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Abstract

In this paper, we propose a variation of honeycomb meshes. A honeycomb rectangular disk
HReD(m,n) is obtained from the honeycomb rectangular mesh HReM(m,n) by adding a
boundary cycle. A honeycomb rectangular disk HReD(m,n) is a 3-regular planar graph. It
is obvious that the honeycomb rectangular mesh HReM(m,n) is a subgraph of HReD(m, n).
We also prove that HReD(m,n) is hamiltonian. Moreover, HReD(m,n) — f remains hamilto-
nian for any f'€ V(HReD(m,n)) U E(HReD(m,n)) if n > 6.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Network topology is a crucial factor for an interconnection network since it deter-
mines the performance of the network. Many interconnection network topologies
have been proposed in the literature for the purpose of connecting a large number
of processing elements. Network topology is always represented by a graph where
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the nodes represent processors and the edges represent the links between processors.
One of the most popular architectures is mesh connected computers [4]. Each proces-
sor is placed into a square or rectangular grid and connected by a communication
link to its neighbors in up to four directions.

It is well known that there are three possible tessellations of a plane with regular
polygons of the same kind: square, triangular, and hexagonal, corresponding to
dividing a plane into regular squares, triangles, and hexagons, respectively. Some
computer and communication networks have been built based on this observation.
The square tessellation is the basis for mesh-connected computers. The triangle tes-
sellation is the basis for defining hexagonal meshed multiprocessors [3,7]. The hexag-
onal tessellation is the basis for defining honeycomb meshes [2,6].

Stojmenovic [6] introduced three different honeycomb meshes-the honeycomb
rectangular mesh, honeycomb rhombic mesh, and honeycomb hexagonal mesh.
Most of these meshes are not regular. Moreover, such meshes are not hamiltonian
unless it is small in size [5]. To remedy these drawbacks, the honeycomb rectangular
torus, honeycomb rhombic torus and honeycomb hexagonal torus are proposed [6].
Any such torus is 3-regular. Moreover, all honeycomb tori are not planar. In this
paper, we propose a variation of honeycomb meshes, called honeycomb rectangular
disk. A honeycomb rectangular disk HReD(m,n) is obtained from the honeycomb
rectangular mesh HReM(m,n) by adding a boundary cycle. Any HReD(m,n) is a
planar 3-regular hamiltonian graph. Moreover, HReD(m,n) — f remains hamilto-
nian for any f € V(HReD(m,n)) U E(HReD(m,n)) if n > 6. These hamiltonian prop-
erties are optimal. Thus, the honeycomb retangular disk network has superior basic
characteristics compared with commercial mesh connected computers, which belong
to the same family of planar bounded degree networks.

In the following section, we give some graph terms that are used in this paper
and a formal definition of honeycomb rectangular disk. Obviously, such
HReD(m,n) is a super graph of the honeycomb rectangular mesh HReM(m,n). As-
sume that m and n are positive even integers with m > 4 and n > 6. In Section 3,
we present four basic recursive algorithms to obtain hamiltonian cycle for such
HReD(m,n) — f. In Section 4, we prove that such HReD(m,n) — e remains hamil-
tonian for any e € E. In Section 5, we prove that such HReD(m,n) — v remains
hamiltonian for any v € V. In the final section, we cover the general HReD(m, n)
and present our conclusion.

2. Honeycomb rectangular disks

Usually, computer networks are represented by graphs where nodes represent
processors and edges represent links between processors. In this paper, a network
is represented as an undirected graph. For the graph definition and notation, we fol-
low [1]. G=(V,E) is a graph if V is a finite set and F is a subset of {(a,b)|(a,b) is an
unordered pair of V}. We say that V' is the node set and E is the edge set of G. Two
nodes a and b are adjacent if (a,b) € E. A path is a sequence of nodes such that two
consecutive nodes are adjacent. A path is delimited by (xg,x1,x2, - . ., X,,). We use p!
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to denote the path (x,,x,_1, ..., X1,Xo) if P is the path (x¢,x1,X2, ..., X,,). A cycle is a
path of at least three nodes such that the first node is the same as the last node.

A hamiltonian path is a path such that its nodes are distinct and span V. A ham-
iltonian cycle is a cycle such that its nodes are distinct except for the first node and
the last node and span V. A hamiltonian graph is a graph with a hamiltonian cycle. A
graph G = (V,E) is I-edge hamiltonian if G — e is hamiltonian for any e € E, and a
graph G = (V,E) is I-node hamiltonian if G — v is hamiltonian for any ve V.
Obviously, any l-edge hamiltonian graph is hamiltonian. A graph G = (V,E) is
1-hamiltonian if G — fis hamiltonian for any f€ EU V.

The honeycomb rectangular mesh HReM(m,n) is the graph with

V(HReM(m,n)) = {(i,j) | 0 <i<m,0<j<n}, and
E(HReM(m,n)) = {((i, /), (k,])) |i=k and j=1=£1}
u{((i,j), (k1)) | j=1and k =i+ 1 with i + j is odd}.

For example, the honeycomb rectangular mesh HReM(8,6) is shown in Fig. 1.

For easy presentation, we first assume that m and » are positive even integers with
m = 4 and n = 6. A honeycomb rectangular disk HReD(m,n) is the graph obtained
from HReM(m,n) by adding a boundary cycle. More precisely,

V(HReD(m,n)) = ({(i,j) |0 <i<m,—1<j< n}
_{(07_1)7(’"— 17_1)})

u{(i,j) |ie{-1,m},0<j<n,jiseven}, and

E(HReD(m, n)) = {((i, /), (k. 1)) | i =k and j = [ £ 1}
U{((G,J)), (k1)) |j=1and k =i+ 1 with i+ j is odd}
UL((6)), (kD) |i=ke{-1,m} and j=1+2}
U{((O,O),(*l,2)),((*l,n72),(0,1/1)),

((I’I’l - 17”)7 (mvn - 2))}

U {( m,Z), (m - 170))7 ((m - 170)1 (m - 27 _1))7
((1,—1),(0,0))}
(0.5) (7,5)
(0,0) (1,0) (7,0)

Fig. 1. The Honeycomb rectangular mesh HReM(8,6).
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(.-
Fig. 2. The Honeycomb rectangular disk HReD(8,6).

For example, the honeycomb rectangular disk HReD(8,6) is shown in Fig. 2.
Obviously, HReM(m,n) is a subgraph of HReD(m,n). Moreover, any honeycomb
rectangular disk is a planar 3-regular graph. With Fig. 2, we can easily observe that

that any HReD(m, n) is left-right symmetric; i.e., symmetric with respect to x = '”T’z

3. Four basic algorithms

The honeycomb rectangular disk has a good symmetric property which we
shall take advantage of it to construct a hamiltonian cycle. In the following, we
shall first establish four basic algorithms. Let F be a subset of V(HReD(m,n)) U
E(HReD(m,n)). The purpose of these basic algorithms are to extend a hamiltonian
cycle of HReD(m,n) — F to a hamiltonian cycle of HReD(m + 2,n) — F. For
1 <i<m-—2, we say a hamiltonian cycle HC of HReD(m,n) — F is i-regular if
either ((i,n),(i + 1,n)) or ((i,—1),(i + 1,—1)) is incident with HC. We call a hamilto-
nian cycle HC of HReD(@m,n) — F is O0-regular if either ((0,n),(1,n)) or
((0,0),(1,—1)) is incident with HC. Assume that 0 < i <m — 1. We define a function
f; from V(HReD(m,n)) into V(HReD(m + 2,n)) by assigning fik,]) = (k,]) if k<i
and fik,l) = (k + 2,]) if otherwise. Then we define

Ji(F) = {/i(k, 1) | (k,1) € V(HReD(m,n)) N F}
Uik, D), fi(K', 1)) | ((k, 1), (K', 1)) € E(HReD(m,n)) N F;
{k, K} #{i,i+1}}
UG, @+ 1L,1) | ((5,1), i+ 1,1) € E(HReD(m,n)) N F}.
We will present four basic algorithms to obtain a hamiltonian cycle of HReD
(m + 2,n) — f(F) from a hamiltonian cycle of HReD(m,n) — F for some F.
For —1<i<m, —1<j, and k<n, let Hf,k) denote the path ((i,)),
@Gj+ D, j+2),...,0k—2),0Gk—1),Gk).
Algorithm 1. Suppose that HC is a hamiltonian cycle of HReD(m,n) — F containing
the edge ((i,—1),(i + 1,—1)) with 1 <i<m—2. We construct g! (HC) as follows:
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(a) (b)

Fig. 3. Illustration for Algorithm 1.

Let —1<ko<k;<...<ky_;y<n be the indices such that ((ik),(i+ 1,k)) €
E(HC). We set k, = n. Let HC; be the image of HC—{((i.k)),(i + 1.k)))|—1 < k; < n}
under g!. We define P; as

Higi(kjkje1—1)

((i,k;), (i + 1,k)) — (i+1,k—1),

HZY (kjkj—1)
((+2,k=1) " = (i+2,k),(i+3,k)).

It is easy to see that edges of HC; together with edges of P;, with 0 <j <t forma
hamiltonian cycle of HReD(m + 2,n) — f(F). We denote this cycle as g! (HC). For
example, a hamiltonian cycle HC of HReD(4,6)—(1,3) is shown in Fig. 3(a). The
corresponding gl (HC) is shown in Fig. 3(b).

Algorithm 2. Suppose that HC is a hamiltonian cycle of HReD(m, n) — F containing
the edge ((i,n),(i + 1,n)) with 1 <i<m—2. We construct g>(HC) as follows:

Let —1 <kg<k, <...<ky_1;y<n be the indices such that ((i,k;), (i + 1,k)) €
EMHC). We set k_; =—-2. Let HC; be the image of HC—{((i.k),(i + Lk)))|-1 <
k; < n} under g2. We define Q; as

. . HEL (o1 L)
<(lvkj)7(l+lakj) (l+lak/’71 +1)7
Higa(kjkja+1) .
42k +1) TG4 2,k), (i 4 3,k)).

It is easy to see that edges of HC; together with edges of Q;, with 0 < j <7 form a
hamiltonian cycle of HReD(m + 2,n) — f{F). We denote this cycle as g?(HC). For

@ (b)
Fig. 4. Illustration for Algorithm 2.



376 Y.-H. Teng et al. | Parallel Computing 31 (2005) 371-388

example, a hamiltonian cycle HC of HReD(4,6)—(0,4) is shown in Fig. 4(a). The cor-
responding g7 (HC) is shown in Fig. 4(b).

Suppose that HC is i-regular. We can apply Algorithm 1 to obtain a hamiltonian
cycle gl (HC) of HReD(m + 2,n) — f{F) if ((i,—1),(i + 1,—1)) is incident with HC,
and apply Algorithm 2 to obtain a hamiltonian cycle g?(HC) of HReD-
(m + 2,n) — fi(F) if otherwise. It is easy to see that the resultant hamiltonian cycle
is i-regular, (i + 1)-regular, and (i + 2)-regular. So we can further extend a
hamiltonian cycle in HReD(m + 4) — F’ for some F'CE(HReD (m + 4)) U E(HReD
(m + 4)). However, the above discussion only works for column i with 1 <i<m — 2.
We use the following two algorithms to obtain similar results for column 0.

Algorithm 3. Suppose that HC is a hamiltonian cycle of HReD(m,n) — F containing
the edge ((0,0),(1,—1)). Now, we construct g*(HC) as follows:

Let 1 <k <ky<...<k,<n be the indices such that ((0,k)),(1,k;) € E(HC). We
set k41 =n. Let HC be the image of HC—{((0,k),(1.k))|l < k;<n}U
{((0,0),(1,—1))} under g°. We define R, as

Hy(=1k—1) Hy' (=1 1)

<(070)7(1771) - (laklfl)a(zaklfl) *) (2771)7(3771»'
For 1 <j < t, we define R; as

ki — Hy Y kjki1—1)
(0., (k) "4k 1) @k - 1) k), 31k,
It is easy to see that edges of HC together with edges of R;, with 0 < j < ¢ form a
hamiltonian cycle of HReD(m + 2,n) — f{(F). We denote this cycle as g*(HC).

Algorithm 4. Suppose that HC is a hamiltonian cycle of HReD(m,n) — F containing
the edge ((0,n),(1,n)). We construct g*(HC) as follows:

Let 1 < ko <k; <...<kq_1, <nbe the indices such that ((0,k)),(1,k))) is an edge
of HC. We set k_;=-2. Let HC be the image of HC—{((0,k)),(1,k))|1 <
k; < n} U {((0,0),(1,—1))} under g*. We define Sy as

Hil(=1ko) Hy(~ ko)

<(07k0)7(1ak0) - (17_1)7(27_1) - (2ak0)7(37k0)>'
For 1 <j<t, we define §; as

Hy (ko1 +1,k7)

<(07kj)7(17kj) - (lvkj*1+1)7(2akj*1+l)

H2<kj,k/,|+1)
—

(Z’kj)a(3’kj)>'

It is easy to see that edges of HC together with edges of S;, with 0 <j<tform a
hamiltonian cycle of HReD(m + 2,n) — f{(F). We denote this cycle as g*(HC).

Suppose that HC is 0-regular. We can apply Algorithm 3 to obtain a hamiltonian
cycle g*(HC) of HReD(m + 2,n) — fo(F) if ((0,0),(1, —1)) is incident with HC, and ap-
ply Algorithm 4 to obtain a hamiltonian cycle g*(HC) of HReD(m + 2,n) — fo(F) if
otherwise. It is easy to see that the resultant hamiltonian cycle is 0-regular, 1-regular,
and 2-regular. So we can further extend a hamiltonian cycle in HReD(m + 4) — F
for some F"CE(HReD(m + 4)) U E(HReD(m + 4)).
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4. HReD(m,n) is 1-edge hamiltonian

In this section, we shall show that if m,n are even integers with m > 4 and n > 6,
then HReD(im, n) is 1-edge hamiltonian. We say an edge ¢ of HReD(m, n) is regular if
there exists a hamiltonian cycle C of HReD(m,n) — e such that C'is (5 — 1)-regular
and O-regular.

Lemma 1. Any edge e of HReD(4,n) that is incident with at least one vertex in
{GNH|—1 < i< 2} is regular.

Proof. Assume that e is any edge of HReD(4,n) that is incident with at least one ver-
tex in {(i,/)|—1 < i< 2}. Obviously, e is in one of the following 6 sets: namely,

A={(G),(+ 1)) | -1<i< L -1<j<n}

—{((1,0),(2,0)), ((1,m), (2,m)), ((0, 1), (1, 1))},
B:{((_lvn ) ( 7”))7((070)7(17_1))}

V@A), (+ L) [ -1<i< 1l -1<j<n}

_{((1’_ )7(27 1)),((0,;1—3) (17’1_3))7 (Ovn)v(lvn))}

—{((=1,n=2),(0,n=2)),((1,n = 2),(2,n = 2))},
C={((;,)),(i,j+1)]0<i<1,jisodd, 1 <j<n—1}

U{((=1j+1),(=1,j+3)) | jisodd, 1 <j<n—1},
D ={((i,)),(i,j+1))]0<i<1,jis even,j = 4},
E={((1,/),@,j+1)]0<i<1,j=0,2}

F={((-1,2),(0,0)), ((1,=1),(1,0))}.
Suppose that e € A. Then

<(170)7(1a_1)7(070) (_1 2)H7 = ( 17 2) (0 n)
Hal(lin) Hy ! ln

(0,1),(1,1)"5 (Ln) @.n) """ 21, 6.1)

Hi(1,n) H' (20—

BL; (3,}’!),(4,}1*2) - (4 2) (370)7(2771)7(270)7(170»

is the desired hamiltonian cycle. See Fig. 5(a) for illustration.

(a) (b) (c) (d) (e)

Fig. 5. Illustration for Lemma 1.

®
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Suppose that e € B. Then

((0,0),(=1,2) (10— 2), (0,0 — @JQn 1),(0,n), (
(Ln—1),(1,n—=2),(2,n—2),(2,n—1
(ln—D(, ~2),(4,n—2)

H;'(2n-2 n—
s @ 3)(37’/1 3),(2,11—3)

1,n)
) (2,n), (3,n),
= (4,2,3,0)"

Hy'(=1,n-3)
- (2,-1),(1,-1)
Hi(=1,n-3) Hy'(0,n-3)

- (1771—3),(0,71—3) — ‘(07 O))

is the desired hamiltonian cycle. See Fig. 5(b) for illustration.

Suppose that e € C. Assume that e = ((i,/),(i,j + 1)) for some 0 < i< 1. We set
x=j if 1<j<n—-5 and x=n-5 if otherwise. Assume that e=((—1,
j+ 1),(—1,/+3)). We set x =. Then

((0,0), (=1,2) V1 x 1), (0,0 + 1), (0,5 +2), (L,x +2), (1,x + 1),
(2,x+1),(2,x+2),(2,x+3),(1,x+3)
e 0, — 1) 0,4 3), (< 1x 4 3)
T (10— 2),(0,m), (1,n), (2.m)
B ), G+ 4) 0, (40— 2)
M ) (x4 2), B+ 1), (A 1)
Y 4,2),(3,0) 6,0, 20" 2, -1, (1, -1)
0.0 50, 0)).

is the desired hamiltonian cycle. See Fig. 5(c) for illustration.
Suppose that ¢ € D. Assume that e = ((i,),(i,j + 1)). We set x=j if j > 6 and

x = 6 if otherwise. Then
zx 2) H ' (1x-2

(0,0),(—1,2) &P 1,6 -2), 0.2 Z 0, 1),(1,1)
My 2 2),(20x = 2), 2,5 — 1), (2,%), (1,%), (1,x — 1),
(O’X ),(O,X),(—l,x)

H(jl(x-H,n)
= (-1,n=2),(0,n) " — (0,x+1),(l,x+1)
L,n),(2,n) " — (2,x+1),3,x+1)

(
H3(x+l4n)( H7'(x,;n—2)

3,n),(4,n—-2) "= (4,x),(3,x),(3,x—1),
3,x—2), (4, x—2)

Hz’l(x+1,n)

2(3

- (4,2),(3, 2) (3x—3),(2,x—3)

45(;U41n41m417m
(27 0)7 (170)7 (17 _1)7 (070»'

is the desired hamiltonian cycle. See Fig. 5(d) for illustration.
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Suppose that e € E. Assume that e = ((,/),( + 1,7)). Then

(2,n—-2)

((0,0)57(0,/), (-1,2) " E ™ (=1,n - 2), (0,n)
H'Y(j+1n n)
S0+ 1), (174 1) 1), 2m)
H'(j+1.n n
' )<2,j+1>,<3,j+ ) PG ), (4 - 2)
Hy'(2n-2) HTY(

27402).60) 6.0, 2.-1)

2(;}1-,1)(271.)’(17]‘)1{ (1 *1) (0,0)>'

is the desired hamiltonian cycle. See Fig. 5(e) for illustration.
Suppose that e € F. Then

H

<(0a0)’ (15 _1)a (2, _1)5 (3a0)a (3a 1)7 (27 1)a (2,0), (170)7 (17 1)7 (1,2), (272)

2n 1) ( Hy'(2n—1)

2,n—1),3,n—1) "= (3,2),(4,2)

2n 2) H{'(3m)
{

4,n—2),(3,n),(2,n),(1,n) "= (1,3),(0, 3) (0 n),(—1,n —2)

H=l(2n-2)
- (_172)7(072)7<071)7(070)>
is the desired hamiltonian cycle. See Fig. 5(f) for illustration.
The lemma is proved. [

With the left-right symmetric property of HReD(4,n), we have the following
corollary.

Corollary 2. Every HReD(4,n) is 1-edge hamiltonian for any even integer n with
nz=o6.

Theorem 3. Assume that m,n are even integers with m > 4 and n = 6. Any edge e of
HReD(m,n) that is incident with any vertex of {(i,j) | 0 <i <%} is regular. Hence,
HReD(m,n) is 1-edge hamiltonian.

Proof. We prove this theorem by induction. The inductive basis m = 4 is proved in
Lemma 1. Let e = ((i,)),(i',j')) be any edge of HReD(m + 2,n) that is incident with
any vertex of {(7,/) | 0 <i <%}

Suppose that e = ((%, /), (5 + 1,)) for some j. By induction, there exists a regular
hamiltonian cycle C of HReD(m,n) — (% —2,/), (% — 1,/)). Then go(C) is a regular
hamiltonian cycle of HReD(m + 2,n) — e. Moreover, go(C) is both 0-regular and %-
regular. Hence, e is regular.

Suppose that e & {((%,/), %+ 1,/)) | 0 <j < n}. By induction, there exists a
regular hamiltonian cycle C of HReD(m,n)—((i,/),(i'j')). Then g»_;(C) is a regular
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hamiltonian cycle of HReD(m + 2,n) — e. Moreover, gu_;(C) is both O-regular and
Z-regular. Hence, e is regular.

By the left-right symmetric property, HReD(m + 2,n) is 1-edge hamiltonian. The
theorem is proved. [

5. HReD(m,n) is 1-node hamiltonian

In this section, we shall show that if m,n are even integers with m > 4 and n > 6,
then HReD(m,n) is 1-node hamiltonian. We say a vertex v = (i,j) of HReD(m,n) is
regular if there exists a hamiltonian cycle C of HReD(m,n) — v such that C is
(8 — 1)-regular and O-regular.

Lemma 4. Any vertex v = (i,j) of HReD(4,n) with i € {—1,0,1} is regular.
Proof. Suppose that (i,j) is not in {(0,0),(0,1),(0,n — 1),(0,n), (1,—1),(1,0),

(1,1),(1,n — 1),(1,n),(—1,2),(—1,n — 2)}. Then v is in one of the following 7 sets:
namely,

{0, (mod 2), ; 2},
B:{ (mod 2), j > ’;}
C={0,/)j=1(mod2), j#1,n—1},
p={(1,j)1/=0(mod2), 0< <3},
E={(17)1/=0(mod2), j >3},

F={(l,j)|j=1(mod2), j¢{-1,1,n—1}}, and
G= {(717]) |J:0 (mOd 2)) j7é2,n72}.
Suppose that v € 4. Let v = (0,j). Then

((0,0), (~1,2) & (=1,n = 2),(0,n), (1,n), (2.n), (3,n), (4,1 — 2)
442,642 - ), 2 - 1)
2,42 = 1), 00 - 1)
U0, 1 (14 1, (1), o), 20+ 1), (Buj + 1, (o) (4,)

24) H;(O -1) Hy'(-1,j-1)
- (472) (3 0) (3a 1) (2]_ 1) - (27_1>7(17_1)

Hi(~1 Hy'(0,j-1)

= 1,0, -1 = 0,0)).

is the desired hamiltonian cycle. See Fig. 6(a) for illustration.
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(@) (b) (c) (@) (e)

®
()] (h) (@ @ (] U}
(m) (n) (o) (P (@) r)

Fig. 6. Illustration for Lemma 4.

Suppose that v € B. Let v = (0,j). Then

H_(2,n-2)
—

((0a0)7 (_172)

H(j+1,n)

(=1,n—2),(0,n)

Hy(j+1.n)

— 0,7+ 1),(1,j+1) ="(L,n),(2,n)
1y n S
B 1), Gy ) G ), (4 — 2)
H'Gn=2) . . . . , . :
- (45])3 (37])a (33] - 1)a (23] - 1)) (25])3 (L])v (17] - 1)a (Oa] - 1)

Hy'(1,j-1) Hi(1,j-2) Hy'(1,j-2)

H%0,0,0,0" Y0 -2,2, -2 Y 721),3,1)
PG ) 4, 2)
84,2),(3,0), (2, 1), (2,0), (1,0), (1, —1), (0,0)).

is the desired hamiltonian cycle. See Fig. 6(b) for illustration.
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Suppose that v € C. Let v = (0,). Then

H7<2>.71) . .
((0,0),(=1,2)" "= (=1,j=1),(0,j - 1)
Hi'(1j-1)
- (071)7(1’1)7(170)7(270)7(2’1)’(371)
H3(1.n—1) Hy'(2n-1)

= Gn—1,2,n-1) "= (2,2),(1,2)

Hi(2,n—1) Hy (j+1n-1)

20— 1, 0= 1) S0, 1), (<1, 4 1)
P2 = 2),(0,n), (1,n), (2, 1), (3,n), (4,1 — 2),
Hy'(2n-2)

- (4,2),(3,0),(2-1),(1,-1),(0,0)).

is the desired hamiltonian cycle. See Fig. 6(c) for illustration.
Suppose that v € D. Let v = (1,5). Then

(0,0, (~1,2) "1, (0,), (0, + 1), (1,/ + 1)

itln— “Lj+2,n—1
H1(1+_1>~ 1>(1,n _ 1),(0,n _ I)HO (1:) >(0,j+2),(—1,j+2)
P2 0= 2),(0,n), (1,n), (2,0), (3,n), (4,1 — 2)

H'(2n-2) H3(0,n—1)
—

(4,2),(3,0) "= "3,n—1),2,n—1)
Hyl(=1,n—1) Hi(—1,j-1) Hy'(0,)

- @2,-D,(1,-1) "= (Lj—lme—1)°44kmmy

is the desired hamiltonian cycle. See Fig. 6(d) for illustration.
Suppose that v € E. Let v =(1,j). Then

~2) Hy'(1,j-2)
)

((0,0), (~1,2), "V (—1,7-2),00,/-2)," = (0,1),(1,1)
M 1,0, - 1), 0,5), (1,0 E (= 1,n = 2),(0,n)
“1(j+1,n i+1.n
0,41, (1 + 1) "0, 2,m)
Hz’l(l,n)

2,1), 3, 1) %73, 0), (4,0 — 2)

H;l(Zn

—}72)(4,2), (3,0),(2,-1),(2,0),(1,0),(1,-1),(0,0)).

is the desired hamiltonian cycle. See Fig. 6(e) for illustration.
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Suppose that v € F. Let v = (1,j). Then

((0,0), (=1,2) &1, —2),(0,n), (1,n), 2,n) " ””"@1+2)@J+a
BG4 —2) " A1), 3,4 1), (Bu)y B — 1), (47— 1)
4,2, (3,00 %aj—m<zj—m

Hy'(~14-2) —1,j-1)

- (2,-1),(1, —1) L

Hy(j+1,n—1)
—

(lvj_ 1)) (27j_ 1)7(2’])a (27j+ 1)7(1’j+ 1)
(Ln—1),0,n—1)" %" 0,0).

is the desired hamiltonian cycle. See Fig. 6(f) for illustration.
Suppose that v € G. Let v = (—1,j). Then

((0,0), (~1,2) & (-1, —2), 0,/ - 2)
”WH”@@LUJLUm%@ﬁ%@J)Ql) G-, 2 - 1)
0,2, 0,2 ", - 1,0, 1)

MU0 74 2), (=1, +2) " 1 = 2), (0, )
0,54 3), (1,7 +3) "0, m), 2, (B, (4o —2)
T 40, 34+ 2) T B - 1), 2 - 1)
@, 2), (14 2L D (L) @27, 2+ .G+ 1), (3 ()

-1
H7'(2

—(>‘j)(47 2)7 (370)7 (27 _1)7 (17 _1)’ (0’0)>

is the desired hamiltonian cycle. See Fig. 6(g) for illustration.
Suppose that v = (0,0). Then

2n2

((— 12) ( I,n—2),(0,n),(1,n),(2,n),(3,n),(4,n—2)
P 4 4,34 G- 1), 2n— 1)
B o 4, 1,4 (- 1), 00— 1)

H'(3n-1)

"E0,3),(1,3),(1,2), (2,2), (2,3),
(1,1),(0,1),(0,2),(—1,2)).

is the desired hamiltonian cycle. See Fig. 6(h) for illustration.
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Suppose that v = (0,1). Then

«om< 12),(0,2),(0,3), (0,4), (—1,4) "XV~ 1,0 = 2), (0,m)
" 5%0,5), (1,55, )Qn){f%lﬁdiﬂHﬂW3)A4n—%
ff% 4),(3,4),(3,3),(3,2), (4,2),(3,0), 3, 1), (2, 1) 5" (2,4),(1,4)

—1

(1 0),(2,0),(2,-1),(1,-1),(0,0)).

is the desired hamiltonian cycle. See Fig. 6(i) for illustration.
Suppose that v = (0 n — 1). Then

((0,0),(~1,2) &Y (—1,n— 4), (0,n — 4)
0,1, (1,1, (1,0), (2,0), (2, 1, (3,1)
Hs(1,n—-3) H;'(2,n-3)

- (3,}1—3),(2,1/1—3) e (272)7(172)

= (1,n—=3),(0,n—3),(0,n —2),(=1,n—2),(0,n),
(Ln),(1,n=1),(I,n—=2),2,n=2),(2,n—1),(2,n),
(3a )(37’1_ )(7 2)’(4’1_ )
H'(2n-2)

- (4,2),(3,0),(2,-1),(1,-1),(0,0)).

is the desired hamiltonian cycle. See Fig. 6(j) for illustration.
Suppose that v = (0,n). Then

2n2

<(0a0) ( 1 2) ( 17n72)7(0an72)a(07”7 1)’(17’171)7(1;”)’(27”)»
(2,n—1),2,n—-2),(1,n—=2),(1,n—3),(0,n - 3)
%@f%QUJLUm““Wln—Q(2n—®4;n—$41n—$41n—m,
(37’7 - 1)7(3"1)7( ) (4 n— 4)»(37’7 _4)7(3"1_ 5)7(2771 - 5)
0,6, %3n—®xmn—®
H;'(2,n—6)

Y (4,2),(3,0),(2,-1),(2,0),(1,0),(1,-1),(0,0)).

is the desired hamiltonian cycle. See Fig. 6(k) for illustration.
Suppose that v = (1,—1) . Then

((0,0),(~1,2),(0,2), (0,3),(0,4), (—1,4) " (~1,n — 2), (0.0 2)
"5 ><,> 5f%1nfwman7n< n), (1,n), (2,n)
2,5),3,5) 5" (3,n), (4,0 - 2)

4),

g 4),(3,4), (3,3), (2.3), (2.4).(1

Hz’l(Sn

4),(1,3),(1,2),(2,2)(2, 1),

is the desired hamiltonian cycle. See Fig. 6(1) for illustration.

(3,1),(3,2),(4,2),(3,0), (2, -1),(2,0), (1,0), (1,1),(0,1), (0,0)).



Y.-H. Teng et al. | Parallel Computing 31 (2005) 371-388 385

Suppose that v = (1,0). Then
((0,0), (0,1, (1, 1) (1n = 1), 0,0 = 1) 2 0,2),(-1,2)
T2 L0y (0,m), (1), (2on), Bon), (4 —2) ™ 2 4,2), (3,0)
L0 L), (1, -1),(0,0)).

O3 1), 20— 1)
is the desired hamiltonian cycle. See Fig. 6(m) for illustration
Suppose that v = (1,1). Then
<w0><12> B 1= 2),(0,m), (1), (2m)
3%2@(3@ (3,0, (4,0 — 2)

2) (3 2)7 (35 1)7 (370)5 (27 _1)a (1,

(
1(2,n—1) Hal(O,nfl)

is the desired hamiltonian cycle. See Fig. 6(n) for illustration

Suppose that v = (1,n — 1). Then
G = 2), (0,1 —2), (0,1 — 1), (0,n), (1,n), (2,n),
),(3,n—1),(3,n),(4,n—2),(3,n—2),(3,n
-2),(L,n—=2),(1,n—13),(0,n—3)

-1),(1,0),(2,0),(2,1),(2,2),(1,2)

1(2,n-2)

((0,0),(-1,2)"
(2,n—1 -3),
(2,n—3),(2,n

T 0,0, (1,1 = 4), (2, — 4

Hy(1,n—4)
(2,1),(3,1)
H3(l‘"_4)(3’ n— 4)7 (47 n— 4)
H'(2n—4)
(47 2)7 (370)5 (2’ _l)a (27 0)7 (170
is the desired hamiltonian cycle. See Fig. 6(o) for illustration

Suppose that v = (1,n). Then

((0,0),(0,1), (
(-l,n—=2),
R

Hl’1 n—4,n—1)

)7 (la _1)a (070)>

(-1,n—4),(0,n—4),(0,n—3),(0,n —2),

0,2),(—1,2)" 1
(0, )JQn—UJLn—U
Y2,4),(1,4) "4 (10— 5), (0,0 — 5)
),(1,0),(2,0),(2,1),(2,2),(2,3),(3,3)
-1),(2,n),(3,n),(3,n—1),

Ln—qx;n—qz

— (0,3),(1,3),(1,2), (1,1

1133 3(2 —3),(2,n—2),(2,n
(3,n—=2),(4,n-2)

61(3«1175)

H;‘<2«"—2>(472>7(372)7(3,1),(3,0),(2 —1),(1,-1),(0,0)).

=
is the desired hamiltonian cycle. See Fig. 6(p) for illustration
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Suppose that v = (—1,2). Then

H 103

(0,0)%%0,3), 1,3 271,00, 2,0) "%V (2,3), 3,3)
g @n—l)@m—lfgﬂH<z®< 4" - 1), 00— 1)
0,4y, (<14 L n = 2),(0,0), (L), ), (3un), (41— 2)
H'(2n-2)
)

= (42),3,2),3,1),(3,0),(2,-1),(1,-1),(0,0)

is the desired hamiltonian cycle. See Fig. 6(q) for illustration.
Suppose that v = (—1,n — 2). Then

((0,0), (—=1,2) "2V 0 —4), (0,0 — 4)
0,0, (1,1, (1,0, 2.0), 2,1, 3, 1) 3,0 - 3), 20— 3)
Y 0 ) (1,2) M (1 n = 3), (0,1 — 3), (0,1 — 2), (0, — 1), (0,m), (1,n),

(l,l’l - 1)7 (17’1 - 2)7 (2,}’! - 2)7 (2”1 - l)a (2,1’!), (35’1)’ (37’1 - 1)7
(3,}1 - 2)7 (47’7 - 2)
H;'(2n-2)
- (472)7(370)7(27_1)7(17_1)7(070)>'
is the desired hamiltonian cycle. See Fig. 6(r) for illustration.
The lemma is proved. [

With the left-right symmetric property of HReD(4,n), we have the following
corollary.

Corollary 5. HReD(4,n) is 1-node hamiltonian if n = 6 and n is even.

Theorem 6. Assume that m,n are even integers with m = 4 and n = 6. Any vertex
v=(i,)) of HReD(m,n) with i < g is regular. Hence, HReD(m,n) is 1-node hamiltonian.

Proof. We prove this theorem by induction. The inductive basis m = 4 is proved in
Lemma 4. Let v = (i,j) be any node of HReD(m + 2, n).

Assume that i € {#,5 + 1}. By induction, there exists a hamiltonian cycle C of
HReD(m,n) — (i — 2,j) which is O-regular. Then gyo(C) is a hamiltonian cycle of
HReD(m + 2,n) — v. Moreover, go(C) is both 0-regular and F-regular. Hence, (i,)) is
regular.

Assume that i ¢ {%§,5 + 1}. By induction, there exists a hamiltonian cycle C of
HReD(m,n) — (i — 2,j) which is 2 —regular Then gu_ 1(C) is a hamiltonian cycle of
HReD(m + 2,n) — v. Moreover, g%_l( ) is both 0O-regular and %-regular. Hence, (i,)
is regular.

By the left-right symmetric property, HReD(m + 2,n) is 1-node hamiltonian. The
theorem is proved. [

Combining Theorems 3 and 6, we have the following theorem.
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Theorem 7. HReD(m,n) is 1-hamiltonian for any even integer m,n with m > 4 and
n=6.

6. Conclusion

We have seen the hamiltonian properties of honeycomb rectangular disk
HReD(m, n) for any positive even m and n integers with m > 4 and n > 6. The hon-
eycomb rectangular disk HReD(m, ) is obtained by adding a boundary cycle to the
honeycomb rectangular mesh HReM(m,n). Any such HReD(m,n) is a 3-regular
hamiltonian planar graph. Moreover, HReD(m,n) — F remains hamiltonian for
any fault F € V(HReD(m,n)) U E(HReD(m,n)) with |F| = 1. Suppose that two faults
occur to the neighbor of some vertex x. Then degurepin, ) — F(x) = 1. Obviously,
HReD(m,n) — F is not hamiltonian. Hence, such hamiltonian property is optimal.

We may also define HReD(m,n) for m > 4 and n = 4 by adding a boundary cycle
to HReM(m,n). For example, the HReD(6,4) is shown in Fig. 7. By brute force,
we can check that such honeycomb rectangular disk is 1-edge hamiltonian but not
1-node hamiltonian.

We may use similar concept to define other cases of HReD(m,n). For example,
the HReD(5,6), HReD(5,7), and HReD(6,7) are shown in Fig. 8. With similar
discussion as above, we can prove that any HReD(m, n) for odd integer m and even

Fig. 7. The Honeycomb rectangular disk HReD(6,4).

S

HReD(5,6)
HReD(5,7) HReD(6,7)

Fig. 8. The Honeycomb rectangular disk HReD(5,6), HReD(5,7), and HReD(6,7).
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integer n with n > 4 is 1-edge hamiltonian. Moreover, it is 1-node hamiltonian if and
only if n > 6.
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