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Abstract—This paper studies the failure restoration of mobility database for Universal Mobile Telecommunications System (UMTS).

We consider a per-user checkpointing approach for the Home Location Register (HLR) database. In this approach, individual HLR

records are saved into a backup database from time to time. When a failure occurs, the backup record is restored back to the mobility

database. We first describe a commonly used basic checkpoint algorithm. Then, we propose a new checkpoint algorithm. An analytic

model is developed to compare these two algorithms in terms of the checkpoint cost and the probability that a HLR backup record is

obsolete. This analytic model is validated against simulation experiments. Numerical examples indicate that our new algorithm may

significantly outperform the basic algorithm in terms of both performance measures.

Index Terms—Checkpoint, failure restoration, General Packet Radio Service (GPRS), Home Location Register, Universal Mobile

Telecommunications System (UMTS).
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1 INTRODUCTION

THIS paper studies failure restoration of mobility data-
bases for Universal Mobile Telecommunications System

(UMTS) and/or General Packet Radio Service (GPRS) [13], [1].
UMTS and GPRS support wireless Internet applications [2].
In these networks, the Home Location Register (HLR) is a
database used for mobile user information management. All
permanent subscriber data are stored in this database. An
HLR record consists of three types of information: Mobile
Station (MS) Information such as the telephone number
and the International Mobile Subscriber Identity (used by the
MS to access the network), Service Information such as
service subscription, service restrictions, and supplemen-
tary services, and Location Information such as the address
of the Serving GPRS Support Node (SGSN) where the MS
resides. The location information in the HLR is updated
whenever the MS moves to a new SGSN. To access the MS,
the HLR is queried to find the current SGSN location of the
MS. Note that both the MS and service information items
are only occasionally updated. On the other hand, an MS
may move frequently and the location information is often
modified. Details of HLR operations due to call delivery can
be found in [13].

If the HLR fails, one will not be able to access the MSs. To
guarantee service availability to the MSs, database recovery
is required after an HLR failure. In UMTS/GPRS [1], the
HLR recovery procedure works as follows: The HLR
database is periodically checkpointed. After an HLR failure,
the database is restored by reloading the backup informa-
tion. There are several approaches to checkpointing the HLR
database. In the all-record checkpoint approach, all HLR
records are saved into the backup at the same times [8], [5],
[11]. The checkpoint overhead for this approach is very high
and is typically performed at midnight when the HLR

activities are infrequent. Alternatively, checkpointing can be
exercised for individual mobile users, which is referred to as
per-user checkpointing [3], [9], [18], [12], [16]. We describe two
algorithms for the per-user checkpoint approach. The first
algorithm (referred to asAlgorithm I) is the same as all-record
checkpointing, except that the checkpoint frequencies for
individual MSs may be different. The second algorithm
(referred to as Algorithm II) is a new approach proposed in
this paper.

Algorithm I (The Basic Algorithm). For every MS, we
define a timeout period tp. In Fig. 1, the tp timeouts occur at
time t0, t1, t2, t4, and t9. When this timer expires, checkpoint
is performed to save the HLR record of the MS. Therefore,
the checkpoint interval tc is equal to the timeout period tp.
After a failure (see t6 in Fig. 1), the HLR record in the
backup database is restored to the HLR. The backup copy is
obsolete if the HLR record is updated between the last
checkpoint and when the failure occurs (i.e., a registration
occurs in ½t4; t6� in Fig. 1). After the HLR record is restored,
one of the following two events may occur next:

. The record may be updated again if the MS issues a
registration (i.e., t8 < t7 in Fig. 1) or

. the record may be accessed due to an incoming call
to the MS (i.e., t7 < t8 in Fig. 1).

After a failure, if the backup record is obsolete and the next
event to the MS is an incoming call (t7 < t8 in Fig. 1), then
the call is lost. On the other hand, if the next event is a
registration, then the location information of the HLR
record is modified and the record is up to date again.

Algorithm II (Lin’s Algorithm). The intuition behind
our algorithm is simple: If registration activities are very
frequent (i.e., a registration always occurs before the tp
timer expires), then Algorithm II behaves exactly the same
as Algorithm I. On the other hand, if no registration has
occurred before the tp timer expires, then there is no need to
checkpoint the record (because the backup copy is still
valid). In this case, checkpoint is performed when the next
registration occurs.

In Algorithm II, a three-state finite state machine (FSM) is
implemented for an HLR record. The state diagram for the
FSM is shown in Fig. 2. Initially, the FSM is in state 0, and
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the tp timer starts to decrement. If a registration event
occurs before the tp timer expires, the FSM moves to state 1,
and remains in state 1 until the tp timeout event occurs.
Then, the FSM moves back to state 0, the HLR record is
checkpointed into the backup, and the tp timer is restarted.
If the timeout event occurs at state 0, then the FSM moves to
state 2, and the tp timer is stopped. If a registration event
occurs at state 2, the FSM moves to state 0, a checkpoint is
performed, and the tp timer is restarted.

Consider the timing diagram in Fig. 3. At time t0, the
FSM is at state 0 (when a registration occurs). At time t1, the
next registration occurs and the FSM moves from state 0 to
state 1 (where tm ¼ t1 � t0 is the interregistration interval).
At time t2, the tp timer expires and the FSM moves from
state 1 to state 0 (where tc ¼ tp ¼ t2 � t0). At time t3, the tp
timer expires again and the FSM moves from state 0 to
state 2. At time t4, a registration occurs. The FSM moves
from state 2 to state 0, and tc ¼ ��m ¼ t4 � t2, where ��m is the
excess life or residual time of tm.

Two output measures are considered to investigate the

checkpoint performance:

. E½tc�: the expected checkpoint interval. The larger
the E½tc� value, the lower the checkpoint overhead.
That is, the checkpoint cost is proportional to the
checkpoint frequency 1=E½tc�. We use EI ½tc� and
EII ½tc� to represent the E½tc� values for Algorithms I
and II, respectively.

. �: the probability that the HLR record in the backup
is obsolete when a failure occurs. The smaller the �
value, the better the checkpoint performance. We
use �I and �II to represent the � values for
Algorithms I and II, respectively.

. Ic: Improvement of Algorithm II over Algorithm I in
terms of the E½tc� measure.

. I�: Improvement of Algorithm II over Algorithm I in
terms of the � measure.

In a typical checkpoint approach, fixed tp is selected [7], [8].
Since many HLR records will be performed per-user
checkpointing, Exponential tp distribution is selected in
our study to avoid congestion caused by a large number of
simultaneous checkpoints. In [14], we showed that similar
performance results were observed for both fixed and
Exponential checkpoint approaches. On the other hand,
Exponential checkpointing exhibits Exponential backoff
property for resolving contention of checkpoint traffic
[10]. Such an advantage is not found in the fixed checkpoint
approach. The Exponential random variable tp has the
density function

fpðtpÞ ¼ �e��tp

Since tc ¼ tp in Algorithm I, the expected checkpoint
interval is

EI ½tc� ¼ E½tp� ¼
1

�
: ð1Þ

After a failure, the HLR record is restored from the
backup. This backup copy is obsolete if the record in
the HLR has been modified since last checkpoint. In
Fig. 1, a failure occurs at time t6 which is a random
observer of the intercheckpoint interval ½t4; t9� and the
interregistration interval ½t5; t8�. In this figure, the
interval tm � �m is the residual time of tm, and �m is
the reverse residual time. Similarly, �p is the reverse
residual time of tp. Consider a random variable t with
the probability density function fðtÞ, the distribution
function F ðtÞ ¼

R t
y¼0 fðyÞdy, the expected value E½t�, and

the Laplace transform f�ðsÞ ¼
R1
t¼0 fðtÞe�stdt. Let � be the

residual time of t with the density function rð�Þ, the
probability distribution function Rð�Þ, and the Laplace
transform r�ðsÞ. From [17],

rð�Þ ¼ 1� F ð�Þ
E½t� and r�ðsÞ ¼ 1� f�ðsÞ

E½t�s : ð2Þ

Note that the reverse residual time distribution is the same as
the residual time distribution [10], and (2) also holds for the
reverse residual time. From (2), the density function rpðtÞ is
the same as fpðtÞ for the Exponential distribution. That is,

rpðtÞ ¼ fpðtÞ ¼ �e��t:

Let �I be the probability that the HLR backup is obsolete
when a failure occurs in Algorithm I. In Fig. 1, the backup
copy is obsolete if t4 < t5 < t6. Let �c ¼ �p with the density
function rpð�cÞ be the reverse residual time tc ¼ tp. Then,

�I ¼ Pr½�c > �m�

¼
Z 1

�m¼0

rmð�mÞ
Z 1

�c¼�m

�e���cd�cd�m

¼ r�mð�Þ ¼
1

�E½tm�

� ��
1� f�

mð�Þ
�
:

ð3Þ

2 MODELING OF ALGORITHM II

This section derives the expected checkpoint interval EII ½tc�
and the probability �II of obsolete HLR backup record for
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Fig. 1. The timing diagram for Algorithm I.

Fig. 2. The state diagram for Algorithm II.

Fig. 3. The timing diagram for Algorithm II.



Algorithm II. Consider the timing diagram in Fig. 3. In
Algorithm II, if the tp timer is restarted due to the tp timeout
event (i.e., a transition from state 1 to state 0; see t2 in Fig. 3),
then the next checkpoint interval is tc ¼ maxð��m; tpÞ. On the
other hand, if the tp timer is restarted due to a registration
event (i.e., a transition from state 2 to state 0; see t4 in Fig. 3),
then the next checkpoint interval is tc ¼ maxðtm; tpÞ. The
two random variables maxð��m; tpÞ and maxðtm; tpÞ are not
the same in general. To distinguish the above two cases,
state 0 is split into state 01 and state 02. If a checkpoint
occurs due to a registration event, then the FSM moves from
state 2 to state 02. If a checkpoint occurs due to a tp timeout
event, then the FSM moves from state 1 to state 01. Fig. 4
redraws the state diagram in Fig. 2 with these two new
states. Let �x be the probability that the FSM is in state x.
Then, with probabilities

p1 ¼
�01

�01 þ �02
and p2 ¼

�02

�01 þ �02
; ð4Þ

the random variable tc can be expressed as

tc ¼ p1 maxð��m; tpÞ þ p2 maxðtm; tpÞ: ð5Þ

In Fig. 4, it is clear that the transition probability from
state 1 to state 01 is 1. Similarly, the transition probability
from state 2 to state 02 is 1. Let the transition probabilities
from state 02 to state 1 and state 2 be pa and pb, respectively.
Similarly, let the transition probabilities from state 01 to
state 1 and state 2 be pc and pd, respectively. These
transition probabilities are derived as

pa ¼ f�
mð�Þ; pb ¼ 1� f�

mð�Þ
pc ¼ r�mð�Þ; pd ¼ 1� r�mð�Þ

�
: ð6Þ

From Fig. 4, the limiting probabilities �x are expressed as
follows:

1 ¼ �01 þ �02 þ �1 þ �2

�1 ¼ �01

�2 ¼ �02

�1 ¼ pc�01 þ pa�02

�2 ¼ pd�01 þ pb�02

9>>>>=
>>>>;
: ð7Þ

With the above equations, (4) is solved to yield

p1 ¼
f�mð�Þ

1þ f�
mð�Þ � r�mð�Þ

and p2 ¼
1� r�mð�Þ

1þ f�
mð�Þ � r�mð�Þ

:

ð8Þ

From (5), the density function for tc is

fcðtcÞ ¼ p1 �e��tcRmðtcÞ þ rmðtcÞ � rmðtcÞe��tc
� �

ð9Þ

þ p2 �e��tcFmðtcÞ þ fmðtcÞ � fmðtcÞe��tc
� �

: ð10Þ

Based on the relationship between tp, tm, and ��m, fcðtcÞ can
be reinterpreted in two cases:

Case 1. The first term in the second bracket of (9) (and (10))

represents the situation when tp > ��m (or tp > tm).

Case 2. The second and third terms in the second bracket of

(9) (and (10)) represent the situation when tp < ��m (or

tp < tm).

Therefore, (9) and (10) can also be reexpressed as

fcðtcÞ ¼ fc1ðtcÞ þ fc2ðtcÞ;

where

fc1ðtcÞ ¼
f�mð�Þ�e��tcRmðtcÞ
1þ f�mð�Þ � r�mð�Þ

þ ½1� r�mð�Þ��e��tcFmðtcÞ
1þ f�mð�Þ � r�mð�Þ

ð11Þ

is the density function for Case 1, and

fc2ðtcÞ ¼
f�
mð�Þ rmðtcÞ � rmðtcÞe��tc

� �
1þ f�

mð�Þ � r�mð�Þ

þ
½1� r�mð�Þ� fmðtcÞ � fmðtcÞe��tc

� �
1þ f�

mð�Þ � r�mð�Þ
:

ð12Þ

is the density function for Case 2.
From (9) and (10), the expected checkpoint interval for

Algorithm II is

EII ½tc� ¼
Z 1

tc¼0

tcfcðtcÞdtc

¼ A1f
�
mð�Þ

1þ f�
mð�Þ � r�mð�Þ

þ A2½1� r�mð�Þ�
1þ f�

mð�Þ � r�mð�Þ
;

ð13Þ

where

A1 ¼
Z 1

tc¼0

tc�e
��tcRmðtcÞdtc þ

Z 1

tc¼0

tcrmðtcÞdtc

�
Z 1

tc¼0

tcrmðtcÞe��tcdtc

ð14Þ

¼ ��
d

r�mðsÞ
s

h i
ds

8<
:

9=
;
������
s¼�

þE½�m� þ
dr�mðsÞ
ds

� �����
s¼�

ð15Þ

¼ r�mð�Þ
�

þ E½�m�: ð16Þ

The first term in (15) is derived from the first term in (14)

using the single integral rule and the linear scaling rule of

Laplace transform [19]. The third term in (15) is derived

from the third term in (14) using the linear scaling rule of

Laplace transform. Similarly,

A2 ¼
Z 1

tc¼0

tc�e
��tcFmðtcÞdtc þ

Z 1

tc¼0

tcfmðtcÞdtc

�
Z 1

tc¼0

tcfmðtcÞe��tcdtc

¼ f�
mð�Þ
�

þE½tm�:

ð17Þ
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Fig. 4. The modified state diagram for Algorithm II.



From (13), (16), and (17), we have

EII ½tc� ¼ p1
r�mð�Þ
�

þ E½�m�
	 �

þ p2
f�
mð�Þ
�

þ E½tm�
	 �

:

ð18Þ

For the probability �II of obsolete HLR backup record in

Algorithm II, there is no close-form expression when

arbitrary fmðtmÞ is used. In this paper, we consider mix-

Erlang density function for tm, which is expressed as

fmðtmÞ ¼
Xj

i¼1

qi
ð�itmÞni�1

ðni � 1Þ!

" #
�ie

��itm ; ð19Þ

where
Pj

i¼1 qi ¼ 1, �i are the scale parameters and ni are the

shape parameters. The mix-Erlang distribution is selected

because it has been proven as a good approximation to

many other distributions as well as measured data [6], [10].

For purposes of illustration, it suffices to derive �II by

considering tm with Erlang distribution where the density

function is

fðn; �; tmÞ ¼
ð�tmÞn�1

ðn� 1Þ!

" #
�e��tm

(i.e., j ¼ 1 in (19)). It is straightforward to extend our results

with Erlang tm distribution to the results with mix-Erlang

distribution. Let F ðn; �; tmÞ be the Erlang distribution

function. Then,

F ðn; �; tmÞ ¼ 1�
Xn�1

j¼0

ð�tmÞj

j!

" #
e��tm ; ð20Þ

¼ 1� 1

�

� �Xn
j¼1

fðj; �; tmÞ ð21Þ

and the Laplace transform f�ðn; �; sÞ is expressed as

f�ðn; �; sÞ ¼ �

�þ s

� �n

: ð22Þ

The reverse residual time �m of tm has the density

function rðn; �; �mÞ, the distribution function Rðn; �; �mÞ,
and the Laplace transform r�ðn; �; sÞ. Since E½tm� ¼ n

� ,

from (2) and (21),

rðn; �; �mÞ ¼
1

n

� �Xn
j¼1

fðj; �; �mÞ;

Rðn; �; �mÞ ¼
1

n

� �Xn
j¼1

F ðj; �; �mÞ;
ð23Þ

and

r�ðn; �; sÞ ¼ �

ns


 �
1� �

�þ s

� �n� �
: ð24Þ

Consider a checkpoint interval tc. Let us revisit the two

cases mentioned before:

Case 1. tc ¼ maxðtm; tpÞ ¼ tp or maxð��m; tpÞ ¼ tp: The HLR

record is always updated in this tc interval. The tc

density function for this case is expressed in (11).

Case 2. tc ¼ maxðtm; tpÞ ¼ tm or maxð��m; tpÞ ¼ ��m: The HLR

record is never updated in this tc interval. The tc density

function for this case is expressed in (12).

To derive �II , we only need to consider Case 1. From (11)

and (23),

fc1ðtcÞ ¼ p1�e
��tc

1

n

� � Xn
m¼1

F ðm;�; tcÞ
" #

þ p2�e
��tcF ðn; �; tcÞ

¼ p1
n


 �Xn
m¼1

gðm;�; tcÞ þ p2gðn; �; tcÞ;

ð25Þ

where

gði; �; tÞ ¼ �e��tF ði; �; tÞ ð26Þ

¼ �e��t �
Xi

k¼1

�k�1�

ð�þ �Þk

" #
fðk; �þ �; tÞ:

ð27Þ

From (2) and (27), the density function of the (reverse)

residual time corresponding to gði; �; tÞ is

hði; �; tÞ ¼ �e��t �
Xi

k¼1

�k�1�

kð�þ �Þk

" #Xk
j¼1

fðj; �þ �; tÞ: ð28Þ

Let �c be the reverse residual time of tc (see Fig. 3) in Case 1.

The density function of �c is

rc1ð�cÞ ¼
p1
n


 � Xn
m¼1

hðm;�; �cÞ
" #

þ p2hðn; �; �cÞ: ð29Þ

From (29), �II is derived as

�II ¼ Pr½�c > �m�

¼
Z 1

�m¼0

rðn; �; �mÞ
Z 1

�c¼�m

rc1ð�cÞd�cd�m

¼ p1
n


 �Xn
m¼1

Z 1

�m¼0

rðn; �; �mÞ
Z 1

�c¼�m

hðm;�; �cÞd�cd�m

þ p2

Z 1

�m¼0

rðn; �; �mÞ
Z 1

�c¼�m

hðn; �; �cÞd�cd�m

¼ p1
n


 �Xn
m¼1

�
A3ðmÞ �A4ðmÞ

�
þp2

�
A3ðnÞ �A4ðnÞ

�
;

ð30Þ

where

A3ðmÞ ¼
Z 1

�m¼0

rðm;�; �mÞ
Z 1

�c¼�m

�e���cd�cd�m

¼ �

m�


 �
1� �

�þ �

� �m� � ð31Þ
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and

A4ðmÞ ¼
Z 1

�m¼0

rðm;�; �mÞ
Z 1

�c¼�m

Xm
k¼1

�k�1�

kð�þ �Þk

" #

�
Xk
j¼1

fðj; �þ �; �cÞd�cd�m

¼
Xm
k¼1

�k�1�

kð�þ �Þk

" #Xk
j¼1

Bðm; jÞ;

ð32Þ

where

Bðm; jÞ ¼
Z 1

�m¼0

rðm;�; �mÞ
Z 1

�c¼�m

fðj; �þ �; �mÞd�cd�m

¼
Xj

l¼1

1

mð�þ �Þ

� �
Xm
i¼1

Z 1

�m¼0

fði; �; �mÞfðl; �þ �; �mÞd�m:

ð33Þ
Our analytic model is validated against simulation

experiments (the simulation model is similar to the one
we developed in [8], [11], [15] and the details are omitted).
In Figs. 5 and 6, the symbols �, �, and � represent
simulation data, and the solid curves represent the analytic
results. The figures indicate that the errors between the
analytic results and the simulation data are within 2 percent.

3 PERFORMANCE EVALUATION OF

ALGORITHMS I AND II

This section uses numerical examples to investigate the
performance of Algorithms I and II. For purposes of
illustration, we consider the simplest mix-Erlang format
for the tm distribution (i.e., j ¼ 2 and n1 ¼ n2 ¼ 1 in (19)):

fmðtmÞ ¼ q�1e
��1tm þ ð1� qÞ�2e

��2tm : ð34Þ
This density function can be used to approximate the fast
and slow movement behaviors of a mobile user. When
�1 >> �2, it means that with probability q, the user moves
very fast (i.e., crossing the SGSN areas with high frequency
�1); and with probability 1� q, the user moves very slowly
(i.e., crossing the SGSN areas with low frequency �2).

Based on (34), we compute EI ½tc�; �I , EII ½tc�, and �II . For
Algorithm I, EI ½tc� is expressed in (1), which is not affected
by the tm distribution. From (3),

�I ¼
1

�

� �
q

�1
þ 1� q

�2

� ��1

1� q�1

�1 þ �
� ð1� qÞ�2

�2 þ �

� �
: ð35Þ

From (18),

EII ½tc� ¼ p1C1 þ ð1� p1ÞC2; ð36Þ

where

p1 ¼
q�1

�1 þ �
þ ð1� qÞ�2

�2 þ �

� �
1þ q�1

�1 þ �
þ ð1� qÞ�2

�2 þ �
� �I

	 ��1

;

C1 ¼
q

�1
þ 1� q

�2

� ��1	 1

�2
þ q

1

�2
1

� �1

�2ð�1 þ �Þ

� �
þ ð1� qÞ

1

�2
2

� �2

�2ð�2 þ �Þ

� ��
;

and

C2 ¼ q
1

�1
þ �1

�ð�1 þ �Þ

� �
þ ð1� qÞ 1

�2
þ �2

�ð�2 þ �Þ

� �
:

From the derivation in the previous section,

�II ¼
2q�2

1

ð2�1 þ �Þð�1 þ �Þ þ
2ð1� qÞ�2

2

ð2�2 þ �Þð�2 þ �Þ : ð37Þ
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Fig. 5. The checkpoint overhead (� ¼ ð�1 þ �2Þ=2). (a) Checkpointing
cost for Algorithm I. (b) Improvement of Algorithm II over Algorithm I. Fig. 6. The probability of obsolete HLR backup record after failure

(� ¼ ð�1 þ �2Þ=2). (a) Obsolete record probability for Algorithm II.
(b) Improvement of �II over �I .



To compare Algorithm II with Algorithm I, we define two
improvement indicators. The indicator Ic represents the
percentage of checkpoint cost saved by Algorithm II over
Algorithm I. Since the checkpoint cost is proportional to the
checkpoint frequency, Ic is defined as

Ic ¼
1

EI ½tc� �
1

EII ½tc�
1

EI ½tc�
¼ EII ½tc� � EI ½tc�

EII ½tc�
: ð38Þ

Another indicator I� represents the percentage of reduction
for � provided by Algorithm II over Algorithm I. That is

I� ¼ �I � �II

�I
: ð39Þ

Fig. 5a plots the checkpoint frequency (i.e., 1=EII ½tc�)
curves based on (36). Fig. 5b plots the Ic curves based on
(38). In these figures, � ¼ ð�1 þ �2Þ=2, and the checkpoint
frequency is normalized by �2. Fig. 5a shows the intuitive
result that the checkpoint cost for Algorithm II is an
increasing function of the registration frequency. The
nontrivial result is that the checkpoint cost can be
quantitatively computed through our model. Fig. 5b shows
that Algorithm II significantly outperforms Algorithm I in
terms of reducing the checkpoint cost.

Based on (37), Fig. 6a plots �II against �1=�2. When
�1=�2 increases, the variance of interregistration interval
increases. Therefore, we will observe a small number of
checkpoint intervals that experience many registrations and
a large number of checkpoint intervals that experience no
registration. From the description of Algorithm II, it is also
clear that the checkpoint intervals without registration are
longer than the intervals with registrations. Since a failure is
a random observer of the checkpoint intervals, the failure
time is more likely to fall in a checkpoint interval without
any registration. Therefore, �II decreases as �1=�2 increases
(this phenomenon is also true for Algorithm I). Based on
(39), Fig. 6b indicates that Algorithm II provides 20-
55 percent improvement over Algorithm I in terms of �
performance.

4 CONCLUSIONS

We studied failure restoration of Home Location Register
(HLR) for UMTS and GPRS. By utilizing per-user check-
point, an HLR record is saved into a backup database from
time to time. When a failure occurs, the backup record is
restored to the HLR. We first described a commonly used
basic checkpoint algorithm (referred to as Algorithm I).
Then, we proposed a new checkpoint algorithm called
Algorithm II. An analytic model was developed to compare
these two algorithms in terms of the checkpoint cost and the
probability � of obsolete HLR backup record. The analytic
model was validated against simulation experiments. For
all input parameter values considered in this paper,
Algorithm II can save more than 50 percent of the
checkpoint cost over Algorithm I. For the performance of
�, Algorithm II demonstrates 20-55 percent improvement
over Algorithm I. As a final remark, we note that failure
restoration for a SGSN (or a visitor location register in the
circuit switched service domain) is very different from HLR
failure restoration described in this paper. No checkpoint-
ing is performed for a SGSN because all MS records in the
SGSN are temporary, and it is useless to store these
temporary records into backup. Details of SGSN failure
restoration can be found in [7], [4], [11].
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