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Abstract

High-energy limite’ — oo of stringy Ward identities derived fro the decoupling of two types of
zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string are used
to check the consistency of saddle point calculations of high energy scattering amplitudes of Gross
and Mende and Gross and Manes. Some inconsistencies of their saddle point calculations are found
even for the string-tree scattering amplitudes ofdkeitedstring states. We discuss and calculate the
missing terms of the calculation by those authors to recover the stringy Ward identities. In addition,
based on the tree-level stringy Ward identities, we give the proof of a general formula, which was
proposed previously, of all high ergy four-pointstring-tree amplitudes ofrhitrary particles in the
string spectrum. In this formula all such scattering amplitudes are expressed in terms of those of
tachyons as conjectured by Gross. The formula is extremely simple which manifestly demonstrates
the universal high energy behavior of the interactions among all string states.
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1. Introduction

The study of high energy behavior of fieldetbries, in particular Yang—Mills theories,
was very successful in the early 1970s. In the quantum chromodynamics, for example, the
discovery of asymptotic freedoft] turned out to be one of the most important properties
of Yang—Mills theories. On the other handgthidden spontaneously broken symmetry
becomes evident at high energies. It is thus very tempting to generalize this study to string
theory, which certainly contains a huge hidden symmetry. In 1988, Gross and &nde
proposed a saddle point method to calculate high energy oo fixed angle string scat-
tering amplitudes. They identified a saddle point to the leading order in energy in the
calculation of first quantized string scattering amplitudes for all loops in string pertur-
bation theory. Soon after, based on this remarkable calculation, (Rlosgde important
conjectures on high energy stringy symmetries. There are two main conjectures of Gross’
pioneer work on this subject. The first one is the existence of an infinite number of linear
relations among the scattering amplitudes of different string states that are valid order by
order in perturbation theory at high energies. The second is that this symmetry is so pow-
erful as to determine the scattering amplitudes of all the infinite number of string states in
terms of, say, the dilaton (tachyon for the casepen string) scattering amplitudes. How-
ever, the symmetry charges of his proposed stringy symmetries were not understood and
the proportionality constants between scattg@mplitudes of different string states were
not calculated. As we will see soon, all these problems can be solved by using another
independent calculation based on the following key idba:identification of symmetry
charges from an infinite number of stringy zero-norm states with arbitrarily high spins in
the OCFQ spectrum

The importance of zero-norm states and their implication on stringy symmetries were
first pointed out in the context of the massiwemodel approach of string theofg].
Zero-norm states were shown to imphter-particle symmetriefn the first order weak
background field approximation which is valid to all energies. On the other hand, zero-
norm states were also shoysi to carry the spacetime~, symmetry charges of the 2D
string theory. Some implicains of stringy Ward idntities, derived frm the decoupling of
two types of zero-norm states, on stringy scattering amplitudes were also discufged in
Recently it was discovered thit,8] the high energy limit of these stringy Ward identities
imply an infinite number of linear relations among scattering amplitudes of different string
states with the same momenta. These linear relations can be used to fix the proportional-
ity constantsalgebraicallybetween scattering amplitudes of different string states at each
fixed mass level. These proportionality comégawere found to be independent of the scat-
tering anglepcyv and the loop ordey of string perturbation theory as was conjectured by
Gross[3]. Thus there is only one independent component of high energy stringy scatter-
ing amplitudes for each fixed mass level. For the case of string-tree amplitudes, a general
formula can even be given to determine all high energy stringy scattering amplitudes for
arbitrary mass levels in terms of those of tachyjgfjs—another conjecture by Grog3].

Since the results we obtained from zero-norm states appf@®jrare more complete
than those obtained via the saddle point method in the[p#&st 1] it would be of interest
to directly compare these two independent calculations. After a brief review of zero-norm
state calculation in Sectiop, in Section3 we will use high energy limits of our stringy
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Ward identities, which are valid to all energies and all loops, as a consistent check of sad-
dle point calculations. Since there is so far no independent rigorous check of saddle point
calculation, partially due to thddhly nontrivial stucture of moduli spaces of general Rie-
mann surfaces, our simple stringy Ward identities serve as the best theoretical test of this
saddle point approximatiosurprisingly, some inconsistencies are found for the results of
saddle point calculations even for the stringdrscattering amplitudes of the excited string
states We discuss and calculate the missing terms of the calculation by those authors to
recover the stringy Ward identities. In Sectiémf this paper, based on the stringy Ward
identities, we derive a general formula of all high energy four-point string-tree amplitudes
of arbitrary string states. This formula was first proposddjnHere we will give a general

proof and present some exampl€kis formula determines the scattering amplitudes of all
the infinite number of string states in terms of tachyon scattering amplititiesformula

is extremely simple which manifestly demonstrates the universal high energy behavior of
the interactions of an infinite number of string states.

2. Zero-norm state calculation

Let us begin with a brief review of zero-norm state calculafi@}8]. In the OCFQ
spectrum of open bosonic string theory, tidusions of physical site conditions include
positive-norm propagating states and two types of zero-norm states. The laf&@r are

Typel: L_1|x), whereLi|x)=Lo|x)=0, Lo|x)=0, (1)
3
Type II: (L_2+§L51)|)z>, whereL1|%) = Lo|%) =0, (Lo+ 1)|X)=0. (2)

While type | states have zero-norm at any spacetime dimension, type Il states have zero-
normonly at D = 26. In the first quantized approach of string theory, the strimgpghell
Ward identities are proposed to [

Dgq !
Tx(ki)zgz_xf%DX“ eXp(—;—nfdzfx/ggaﬁBaXﬂaﬂX#>

4
x [ Jvitk =0, (3)
i=1

where at least one of the 4 vertex operators corresponds to the zero-norm statg3n Eq.
g is the string coupling constant/ is the volume of the group of diffeomorphisms and
Weyl rescalings of the worldsheet metric, angk;) are the on-shell vertex operators with
momente;. The integral is over orientable open surfaces of Euler numplparametrized

by moduliz with punctures a#; . In this section, we will use stringy Ward identities of the
second mass level? = 4 as an example to illustrate our approach. The four stringy Ward
identities at this mass level were calculated tqéje

k0 T 426, T =0, (4)

5
(Ekﬂkvei + nwe;) TN + 9k, 0, T + 66/, T} =0, (5)
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1

(Ek#kV@A + znwek)TXW” + 9,0, T — 60, ! =0, (6)
17 9

(Zkukukx + Enum)TXw“) + Oy + 2V, k) )T + 25k, T/ =0, @)

whered,, is transverse and traceless, afjdand 6, are transverse vectors. These are
polarizations of zero-norm states. éach equation, we have chosen, sayk») to be the
vertex operators constructed from zero-norm states at the massifevet andk,, = ko,

In Egs.(4)—(7) v1, vz anduva can be any string states (including zero-norm states) at any
mass level and we have omitted their tensor indi@'?s".n Eqgs.(4)—(7)arey th order string-
loop amplitudes. It is important to note that E¢)—(7)are valid to all loop orderg and

all energiest, and areautomaticallyof the identical form in string perturbation theory.

We will use labels 1 and 2 for the incoming particles and 3 and 4 for the outgoing
particles. The center of mass scattering arglg is defined to be the angle betwekn
andks. The leading order Ward identities of E{4)—(7)in the energyE expansions were
calculated to be (we drop loop ordgrhere to simplify the notatior{y,8]

7?]?}*3 + 7E?L’T) = 0, (8)
107772 + Tipr + 187(3LT) =0, 9)
TR+ T+ 97}%] =0, (10)

where the subscripts and superscripts denote the polarizations and energy orders respec-
tively, which will be explained below. A simple calculation shows that

Trr TR T(?L’T) : TI%T] =8:1:(-1:(-D. (11)

In the above equations, we have defined the normalized polarization vectors of the second
string state to be

1 k
ep = —(Ez,kp,0) = —=, (12)
mo mo
1
e = _(k27 EZ? 0)7 (13)
ma
er =(0,0,1), (24)

in the CM frame contained in the plane of scatteriffig,r = e’;e;e)f’fw,)” etc. In
Egs.(8)—(10) we have assigned a relative energy power to each amplitude. For each lon-
gitudinal L component, the order i&2 (the naive order o; - k is E2) and for each
transversel’ component, the order ig (the naive order oty - k is E). This is due to

the definitions ofe; ander in Eqgs.(13) and (14)wheree; got one energy power more
thaner. Due to Eq(8), thenaive leading ordei=® term of the energy expansion &y ;. 7

is forced to be zero. As a resute true leading order is at maBE. This is the meaning of

the superscript 5> 3 in Eqg.(8). Similar rule applies to other equations. It is important to
note that EqY(8)—(11)are valid to all loops and are independent of the particles chosen for
v1.3.4. For the case of string-tree level= 1 with one tensop, and three tachyons 3 4,

all four scattering amplitudes in E¢L1)were calculated to be

Ty = —8E%sin® gcm T (3) =877 ; = —813 ) = =873 1.
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where

T(n) = TP S VA dem" "
n) =/m(-1)" 27 "E smT cosT

Xexp(_slns—l—tlnt—(s—}-t)ln(s—i—t))’

> (15)

is the high energy limit of

r(-4-9r(-5-1)
rG+2

with s + ¢ +u = 2n — 8, and we have calculated it up to the next leading ordér.ifhis is
the order which includes the energy power factor in front of the exponentia{1Epwas
thus explicitly justified7,8]. In Eq.(15)s = — (k1 +k2)%, t = — (ko +k3)? andu = — (k1 +
k3)? are the Mandelstam variables and our aamtion here is different from referend@s
3,11]by interchanging <> u.

In deriving Eqs{(8)—(10) we have identified_p.. = 7. ;.. notonly at the naive lead-
ing order but also at the true leading order in energy. For the massless case, this is true since
by definitions Eqs(12) and (13)ep = er . However, for the massive case, it is not obvious
that they can be identified. Naively, in theghienergy limit, all masses go to zero, and one
expects smooth massless limits for all relevant physical quantitie$and = 7. ;.. asin
the massless case. This issue is a more familiar subject in the context of field theories and
it turns out that the smooth massless limit may not be achieved for an arbitrary massive
field theory. For example, it is well known that the massless limit of a massive gauge field
theory is in general different from the massless theory. To illustrate this point, consider a

massive gauge field with the Lagrangian density

1 m2
ﬁ:ZFWFW+7AMAM+AMJ“+~~, (16)

where/J is a current coupled td and * - -’ represents the kinetic term and possible inter-
action terms fot/. The equation of motion of is solved in momentum space as

1 1
AM = m(ﬁuv + Wkukv).lv. (17)

Immediately we see that the massless limit is discontinuous since the second term on the
right blows up whenn? — 0. Fronsda[10] showed that, for vector gauge potentials as
well as gauge fields of higher spins, the requirement of the continuity of the massless
limit is equivalent to the conservation of charge associated with the gauge symmetry. The
second term in Eq17) vanishes if we assume charge conservatipn” = 0. Note that

the assumption of charge conservation also leads to Ward iden{jt{¢¢ - - -) = 0, which

are certainly nontrivial relations among correlation functions.

For the cases of our stringy massive states, we do have these stringy gauge symmetries
or conserved charges to fulfill Fronsdal’s criterion. Therefore, although naively zero-norm
states can not by themselves establish naiatrrelations among scattering amplitudes,
our assumption about the continuity of the Inignergy limit, which is implicitly imposed
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when we identifyZ._ p. =7 ..., leads to nontrivial relations, namely, our stringy Ward
identities. In our prescription, zero-norm state is a vehicle used to bring the information
about charge conservation to the surface to be seen. As we found explicitly for mass lev-
elsm? = 4 andm? = 6 [7,8], our prescription indeed leads tatios between scattering
amplitudes for different particles. We give one example here to justify our assumption

. We have explicitly checked that

Topr = Tipr = Tirr = —E°sif gem T (3), (18)

to the leading order in energy, for the case of string tree amplitudes with spin-three tensor
v2 and three tachyons 3 4.

3. Saddle point calculation corrected

We now briefly review the saddle point calculation of E8) [2,3,11] First one notes
that the high energy limit” — oo is equivalent to the semi-classical limit of first-quantized
string theory. In this limit, the closed string-loop scattering amplitudes is dominated by
a saddle point in the moduli spage For the oriented open string amplitudes, the saddle
point configuration can be constructed from an associated configuration of the closed string
via reflection principle. It was also found that the Euler numjpeof the oriented open
string saddle is alwayg = 1 — G, whereG is the genus of the associated closed string
saddle. Thus the integral in E¢(B) is dominated in the:’” — oo limit by an associated
G-loop closed string saddle point X, i andé;. The closed string classical trajectory
at G-loop order was found, according to Gross and Mef#jeto behave at the saddle
point as

.4
L= S gz — 1
X4 (@)= 1+G;ki In|z all—}-O(O{,), (19)
which leads to the th order open string four-tachyon amplitude
Ins+zlns+ulnu
T~ g2 exp<_s ) 20
x~8 22— ) (20)

Eq. (20) reproduces the very soft exponential decay & of the well-known string-tree
x = 1 amplitude. There is a consistent check of &) at small angles, where the genus-
G scattering process can be decomposed Gt¢ 1 successive scattering®,12]. The
exponent of Eq(20) can be thought of as the electrostatic enefgyof two-dimensional
Minkowski chargesk; placed ata; on a Riemann surface of gents One can use the
SL(2, C) invariance of the saddle to fix 3 of the 4 poiats then the only modulus is the
cross ratio

_ (a1 —az)(az — as)
(a1—az)(az —as)’
which takes the value

=i~ L asi M (21)
s 2
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to extremizeE s if we neglect the mass of the tachyons in the high energy limit. For excited
string states, it was found that only polarizations in the plane of scattering will contribute
to the amplitude at high energie® the leading order in enerdy, the products oé; and

er, With 9" X at string-tree leve)y = 1 (or G = 0) were calculated by using E¢L9) to
be[11]

(n —1)!

er - 3" X ~i(=)" T Esingcym, n >0, (22)
. -2
, i (n =1 E2sirf¢om <
er - 9"X ~i(—)"D - S~ le, n>1, (23)
=0
er -9"X~0, n=1, (24)

wherem is the mass of the particle.

We are now ready to use the resultsoofr zero-norm state calculation, E¢8)—(11)
to check the validity of the saddle point calculations, H84)—(24) Note that Eqs(8)—

(11) are the high energy limit of the decoupling of zero-norm states of stringy scattering
amplitudes. They are directly related to the unitarity of string theory. We will just check
the string-tree amplitudes since only in this case the exact results are known. Let us use
Egs. (21)-(24)to calculate, for example, the high energy limit of E4) where both
scattering amplitudeg “*») 70w are defined by Eq(3). It is easy to see, according

to Egs.(21)—(24) that the kinematic factok'; ;7 of 7.7 is of energy ordeiE while

Kt ~ E3. This means thaf®, , = 0 [7,8] to the leading order in the saddle point
calculation. This obviously violates the result of our zero-norm state calculatio(8Eq.
which sayle%LT andle’LT) are of the same energy orde?. Since Eq(8) is the high
energy limit of Eq.(4). We conclude that there is an inconsistency between4gcnd
Eqgs.(21)—(24) In other wordsthe resultg21)—(24)violatesthe high energy massive gauge
invariance[7,8] of Eq. (8) and thus will threat the unitarity of string interactionslany
similar examples with the same inconsistencies exist at higher mass levels mainly due to
the wrong result of E(24). They are scattering processes with vertices contaifixtg,

or processes whose naive leading order in energy vanishesTLéL@?,

To further demonstrate why the previous saddle point calculaf@®®s11]fail to be
consistent with the stringy Ward identity, we redo the calculations based on the saddle
point method and figure out the missing terms in the previous results. Again, we shall use
the examples a2 = 4 amplitudes/; ; r andZ7 77 to demonstrate the correct calculation.
The spin-three amplitude is defined as

4
TuvA = / dei (eik]_X8X}LaXvax)»eikzxeikg,xei/mX)’ (25)
i=1

and7; .t = e} e} e}, is calculated to be

1
Toir = f dx xS — x)"%(e, - k1) (er, - k) (er - k3) (26)
0
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1
-2 / dx xS/2(1—x)""?" ey - ka)(er, - ka)(er - k3) (27)
0
1
+ f dx xS — x) 7?7 2(ep, - k3)(er - ka)(er - k3). (28)
0

Similarly, for 7777, we have
1
Trrr = f dx x /21— )72 2(er - ka)(er - ka)(er - k3). (29)
0

In deriving Eqs(26)—(29) we have made th8L(2, R) gauge fixing and restricted to the

s—t channel amplitude only by choosing =0, 0< x2 < 1, x3 =1, x4 = co. Here we

need to evaluate three integrals by using saddle point method. For instance, the integral of
Egs.(28) and (29xan be defined as

1
Fil’zz/‘dxxfs/2+l(l_x)ft/272
0

1
:/dxx(l—x)_zexp{—%[lnx - rln(l—x)]}

0
1

:/dx u—_1,2(x) exp{—%f(x)}, (30)
0
where we have defined

rz—izsinzd)c—M, (31)
K 2

ug p(x) =x"%1-x)", (32)

f@)=Inx —7In(1—x). (33)

The other integrals in Eq$26) and (27) F1,0 and Fp 1, can be similarly defined. Note
that our definitions of Mandelstam variables here are different from &39—(24)by
interchanging <> u. Now, before doing saddle point calculations, we would like to point
out that there are two different definitions of the concepts of saddle-points. For the integral

of Eq.(30), for example, the first definition is the saddle poiptwhich leads tof’(x) =0

. . )3 . .
and is given byxo = 2=, and we havef” (xo) = $=2". In this case, the saddle point

is independent of the prefactar_ 1 . The more standard definition of saddle point is,
however, the valug;, which extremizes the exponent of éxp5 f (x) + Inu_1 2]. In this

case, the saddle points of the integrals of the scattering amplitudes of the excited string
states will be shifted level by level. We stress that although this shift is of subleading order
in energy compared with ER0), its effect will bring down an energy power factor in front
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of the exponential. These power factors are crucial to recover the stringy Ward identities

and get the linear relations among high energy scattering amplitudes conjectured by Gross.

In the following, we will adopt the first defition to do the calculation. However, both

saddle point calculations should give the same results if one does the calculations carefully.
We can use the following formula for a systematic expansion of integral in tergas of

F)= / dxu(x) exr{—a’sf(x)] (34)
, 2w
=ug exp(—a sfo) m

x{1+[ g uply o 5[fé3>12} 1
2uofy  2uo(fEH%  8(fEH2  24(f)3

()

whereuo, fo, ug, f, etc., stand for the values of functions and their derivatives evaluated
at xo. For simplicity, we only write down the leading and next-to-leading corrections in
1/a’. One can extend this formula to higher orders such that the desired accuracy can be
achieved. Note that the range of integration in £86)—(30)can be extended fror®, 1)
to (—oo, +00) by a change of variable — exj_%

Now, in order to avoid complicated expansion of momentum variatlek; ande; - k3
in the calculations of7; ;7 [8], we can use the previous result ®f;7 = 7ppr to the
leading order, and calculate

o's

Torr ~7Tppr
E .
= (Z S|n¢CM> [Fro(ks - k2)? — 2Fg 1(ky - ko) (k2 - k3) + F_1.2(kz - k3)?]

= (E®singem)[FLo+ 2t Fo1+ t2F_1.2], (36)
Trrr = (Esingewm)3F_12. 37)

The remaining task for calculating both amplitudes now amounts to the various con-
tributions of the master formula foFy o, Fo1 and F_1. For 7.7, we notice that
(u1,0+ 2tuo1 + rzu_1,2)|xo =0, hence both the leading terms and the last two terms in
the I/’ corrections of Eq(35) cancel. After some calculations, we fitd, o + 2rug 4, +

752"‘/_1,2)|XO =0, so the second term in thed! corrections of Eq(35)sum up to zero. The

only surviving contribution comes from the first term in théx1 corrections in Eq(35),
and we have

1 ) (1—1)2
FOH[M/]:O + 2TM6’1 +7 ”Zl,Z]xo = T . (38)
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We emphasize that these are exactly the missing terms of the previous saddle point calcu-
lations[2,3,11] Once these corrections are taken into accoume, are able to obtain the
result which is consistent with our stringy Ward identities. In fact, we can now use

. | 4 1]
S|n¢C|\/| ~ 2\/ 'L'(l— T), 77[” = E &
°J0

and Eq(38)toget @' =1/2,5 — )

1-1)22
TLLT=_(E55in¢CM)<eXp{__fO}1/ 57y )( tr) g

—J—Ezcosz(z)c—Mexp{—%fo}
—E%sin pcm T (3). (39)

Similarly, for 7r7r, we have only one leading term in E85), andu_1 2|x, = % gives

. 4 1-7)
Trrr = —(E3sin® gcwm) <eXP{—%f0}‘/ S]%, ) TZI

= —8nE*co¢ ¢CTM exp{—%fo}
E%sin® dcm (3). (40)

Eqgs.(39) and (40rgree with our previous calculations above @d) based on a different
method[7,8]. Finally, by comparing Eq(39) and Eq.(40), we obtain the desired relation,
Trrr :Torr =8:1.

In conclusion, we see that the use of saddle point in Ef®) and (21)s only valid
for the tachyons amplitude in EQRO). In general, the prediction oEgs.(21)—(24)gives
the right energy exponent in the scatteringmitudes, but not the energy power factors
in front of the exponential for the cases of the excited string statesse energy power
factors are subleading terms ignoredHus.(21)—(24)but they are crucial if one wants to
getthe linear relations among high energy scattering amplitudes conjectured by[Bfoss

4. String-treehigh energy scattering amplitudes

In this section, we will first give a general formula of all high energy four-point string-
tree amplitudes o#rbitrary string states This formula was first proposed i7]. Here
we will give a general proof and present some examples. Let us begin with the scattering

1 Another correction one has to &into account is the saddle pointe —§ ~ sir? %CM in Eq.(21)identified

by authors of Refs[2,3,11] The saddle point we identified in E¢B5) is, however,xg = % ~ R;—/‘
CM

Since our convention of Mandelstam variables is different from R2f3,11]by interchanging < u, we believe

that the correct saddle point of Ref2,3,11]should be&i.corr ~ —1+——.
sir? dcm/2
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TZ

—>a
=~
I
v

Fig. 1. Kinematic variables in the center of mass frame.

amplitudes of one arbitrary tensor and three tachyons 3 4. Based on the result of high
energy stringy Ward identities, it was conjecturefl/iy8] that there is only one independent
component of high energy scattering amplitude at each fixed mass level,’ddy; which

is defined to be the transverse component oftedag amplitude of the highest spin state
at them? = 2(n — 1) level, wheren is the number of"’s. For example, the first scattering
in Eq.(11) T3TTT corresponds te2 = 4. All other components of high energy scattering
amplitudes are proportional to it. This conje was explicitly proved for the mass level
m? =4, 6. Itis not difficult to calculate the following general scattering amplitudes of this
type with vz the highest spin state at each fixed mass level and three tachygugwe

list amplitudes for the— channel only)

n
n
'];IILIMZ‘.‘Mn — E (_)l<l>B(_% _ 1_|_ l, _% +n— l)k:(l-ﬂl . _ki/vn—lkgn—lJrl . .klg‘bn)’
=0 (41)

whereB(u, v) = fol dx x*~1(1 — x)?~1is the Euler beta function. It is now easy to calcu-
late the general high energgattering amplitude at the? = 2(n — 1) level [8]

I = [-2E3singem]" T (n), (42)
whereT (n) is given by Eq(15). One can now generalize this result to multi-teng@}s
Tt = [28singeu] ™ (0 Yons ). (43)

wheren; is the number of"? of theith vertex operators anfl’ is the transverse direction

of theith particle. This is our first master formula for all scattering amplitudes which are
of the leading order in energy compared with other amplitudes at the same mass levels. In
proving Eq.(43), one notes that the new contraction terms arising fromatXis belonging

to two different vertex operators are suppressed in energy. Finally#hends—u channels

of a given scattering amplitude can be Mdbius-transformed ta-thehannel of another
scattering amplitude obtained by interchanging vertex operators of the original scattering
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amplitude. Thus we still end up with the gigy behavior in the kinematic factor. This
completes our proof for Eq43). It is remarkable to find, from Eq43), thatall high
energy scattering amplitudes share this simple high energy behavior, which hints at the
universal form of the interactions of an infinite number of string states. In the following we
give some examples to illustrate the power of @&®). The scattering amplitudes involving
tachyons and massless vectors were calculatfiBinand are given bys¢r channel only)

M3 -9r=5-19)

EQCIOTSZ 1_,(% + 2) ’ (44)
with the kinematic factors
K (81, k1; &2, k2; k3; ka)
1 1
= <§t + 1) (Eu + 1) ((¢1-k2) (&2 - k1) — ¢1- ¢2)
1 1
+ <§s + 1) (§u + 1) ((¢1-ka) (22 - k)
1 1
+ (§s+1) <§t+l>((§1~k3)(§2-k4)), (45)

K (81, ka; &2, k2; 3, k3; ka)

1 1
_ <§s+1)<2t+1> (61 k) (@2 - k) (3 k1) — (02~ k) (01 - £2)

1 1 1
+ <§s + 1) <§t + 1) =5((C2 - ka)(C1- £3) — (L1 - ka) ({2 - k3) (¢3 - k1)

1
+ <§s + 1) L 1) (—u 4 1)((;1 ka) (G2 k)3 ko)
— (1 k2) (52 k3) (L3 - ka) — (C2- 43) (L1 - k2) + (C1- 2) (L3 - k2))

1
t+1> u+1> ((¢1-22) (L3 ka) — (1 - k2) (52 - k1) (L2 - ka))

1 1
<§u+1> <§s+1)—s (¢1-ka)(E2-k3) (3 k2) — (¢2- £3)(C1-ka)), (46)

K (81, k1; &2, k2; £3, k3; Ca, ka)
1 1 1
[ KG9 4 = {(cl k3) (22 - k3)((¢3- k1) (a- k1) + (3 k2)(Ca - k2))
1
+ é((Cl ~k2)(C2 - k3) (L3 - k1) — (L1 - k3)($2 - k1) (L3 - k2))(Sa - k1 — L4 kz)}

1
+ él{(iz k1) (£3- k1) ((C1-k3) (L4~ k3) + (¢1- k2) (¢4 - k2))
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+ = ((C1-k3) (L2 - k1) (L3 - ko) — (¢1- k2)($2 - k3)(E3- k1)) (¢a- k3 — L4 kz)}

l—‘OOlI—‘

+ Eu{(ﬁ ~k2)(£3- k2) ((¢2 - k1) (Ca - k1) + (¢2 - k3) (L4 - k3))

1
+ —((4“1 +k2)(¢2 - k3)(¢3- k1) — (C1-k3) (G2 - k1) (L3 k2))(Ca-ka — ¢4 kl)}

1( (¢1-k3)(¢3- kD)( (¢2-ka)(Ca- k2))

+Z? $1-83—(81-k3)(83-k1))(82- 84 — (82 ka)(Ca- k2

st 1
2731
&
45+1

1+ 83— (C1-ka) (83 k1)) (L2 Ca— (G2 ka) (Lo - k2))

(¢1-¢a— (L1 ka)(Ca-kD))(C2- ¢3 — (L2 ka)(¢3 - k2))

st tu Su
—Z(é'l -3)(82- ¢a) — Z(Cl -2)(83- ¢4) — Z(s“l -$4) (L2 53)], (47)

whereK %) is the same kinematic factor that enters in the type | superstring and can be
found in[14]. It is easy to show thak %) is suppressed in energy in the high energy ex-

pansion. Finally, the 4-point function of a spin-two, a vector and two tachyons is calculated
to be

4
ﬁensorz / l_ld-xi (é.lu)8X}LBXvel‘k]_Xé.vaXveikzXeik3Xeik4X>

:F(‘“l%) Cz-Y) [2<%z+1>%u(%u+1)(f:uvk’2‘§”)
-(3+1)

+<%s+1) ;
e
+2<%s+1>( t+1)< )@Muk“ks)(g k1)
_ z(%s) (%s + 1) (EM + 1) (Curkb k) (€ - ks)
)i
+(%) (%H)(% -1 (Cuvkgkg)(f'k@} (48)

é‘uvkﬂkz (; - k1)

|\)|I—‘ N“—‘ I\)

—~

Cuvky k) (C - ka)

(i)
(3o

+1> C;wkgc )

Nll—‘ I\JlH
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By using
s =4E?, t:—4sir?¢CTME2, u:—4CO§¢CTME2

in the high energy limit, the transverse components of the high energy limits o{45)s.
(46), (47) and (48are calculated to be

[<2E3singem] T2,  [-2E3singem] T (3),
[—2E3singeu] T T@),  [—2E3singem] T T ).

These are remarkably consistent with the prediction of(&8).

The second master formula for high energy scattering is valid for processes with ver-
tices not containing X -, or equivalently, for those amplitudes whose true leading order in
energy are the same as the naive leading drdenergy. The high energy string-tree scat-
tering amplitudes of this type with one tenserand three tachyons 3 4 are calculated to
be (we list amplitudes for the-r channel only)

la la
o= To - ([-4] e [3] ) @

where¢,, which is eithere” or %, corresponds to the polarization & X in the vertex
operator, at mass level? =2(n — 1), n = > 1,. For examplelC?LT), which contains a

vertexd X(T92xL) | can be rewritten as

2 2
3 _ t N t S
= (g 300) ([ ] m [5] 10) e
= E%singcw, (50)

which is correctly predicted by E§43). It is straightforward to write down a general for-
mula for the four-tensor scattering amplitudes of these types at arbitrary mass levels. Note
that Eq.(49)includes processes that are not the leading high energy scattering amplitudes
at each fixed mass level considered in E). For example, Eq49) gives

; 2 2
2 N 1 S
Krr = <—§k1+ Eks) -W([—E] k1 + [E} ks) -er

=8E8sir’ ¢, (51)

which is not given by Eq43). This scattering amplitude is of subleading order in energy at
the mass leveh? = 4. Note that the superscripts d€?, ;) andKZ,, represent the naive
(or true) leading orders of the scatteringg@itudes de%ined in the paragraph after Egg).

5. Conclusion

We have shown that saddle point calculations of high energy string scattering amplitudes
of Egs.(21)—(24) [2,3,11hre not consistent with the zero-norm state calculations of high
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energy stringy Ward identities of Eq&)—(11) [7,8] In this paper, we have also given
the correct saddle point calculation, E¢®4)—(40)which are consistent with our previous
calculation based on a different methfyd8], to illustrate the importance of subleading
energy power factor in front of the exponentidltbe high energy string amplitude. This
power factor is crucial to recover the stringy Ward identities and the linear relations among
scattering amplitudes of different string states conjectured by G3pss

Based on the tree-level stringy Ward idenstaerived from the decoupling of two types
of zero-norm states, it was conjectu@gB] that there is only one independent component
of high energy scattering amplitude at eackeébmass level. All other components of high
energy scattering amplitudes are proportidnat. This conjecture was explicitly proved
for the mass levels:? = 4, 6 [7,8]. If this conjecture is valid to all higher mass levels, our
master formula, Eq(43), determines all high energy string-tree scattering amplitudes in
terms of those of tachyons—another conjecture by G@lsdt is worth noting that if all
stringy propagating modes contribute at least one high energy scattering amplitude, then
Eq.(43) applies to all particles in the string spectrum.

While the importance of zero-norm states in string theory has been largely underesti-
mated, we expect that a clearer understanding of zero-norm states will help us to uncover
the fundamental symmetry of string theory.
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