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The authors present a new hybrid method for performing 
modular exponentiation using a hybrid ternaryquinary number 
system. A recent result concerning performing modular 
exponentiation with precomputation was presented by Dimitrov 
and Cooklev: their average number of modular multiplications is 
0.3381n, where n is the length of the modulus, while the authors’ 
proposed method only needs 0.3246~ modular multiplications. 
Furthermore, compared to Dimitrov and Cooklev’s approach, the 
authors’ method reduces the amount of storage by 56.8% if the 
modulus is a 512bit number. 

Introduction: Modular exponentiation is one of the most impor- 
tant computational problems. A typical example of its applications 
is in implementing the ElGamal cryptosystem [I]. In that crypto- 
system, a futed element g of a group Z,, where P is a large prime, 
is repeatedly raised to many different powers. In a binary number 
system (BNS), performing the modular exponentiation gx mod P 
requires on average 1.5n modular multiplications, where n is the 
length of the modulus. Because g is fixed, the values gzi mod P for 
i = 0, 1, ..., n-1 can be computed in advance and loaded in a table 
for later look-up. Thus, the average number of modular multipli- 
cations in this case is 0.5n. In 1995, Dimitrov and Cooklev [2] pre- 
sented a new hybrid binary-ternary number system (HSTNS). If 
the exponent x is represented in such a hybrid binary-ternary 
form and the precomputed values g2i3i mod P, where 2’3i<P, are 
stored, then the average number of modular multiplications is 
reduced to 0.3381~1. However, it needs more precomputed values 
than BNS. We estimate that this method requires at most n + 
(n+l)(log,P - (n/2)log32) stored values. For a 512bit modulus, it 
requires 83370 stored values. 

In this Letter we present a new hybrid temary-quinary number 
system (HTQNS) to represent the exponent. According to this rep- 
resentation, the values g3l5j mod P, where 3% P, should be 
preconiputed and stored. Now, we only focus on nonzero digits, 
say 1 and 2, in the representation of exponents. We use the tech- 
nique of [3] to quickly compute gx mod P within 0.3246~~ modular 
multiplications on average. This result is somewhat faster than 
that of [2]. On the other hand, the number of stored values in our 
method is at most t + (t+l)log,P - (t(t+ 1)/2)log53, where t = 
Llog3P-!. If n is a 512-bit number, then our method requires at 
most 36027 stored values. Obviously, compared to [2], our method 
reduces the amount of storage by 56.8%. 

Hybrid method: 

Hybrid ternavy-quinary number system: The following algorithm is 
to compute the HTQNS representation of the exponent x: 

Input: x 
Output: two arrays digt[ ] and base[ ] 
Step 1: Set i = 0. 
Step 2: If x = 0 then stop and output. 
Step 3: If x mod 5 = 0, set base[fj = 5 ,  digit[fj=O, and x = x/5, and 
goto Step 5. 
Step 4: Set y = x mod 3, digit[z] = y, base[z] = 3, and x = Lx/3]. 
Step 5: Set i = i + 1 and goto Step 2. 

(1) 

Take x = 47, for example. We have base[] = [3, 5 ,  3, 31 and 
digit[] = [a, 0, 0, 11. 

Assume the quotient is of the form 15k + t at the sth stage. 
Then, the form of the previous quotient will be one of the follow- 
ing forms: 

(15K + ili = 5*(t mod 3) or i = 3*(t mod 5)  + U for u = 0, 1, 2 
and i mod 5 z 0). Let Pi, t E (0, 1,2, .., 14}, be the probability of 
the quotient of the form 15k + t at the sth stage. We have a recur- 
rent relation 

t - 1 5(tmod 3) 3 ( t m o d 5 ) + ~  
P s  - -Ps-1 + 3 Ps-1 

u=o 5 
(u+3t) mod 5#0 

That is to say, we have the following recurrent relations: 

and 

Obviously, let Po” =pol = ... =pol4 = 1/15. The asymptotic solutions 
for the above recurrent relations are p-0 = p- = p- Io = 0.056, p-’ 
- pm6 = p,” = 0.058, pm2 = pm7 =p_I2 = 0.076, p-, = pm8 = p-” = 
0.058 and pm4 = pe9 = p,I4 = 0.084. Therefore, the propofion of 
the quinary digits is P, = pTo = p-5 = p_1° = 0.168 and the propor- 
tion of the ternary digits is P, = 1-p, = 14.168 = 0.832. The 
average base of the proposed number system can be evaluated by 
b = YTPQ 2- 3.268. So, the average length of the digits of x in 
HTQNS is about ( lo~2)n  = 0.585n. In addition, the proportions 
of zeros, ones and twos are po = p,O + p-3 + pW5 + pm6 + p-9 + p,l0 

+ p-I2 = 0.446, pI = p-1 + p-4 + p-7 + p-13 = 0.277 and p2 = p-2 + 
pm8 + p_ll + p,I4 = 0.277, respectively. 

- 

(2) 
Hybrid algorithm for computing modular exponentiation: Assume 
that the exponent x in HTQNS is represented as base[] = [b,l, 
bm-*, ..., bo] and digit[] = [dm-l, dm-2, ..., do]. Before describing the 
algorithm for performing modular exponentiation we introduce 
the theorem of [3]. 

Theorem 1: Suppose x = C,,O*la,x,, where 0 5 a, < h. If gx* mod P is 
precomputed for each 0 5 i m and if m + h 2 2, then gx mod P 
can be computed with m + h - 2 modular multiplications. 

According to this theorem, we give the following algorithm to 
compute gy mod P. 

Input: g, P, digit[] and base[] 
Output: gy mod P 
Step 1: Set b = 1, a = 1, and d = 2. 
Step 2.. If d = 0 then stop and output a. 
Step 3. Set it = 0, iq = 0 and i = 0. 
Step 4: If base[fj = 5 then set iq = ig + 1 and go to Step 7. 
Step 5: If digit[ij = d then set b = b*qit][iq]. /* F[it][iq] = g3lfjzq 

mod P. *I 
Step 6: Set it = it + I. 
Step 7: Set i = i +I .  If i = m, then if d = 2 then a = b else a = a * 
b , s e t d = d - 1  andgotoStep2.  
Step 8: Go to Step 4. 

How many modular multiplications are needed in the above algo- 
rithm? We shall count only those multiplications where both mul- 
tiplicants are unequal to 1. Let Nd be the number of 4s which are 
equal to d. So, when d = 2, it needs (N2 ~ 1) multiplications. When 
d = 1, it needs (NI + 1) multiplications. Because on average NI = 
mp, = (0.585n)(0.277) = 0.162n and N2 = mp, = (0.585n)(0.277) = 
0.162n, the average number of modular multiplications in the 
algorithm is 0 .324~  

Now, we count the number of stored values. Because 3’51 < P, 
the number of these is andjs will be 

540 ELECTRONICS LETTERS 14th March 1996 Vol. 32 No. 6 



where t = Llog,Pl. If P = P2, then at most 36027 stored values 
are needed. 

Future work: This point leads us to wonder whether an optimum 
HTQNS representation exists such that time and space is further 
reduced. For example, take two bases k and h, where k > h and h 
f 2. We can construct the following recurrent relations: 

, t = O ,  1 , 2 , .  . . ,kh-1 
%‘=O 

( u f h t )  m o d  k f 0  

These asymptotic solutions will estimate the average number of 
modular multi lications. Conversely, the amount of storage is at 
most t + Logk(Pill’)J, where t = Llog,P]. In our view, search- 
ing proper bases k and h such that both time and space are 
reduced is an open problem. 
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Analogue squarer and multiplier based on 
MOS square-law characteristic 

S.-I. Liu and D.-J. Wei 

Zndexing terms: Multiplying circuits, CMOS analogue integrated 
circuits, MOSFET 

A simple CMOS squarer based on MOS square-law characteristic 
is presented. This circuit was fabricated in a 0 . 8 ~  single-poly 
double-metal n-well CMOS process. Experimental results show 
that the nonlinearity of the squarer can be kept below 2% across 
the entire differential input voltage range of flV. The total 
harmonic distortion is < 2% with the input range up to H.8V. 
Moreover, a four-quadrant multiplier can be also realised using 
the proposed squarers. The proposed circuits are expected to be 
useful in analogue signal-processing applications. 

Introduction: Many CMOS analogue signal-processing building 
blocks which exploited the square-law model of the MOS transis- 
tors have been developed in the literature [I ~ 61, e.g. CMOS mul- 
tipliers, transconductors and resistors based on the square- 
algebraic identity can be easily realised since the squaring function 
can be obtained from the well known square-law model of the 
MOS transistors operated in saturation [l - 61. In this Letter, we 
propose a simple CMOS squarer which can also be used for realis- 
ing a four-quadrant multiplier. Experimental results are given to 
verify the theoretical analysis. 

Circuit description: The proposed CMOS squarer and its symbol 
are shown in Fig. 1. Assume that all the devices in Fig. 1 are 
biased in the saturation region without the body effect. Let the 
transconductance parameter and the threshold voltage of M, to 
M8 be equal to K and V,, respectively. I ,  is the DC current. By 
describing the source currents of M, to M,,  the following relations 

~ 
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in Fig. 1 can be obtained i.e. 

(1) I ,  + 1 2  = 12 + 13 = 13 + I4 = I B  

where 4 is the source current of the PMOS transistor M, (for i = 1 
to 4). From eqn. 1 and after some algebraic calculations, the volt- 
age vs can be expressed as 

The voltage v, is the averaging value of the voltages v, and v, [2, 
51. From the transistors, M5 to M8, it is also found that 

and 

(3) 

(4) 

Assume that the aspect ratio of M9 is twice that of M5 (and M,). 
According to the proposed squarer in Fig. 1,  the output voltage V, 
can be expressed as 

V O  __ = Is + 17 - IQ 

= ~ ( ~ 0 0  - UM - v T ) ~  + K(vDD - VN - v T ) ~  

- 2K(VDD - US - VT)2 ( 5 )  
where 4 is the source current of the PMOS transistor M, (for i = 5, 
7 and 9). Substituting eqns. 2 - 4 into eqn. 5, the output voltage 
V, in Fig. 1 can be obtained as 

A simple CMOS squarer can be realised. For proper operation, it 
is required that all the devices operated in the saturation i.e. 

vss 1. v o - I  

M9 
x2 

v s  s 
Fig. 1 Proposed CMOS squarer 

Moreover, based on the square-difference identity ([u+b]* - [u- 
bI2 = k b ) ,  one squarer with input voltages v1 and v2 and the other 
with input voltages v, and -v, can be used to realise a four-quad- 
rant multiplier as shown in Fig. 2. The output voltage V, of the 
multiplier in Fig. 2 can be expressed as 

vd d 

19 vss 

Pig. 2 Proposed four-quadrant multiplier 
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