to
improve their travel time by unilaterally changing paths.

Theorem. (Quasi User Equilibrium): Wardrop’s user equi-
librium (19) is a special case of quasi user equilibrium (23) and
they are equivalent as defined in (18) is zero.

Proof: The proof is immediate from the analysis of the
steady state of (18) and (10), mentioned before.

V. EXISTENCE, UNIQUENESS, AND STABILITY

In this section, existence and uniqueness of solutions in
dynamical systems (6) and (10) are briefly discussed in Sec-
tion VA. Lyapunov function is given in Section VB to deliberate
the asymptotic behavior of (6) and (10). A detailed proof of
existence, uniqueness, and stability of solutions is omitted here;
we refer readers to [18] for a complete proof. Because (18) is
not a continuously differentiable function, detailed statements
of existence, uniqueness, and stability of (18) are not discussed
in this paper. Time indices, day , and inequalities (7a), (7b)
and (11) are neglected for conciseness in subsequent sections.
Then, (6) and (10) are rewritten as

(24)

A. Existence and Uniqueness of (24)

A dynamic system is a way of describing the time passage of
all the points for a given space . Mathematically, the space

might be an Euclidean space or a subset of . For the
network dynamics mentioned in Section III, the set of possible
nonnegative path flows and predicted travel times clearly is a
convex subset of , denoted as , from the fundamental
theorem in [17].

Fundamental Theorem: Suppose that and
that satisfies the global Lipschitz condition denoted
as for all . Then, for

, the initial value problem with
has a unique solution defined for all .

The existence and uniqueness of (24) are achieved if the
vector field of (24) is continuously differentiable and satisfies
the global Lipschitz condition. The assumptions of a smooth
and strict monotone function of link travel time ensure that
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is . For convenience, in (24) is
reindexed as

if path

(25)

Now, we give the lemma of the Lipschitz condition for (25).
Lemma (Lipschitz Condition, [18]): , defined in

(25), satisfies the global Lipschitz condition with a Lipschitz
constant , where

, and are defined in (11a), (11b), and
. Now, we have the sufficient conditions listed

in fundamental theorem. The proof of global existence and
uniqueness of (25) is standard; we refer readers to [17].

B. Asymptotic Behavior of (24)

The following context mainly relies on the well-known defi-
nition of the Lyapunov function and the corresponding stability
theorem [19].

Definition (Lyapunov Function): Let be a steady state of a
dynamical system . A function is called
a strict Lyapunov function for if the following conditions are
satisfied:

and

Theorem (Lyapunov’s Stability): Let be a steady state of
. If there exists a strict Lyapunov function

, then is asymptotically stable.
We rewrite (24) in a vector and matrix form as

(26)

is with its components of and being both

diagonal matrices with elements of path flows such that
and , respectively.

and , and denote identity matrix, full link-
cost vector, link-path incident matrix, full O–D pair demand

Fig. 1. Graph of the numerical example.

TABLE II
FUNCTION FORM AND PARAMETERS OF THE LINK COST

vector, zero matrix, and path-O–D pair incident matrix with suit-
able dimension, respectively, and and are diagonal matrices
with elements for all and , respectively. If we further let

where and are two diagonal matrices and there exists
and such that the elements of and

are and , respectively, with

(27)

and

(28)

where and is the steady state of .
Then, a strict Lyapunov function is presented as

(29)

We refer readers to [18] for the detail proof of the asymptotical
stability for dynamical system (26).

VI. NUMERICAL EXAMPLES

A simple network with four nodes and five links, illustrated
as Fig. 1, is used to show the numerical results of the proposed
models solved by high-order Runge–Kutta method. There is
only one O–D pair node node , which is connected
by three paths denoted as: path link link path
link link ; and path link link link , respec-

tively. The parameters of the link cost functions are set in
Table II.

The three examples were solved with the O–D demand
fixed as 120. Initial conditions with assumed identical pa-
rameters of path flow dynamics of model are given as

. Table III



CHO AND HWANG: STIMULUS–RESPONSE MODEL OF DAY-TO-DAY NETWORK DYNAMICS 23

TABLE III
NUMERICAL RESULTS OF (6) AND (10)

Fig. 2. Evolutions of path 1 and stimulus . Dashed line, predicted travel time;
upper black line, experienced travel time; lower black line, flow.

Fig. 3. Evolutions of path 2 and stimulus . Dashed line, predicted travel time;
upper line, experienced travel time; lower black line, flow.

shows the dynamics of flows, experienced travel times, and
predicted travel times by ATIS at three different states for (6)
and (10). It is clear that the steady state satisfies the Wardrop’s

Fig. 4. Evolutions of path 3 and stimulus . Dashed line, predicted travel time;
upper line, experienced travel time; lower black line, flow.

Fig. 5. Evolutions of predicted travel time versus stimulus . Dashed line,
predicted travel time; dotted line, O–D demand; black line, path flows sum.

Fig. 6. Evolutions of path 1 and stimulus . Thinner line, predicted travel
time; middle line, experienced travel time; black line, path 2; dotted black line,
path 3.

user equilibrium and that the predicted travel time is equal
to the path travel times of which path flows are positive si-
multaneously. Numerical results by the evolutions of network
dynamics illustrated from Figs. 2–5 also show that the path
flow increases (decreases) as experienced travel time is less
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Fig. 7. Evolutions of predicted travel time versus stimulus . Thinner line,
O–D demand; middle line, path flows sum; thicker line, predicted travel time

TABLE IV
NUMERICAL RESULTS OF (18) AND (10)

(more) than predicted travel time and predicted travel time
increases (decreases) as O–D demand is more (less) than the
sum of corresponding path flows.

Selected numerical results of models (10) and (18) with the
same inputs as the above example, but with additional
and are presented in Figs. 6 and 7. Quasi user equilib-
rium is reached at the 405th time step, shown in Table IV. The
experienced travel time in quasi user equilibrium lies within the
close set , which is centered at the predicted
travel time and with the length of being .

VII. CONCLUSION

Day-to-day network dynamics are successfully formulated
by using the stimulus–response formula under the assumption
of a daily learning and adaptive behavioral process. The time-
change rate of flow and the difference between the experienced
and predicted travel times for a path are depicted as the re-
sponse and stimulus, respectively, in path flow dynamics. The
time derivative of the predicted travel time and the excess travel
demand are introduced to be the response and the stimulus,
respectively, in predicted travel-time dynamics. The approxi-
mated dynamic route-choice model is derived from the pro-
posed path-flow dynamics. By defining a discontinuous stim-
ulus in path-flow dynamics, the path-flow adjustments encapsu-
lated threshold effects are developed. Then, the quasi user equi-
librium is researched to be a steady state when all users feel in-
different between the experienced travel time and the predicted
travel time. The proposed quasi user equilibrium is reduced to
Wardrop’s user equilibrium if the threshold effect is vanished.

Based on these results, the proposed models build an analytical
linkage between the Wardrop’s user equilibrium and the empir-
ical adaptability of route preference under the operations of ITS.
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