
The Journal of Systems and Software 75 (2005) 155–170

www.elsevier.com/locate/jss
A two-level scheduling method: an effective parallelizing technique
for uniform nested loops on a DSP multiprocessor

Yi-Hsuan Lee, Cheng Chen *

Department of Computer Science and Information Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu,

Taiwan 30050, PR China

Received 24 June 2002; received in revised form 22 January 2003; accepted 10 February 2003

Available online 12 May 2004

Abstract

A digital signal processor (DSP), which is a special-purpose microprocessor, is designed to achieve higher performance on DSP

applications. Because most DSP applications contain many nested loops and permit a very high degree of parallelism, the DSP

multiprocessor has a suitable architecture to execute these applications. Unfortunately, conventional scheduling methods used on

DSP multiprocessors allocate only one operation to each DSP every time unit, even if the DSP includes several function units that

can operate in parallel. Obviously they cannot achieve full function unit utilization. Hence, in this paper, we propose a two-level

scheduling method (TSM) to overcome this common failing. TSM contains two approaches, which integrates unimodular trans-

formations, loop tiling technique, and conventional methods used on single DSP. Besides introducing algorithm, we also use an

analytic module to analyze its preliminary performance. Based on our analyses the TSM can achieve shorter execution time and

more scalable speedup results. In addition, the TSM causes less memory access and synchronization overheads, which are usually

negligible in the DSP multiprocessor architecture.

� 2004 Elsevier Inc. All rights reserved.

Keywords: DSP multiprocessor; Scheduling; Uniform nested loop; Parallelize
1. Introduction

Most scientific and digital signal processing applica-
tions, such as image processing, weather forecasting,

and fluid dynamics, are recursive or iterative (Hsu and

Jeang, 1993; Kung, 1988). These applications are usually

represented by nested loops, and most of their opera-

tions are multiplications and additions (Madisetti,

1995). The DSP is a special-purpose microprocessor,

which is designed to achieve high performance on DSP

applications with minimum silicon cost. Unlike general-
purpose microprocessors, the DSP design is based on

the Harvard architecture, and often includes several

independent function units those are capable of oper-

ating in parallel (Eyre and Bier, 2000; Simar, 1998).
* Corresponding author. Tel.: +886-3-5712121x54734; fax: +886-3-

5724176.

E-mail addresses: yslee@csie.nctu.edu.tw (Y.-H. Lee), cchen@

csie.nctu.edu.tw (C. Chen).

0164-1212/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jss.2003.02.001
Because nested loops are the time-critical sections in

such computation-intensive applications, their execution

time will dominate the entire computational perfor-
mance. To optimize the execution rate of such applica-

tions we need to explore the embedded parallelism of a

loop (Passos et al., 1995; Passos and Sha, 1996). Con-

ventional scheduling methods are divided into five cat-

egories; the transformation based technique is the most

popular one (Parhi, 1999). Methods belonging to this

category usually focus on scheduling multiplications and

additions, and use retiming and unfolding techniques to
restructure loop bodies with higher embedded parallel-

ism (Chao and Sha, 1993; Leiserson and Saxe, 1991).

They usually can obtain rate-optimal results, and re-

quire less time and space complexity.

Most DSP applications permit a very high degree of

parallelism that can be exploited with digital signal

multiprocessor (DSMP) systems (Madisetti, 1995).

Many related scheduling methods for DSMPs have been
proposed, but they only allow each DSP to execute one

operation every time unit (Jeng and Chen, 1994; Koch

mail to: yslee@csie.nctu.edu.tw

156 Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170
et al., 1997; Shatnawi et al., 1999). However, because a

DSP often can execute several operations in parallel,

these methods obviously cannot achieve full function

unit utilization. In this paper, we propose a scheduling

method that allocates more than one operation to a DSP

in each time unit, thereby overcoming this limitation.
Our method, named two-level scheduling method

(TSM), is motivated by the skewed single instruction

multiple data (SSIMD) method (Barnwell et al., 1978). It

contains two approaches. The first, directly called the

two-level scheduling method (TSM), is integrated with

unimodular transformations (Wolf and Lam, 1991) and

the conventional single DSP scheduling method. The

second is extended from TSM by adding loop tiling

technique (Wolfe, 1996), which we name two-level

schedulingmethodwith looptiling (TSMLT).Besides intro-

ducing the algorithm and principles, we use an analytical

model to analyze their preliminary performances. From

our analyses, both TSM and TSMLT can achieve higher

functional unit utilization and shorter execution times

than conventional methods. Their speedup results are

also more scalable when the number of processing envi-
ronments increases. Moreover, our methods cause less

synchronization and memory access overheads, although

they seem minor in DSMP architecture.

The remainder of this paper is organized as follows.

Section 2 surveys the fundamentals and the background.

Design issues, analytical modules and preliminary per-

formance analyses of TSM and TSMLT are described in

Sections 3 and 4, respectively. Finally, the conclusions
and future work are presented in Section 5.
2. Fundamentals and background

In this section, we will model our scheduling problem

and briefly survey some fundamentals. Loop transfor-

mation technique will be also introduced.

2.1. Modeling the problem (Passos and Sha, 1996, 1998)

Because DSP applications usually contain repetitive

groups of operations, they can be easily represented by
for i = 1 to m begin
for j = 1 to n begin
 D [i, j] = B [i–1, j] × C [i–1, j–2] ;

 A [i, j] = D [i, j] × 0.5 ;

 B [i, j] = A [i, j] + 1 ;

 C [i, j] = A [i, j–1] + 2 ;

end
end

D = {(1, 0), (0, 1), (1, 2)}

(a)

Fig. 1. A simple nested loop and
nested loops. Edwin Sha et al. model the nested loop as

a multi-dimensional data-flow graph (MDFG) (Passos

and Sha, 1996; Passos and Sha, 1998). An MDFG is

defined as follows.

Definition 2.1. An MDFG G ¼ ðV ;E; d; tÞ is a node-
weighted and edge-weighted directed graph, where V is

the set of computation nodes, E is the set of dependency

edges, d is a function from E to Zn representing the

multi-dimensional delays between the two nodes, where

n is the number of dimensions, and t is a function from

V to the positive integers, representing the computation

time of each node.

Fig. 1 shows a simple nested loop and its corre-

sponding MDFG. An MDFG is realizable if there exists

a schedule vector s such that s � d P 0, where d are loop-
carried dependencies in G. A schedule vector s is the

normal vector for a set of parallel equitemporal hyper-

planes that define a sequence of execution (Lamport,

1974). An iteration is equivalent to the execution of each

node in V exactly once. The period during which all

nodes in an iteration are executed, according to data

dependencies and without resource constraints, is called

a cycle period. Cycle period is the maximum computa-
tional time among paths that have no delay (Passos and

Sha, 1996; Passos and Sha, 1998). It is shown that the

cycle period dominates the entire execution time of a

nested loop. Notices that many MDFGs can represent a

signal processing algorithm, depending on how we rep-

resent it by nested loops.

2.2. Retiming an MDFG (Leiserson and Saxe, 1991)

Retiming is a popular technique that reassigns delays

to enhance the execution performance (Leiserson and

Saxe, 1991). A multi-dimensional retiming r is a function

from V to Zn that redistributes nodes in consecutive

iterations. A new MDFG Gr ¼ ðV ;E; dr; tÞ is created

after applying r such that each iteration still has one

execution of each node. The retiming vector rðuÞ of node
u represents the offset between the original iteration and

that after retiming. The delay vectors change accord-
(0, 1)

(1, 0)

(1, 2)
D A

C

B

(b)

its corresponding MDFG.

Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170 157
ingly to preserve dependencies. Definitions and proper-

ties of retiming are shown below.

Definition 2.2. Given any MDFG G ¼ ðV ;E; d; tÞ, reti-

ming function r, and retimed MDFG Gr ¼ ðV ;E; dr; tÞ,
we define the retimed delay vector for every edge, path,
and cycle, respectively, by

ðaÞ drðeÞ ¼ dðeÞ þ rðuÞ � rðvÞ for every edge

u!e v; u; v 2 V and e 2 E:

ðbÞ drðpÞ ¼ dðpÞ þ rðuÞ � rðvÞ for every path

u!p ; u; v 2 V and p 2 G:

ðcÞ drðlÞ ¼ dðlÞ for any cycle l 2 G:

Fig. 2 shows the retimed nested loop and MDFG in

Fig. 1. A prologue is the set of instructions moved in

each dimension that must be executed to provide nec-

essary data for the iterative process. An epilogue is the

complementary instruction set that will be executed to
complete the process. If the nested loop contains suffi-

cient iterations, the time required to run prologue and

epilogue are negligible.

2.3. Loop transformations (Wolf and Lam, 1991; Wolfe,

1996)

Loop transformation is one of the basic techniques
for parallel compiler design. It changes the execution

sequence of the iterations to achieve the maximum de-

gree of parallel operation for the program’s execution in

the multi-processor system. Many transformation tech-

niques have been proposed. Among these, the unimod-

ular transformations technique is one of the most

important techniques (Wolf and Lam, 1991). In its

model, a nested loop of depth n is represented as a finite
convex polyhedron in the iteration space Zn bounded by
for i = 1 to m begin
 D [i, 1] = B [i–1, 1] × C [i–1, –1] ;

 A [i, 1] = D [i, 1] × 0.5 ;

for j = 1 to n–1 begin
 D [i, j+1] = B [i–1, j+1] × C [i–1, j–1

 A [i, j+1] = D [i, j+1] × 0.5 ;

 B [i, j] = A [i, j] + 1 ;

 C [i, j] = A [i, j–1] + 2 ;

end
 B [i, n] = A [i, n] + 1 ;

 C [i, n] = A [i, n–1] + 2 ;

end
(a)

Fig. 2. The retimed nested loop an
the loop bounds. Each iteration in the loop corresponds

to a node in the polyhedron, and is identified by its index

vector [p1p2 	 	 	 pT
n]. The loop-carried data dependency

can be succinctly represented by the dependency vector

[d1d2 	 	 	 dT
n].

Loop tiling is a technique that decomposes a single
loop into two nested loops; the outer loop steps between

strips of consecutive iterations, and the inner loop steps

between single iterations within a strip (Wolfe, 1996).

Because this technique changes the execution sequence

of the iterations, it can be used to increase data locality

if the nested loop contains many iterations.
3. Two-level scheduling method

TSM contains two individual approaches that will be

described in this and next sections. Because nested loops

used in DSP applications are usually with depth of two,

we use it as an example to explain our method. Never-

theless, TSM can be easily extended to cover nested

loops with depths greater than two.

3.1. Problem definition

At first, the scheduling problem and system archi-

tecture are defined. We use a two-dimensional MDFG

to model a nested loop with depth two, and execute it on

DSMP architecture. Scheduling goals are to reduce the

entire execution time and fully utilize function units. We
also inherit architectural constraints from DSMP sys-

tems, and use these features to analyze our approaches

(Madisetti, 1995).
3.2. Main stages of two-level scheduling method

The first approach is named the two-level scheduling

method (TSM). Given a nested loop with depth two, the
process of TSM contains two main stages. The first
] ; (0, 1)

(0, 2)

(1,–1)

(1, 1)
D A

C

B

(b)

d MDFG of those in Fig. 1.

158 Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170
stage is to parallelize and allocate iterations to every

DSP, and the second stage is to achieve the scheduling

goals for each DSP. We explain these stages as follows.

In the first stage, we use unimodular transformations

to parallelize the inner loop. Since this technique does

not explain how to use its transformations, we design a
simple algorithm LP listed in Fig. 3 to parallelize a

uniform nested loop of depth two. WLOG, we only

consider flow-dependencies. Notices that the transfor-

mation matrix to parallelize a nested loop is not unique,

and algorithm LP can obtain one with minimum skew

factor. Fig. 4 shows the parallelizing results in Fig. 1.

Then, iterations should be allocated to every DSP.

Because the inner loop is parallelizable, iterations can be
divided into barrier sections, where iterations within the

same barrier section are independent. Clearly barrier
Fig. 3. Pseudo codes o

for l = 2 to m+n begin
dopar k = max (1, l–n) to min (m, l–1) be
 D [k, l–k] = B [k–1, l–k] × C [k–1, l–k–

 A [k, l–k] = D [k, l–k] × 0.5 ;

 B [k, l–k] = A [k, l–k] + 1 ;

 C [k, l–k] = A [k, l–k–1] + 2 ;

end
end

D = {(1, 1), (1, 0), (3, 1)}

(a)

Fig. 4. The parallelized nested loop a
sections must be executed in sequence to preserve

dependencies. For reducing the entire execution time,

iterations in a barrier section are evenly allocated.

Suppose there are four DSPs and variables (m; n) equal

(8, 7); Fig. 5 shows the allocation result of loop in Fig.

4(a).
In the second stage, we want to reduce the entire

execution time and fully utilize function units. Since

iterations inside each barrier section are independent,

any conventional single DSP scheduling method can be

applied for each DSP separately. In this paper we

choose the multi-dimensional rotation method (Passos

and Sha, 1998), because it can be directly applied on

DSMP architecture and compared with our TSM

(Tongsima et al., 1997). Fig. 6 shows the entire algo-

rithm TSM.
f algorithm LP.

gin
2] ;

(1, 0)

(1, 1)

(3, 1)
D A

C

B

(b)

nd MDFG of those in Fig. 1.

barrier

DSP 1 (10, 3) (10, 7) (11, 4) (11, 8) (12, 5) (13, 6) (14, 7) (15, 8)

DSP 2 (10, 4) (10, 8) (11, 5) (12, 6) (13, 7) (14, 8)

DSP 3 (10, 5) (11, 6) (12, 7) (13, 8)

DSP 4 (10, 6) (11, 7) (12, 8)

barrier section

DSP 1 (2, 1) (3, 1) (4, 1) (5, 1) (6, 1) (6, 5) (7, 1) (7, 5) (8, 1) (8, 5) (9, 2) (9, 6)

DSP 2 (3, 2) (4, 2) (5, 2) (6, 2) (7, 2) (7, 6) (8, 2) (8, 6) (9, 3) (9, 7)

DSP 3 (4, 3) (5, 3) (6, 3) (7, 3) (8, 3) (8, 7) (9, 4) (9, 8)

DSP 4 (5, 4) (6, 4) (7, 4) (8, 4) (9, 5)

Fig. 5. Allocation results of nested loop in Fig. 1(a) with ðm; nÞ ¼ ð8; 7Þ.

end

begin)(for

;

);,(

);(),'();(

:input

8

it toallocatediterationsexecute tomethod7

allocationandschedulingeappropriatany apply can DSPEach 6

sectionbarrier each 5

DSPevery toiterationsAllocate4

3

2

depth two with loopnested1

TLtionstransformaularmoduniL

GLPTGLconvertG

L

p

/* Convert the nested loop to its
corresponding MDFG */

Fig. 6. Pseudo codes of algorithm TSM.

Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170 159
3.3. Preliminary performance analysis

In the following, we use an analytical model to ana-

lyze TSM and conventional methods used in DSMP.

Based on the constraints of DSMP, we only consider the

execution time and ignore both synchronization and

memory access overheads.

3.3.1. Basic principles

Because retiming technique is widely used, we focus

on its features to analyze execution performance.

Scheduling result after applying retiming technique

contains three main phases: prologue, repetitive pat-

terns, and epilogue. If the given program is sufficiently

large, the repetitive patterns will dominate the execution

time.
Some variables are used in our analyses. PrologueðnÞ,

lengthðnÞ, and epilogueðnÞ represent corresponding exe-

cution lengths, where n is the number of resources.

ListðnÞ is the execution length of a single repetitive

pattern produced by the list scheduling method (Man et

al., 1986), which is a simple scheduling method without

the retiming technique and usually cannot obtain the

optimum result. R retiming depth, dðnÞ, is the number of
iterations that must be moved into the prologue and

epilogue.

The following are our assumptions. The input nested

loop is depth two with loop bounds of the outer and

inner loops of m and n, respectively. The system archi-

tecture contains N identical DSPs, DSP1
DSPN, and

each DSP contains k function units. Within each barrier

section, if the iterations cannot be allocated equally, we
simply allow DSP1 to execute the additional iterations.
3.3.2. Preliminary analysis

From our observations, conventional multiple-DSP

scheduling methods based on a retiming technique

allocate an operation to every DSP in each time unit and

never change the execution sequence of the iterations.

Therefore, their execution time is the same in our ana-
lytical model, which is described in Lemma 3.1.

Lemma 3.1. After applying any conventional multiple-
DSP scheduling methods, their execution time is

prologueðNÞ þ ðmn� dðNÞÞ � lengthðNÞ
þ epilogueðNÞ ð3:1Þ

160 Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170
Proof. This formula is trivial for the retiming process.

We classify TSM into two cases, named TSM 1 and

TSM2, based on whether the nested loop can be par-

allelized directly or not. In other words, transformation

matrices T obtained from algorithm LP are identity and

w 1
1 0

� �
, wP 0, for TSM 1 and TSM2, respectively.

Lemmas 3.2–3.4 describe their execution time. h

Lemma 3.2. After applying TSM and the transformation
matrix T is identity, its execution time is

m� ðprologueðkÞ þ ðn=N � dðkÞÞ � lengthðkÞ
þ epilogueðkÞÞ ð3:2Þ

Proof. Because the inner loop can be executed in parallel

directly, the iteration space remains square as shown in

Fig. 7(a). It can be divided into m equal barrier sections
with n independent iterations. Hence, formula (3.2) can

be obtained directly. h

Lemma 3.3. After applying TSM and the transformation

matrix T is
w 1

1 0

� �
, wP 0, the number of iterations

executed by DSP1 is
1 þ m�1
N

� �� �
� m�1

N

� �
� Nwþ m�1

N

� �
� ððmw� wÞmod NwÞ � 2 þ m

N

� �
� ðwþ n� mwÞ

if wmþ 16wþ n
1 þ n

Nw

� �� �
� n

Nw

� �
� Nwþ n

Nw

� �
� ðnmod NwÞ � 2 þ A� Bþ1

N

� �
� C � A

w

� �
þ minðC;DÞ

� �
� Bþ1

N

� �
� B

N

� �� �
if wmþ 1 > wþ n

8>><
>>:

ð3:3Þ
where variables ðA;B;C;DÞ are equal to ðmw� w� n;
n=wb c; ðnþ 1Þmod w;Amod wÞ.

Proof. After loop transformations, the iteration space is

as shown in Fig. 7(b) or (c) based on the relationships of

variables w, m, and n. It can be divided into wmþ n� w
barrier sections, but each contains unequal iterations.

Hence, we calculate the number of iterations allocated
to DSP1 for the longest execution time. The result can

be obtained from formula (3.3), and the detailed calcu-

lations are omitted here. h
wm + 1≤ w +barrier

(wm(wm+1, m)

j

(1, n) (m, n)

(1, 1)
i

(m, 1) (w+1, 1) (w+n,

(a) (b)

j

Fig. 7. Three kinds of paral
Lemma 3.4. After applying TSM and the transformation

matrix T is
w 1

1 0

� �
, wP 0, its execution time is

ListðkÞ � Bþ ðprologueðkÞ þ epilogueðkÞÞ � C

þ lengthðkÞ � ðA� B� dðkÞCÞ ð3:4Þ

where variables ðB;CÞ equal ðdðkÞNwð1 þ dðkÞÞ,
wmþ n� w� 2dðkÞNwÞ, and A is the number of itera-
tions executed by DSP1 calculated from formula (3.3).

Proof. Similarly to Lemma 3.3, the entire execution time

is dominated by DSP1. Iterations allocated to DSP1 are

divided into wmþ n� w unequal barrier sections with

independent iterations. We can only apply the retiming

technique if the barrier section contains more than dðkÞ
iterations. Otherwise, it must be simply scheduled using
the List scheduling method. The execution time of this

case is given by formula (3.4), and the detailed calcula-

tions are also omitted. h

3.3.3. Experimental results

In this section, six DSP applications selected from

(Passos and Sha, 1998; Lee et al., 2001; Yu et al., 1997)

are used to compare conventional methods and TSM.
As before, the multi-dimensional rotation method is

applied to the conventional scheduling method and the
second stage of TSM. Based on characters in each

application, we use DSPs that contain different numbers

of multipliers and adders listed in Table 1 to balance

their utilization.

Fig. 8 shows scheduling results of each example. It is

clear that TSM can obtain much shorter execution time,

because TSM allocates more than one operation to a

DSP in each time unit to increase the function unit
utilization. Besides, as shown in Fig. 9, speedup results

of TSM are usually more scalable. The reason is that the

conventional method uses all the DSPs to execute a
 n

(wm+1, m) (wm+n, m)

j

+n, m)

i
1)

i
(c)

(w+1, 1) (w+n, 1)

wm + 1 > w + n

lelized iteration space.

Table 1

Characters and resource constraints for each DSP application

No. of multiplications No. of additions No. of multipliers No. of adders

Transmission lines [19] 4 8 1 2

Model B 8 4 2 1

Wave digital filter [9] 2 2 1 1

Model A [24] 3 4 1 1

Infinite impulse filter [9] 8 8 1 1

Floyd–Steinberg algorithm [25] 4 13 1 2

0

1000

2000

3000

4000

5000

6000

7000

8000

10
×10

20
×15

20
×25

25
×25

25
×30

35
×35

35
×40

40
×40

45
×40

50
×50

No. of iterations

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Conventional

TSM 1

0

2000

4000

6000

8000

10000

12000

10
×10

20
×15

20
×25

25
×25

25
×30

35
×35

35
×40

40
×40

45
×40

50
×50

No. of iterations

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Conventional

TSM 2

0

500

1000

1500

2000

2500

3000

10
×10

20
×15

20
×25

25
×25

25
×30

35
×35

35
×40

40
×40

45
×40

50
×50

No. of iterations

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Conventional

TSM 1

0

5000

10000

15000

20000

25000

10
×10

20
×15

20
×25

25
×25

25
×30

35
×35

35
×40

40
×40

45
×40

50
×50

No. of iterations

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Conventional

TSM 2

0

1000

2000

3000

4000

5000

6000

10
×10

20
×15

20
×25

25
×25

25
×30

35
×35

35
×40

40
×40

45
×40

50
×50

No. of iterations

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Conventional

TSM 2

0

1000

2000

3000

4000

5000

6000

7000

8000

10
×10

20
×15

20
×25

25
×25

25
×30

35
×35

35
×40

40
×40

45
×40

50
×50

No. of iterations

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Conventional

TSM 2

(b)(a)

(c) (d)

(e) (f)

Fig. 8. Sheduling results. (a) Transmission lines, (b) infinite impulse filter, (c) wave digital filter, (d) Floyd–Steinberg algorithm, (e) model A, (f) model

B.

Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170 161
single iteration, its speedup will be restricted by the

essential parallelism of the application. However, TSM
allocates iterations to every DSP instead of operations,

and its speedup will not be restricted. Therefore,

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8
No. of DSPs

sp
ee

du
p

Conventional

TSM 1

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8
No. of DSPs

sp
ee

du
p

Conventional

TSM 2

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

No. of DSPs

sp
ee

du
p

Conventional

TSM 1

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

No. of DSPs

sp
ee

du
p

Conventional

TSM 2

0

2

4

6

8

1 2 3 4 5 6 7 8

No. of DSPs

sp
ee

du
p

Conventional

TSM 2

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8
No. of DSPs

sp
ee

du
p

Conventional

TSM 2

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Speedup results. (a) Transmission lines, (b) infinite impulse filter, (c) wave digital filter, (d) Floyd–Steinberg algorithm, (e) model A, (f) model

B.

162 Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170
although the exact speedup value of TSM may be

smaller, it can achieve better speedup performance for

larger system sizes.

3.3.4. Formal evaluation

In the following, we analyze formulas (3.1)–(3.3)

using a formal approach. In total there are 15 variables,

and we partition them into two groups by considering
their features. The first group contains variables

ðN ; k;w;m; nÞ, which can be obtained directly once the

input problem and system architecture have been spec-

ified. Others belong to the second group, which are

calculated based on the behavior of the problem, the

applied scheduling method, and the first group vari-

ables. We add a new variable Ops to represent the

number of operations in a single iteration, and list the
approximate values of these 16 variables in Table 2.
We rewrite formulas (3.1), (3.2), and (3.4) as follows

using Table 2:

execution time of conventional methods

¼ mn� Ops=Nd e ð3:5Þ

execution time of TSM1 ¼ mn=N � Ops=kd e ð3:6Þ

execution time of TSM2 ¼ ðA� Bþ C2BÞ � Ops=kd e
ð3:7Þ

where variable A is the result calculated from formula

(3.3), and variable B equals to dðkÞNwð1 þ dðkÞÞ
For a specific system architecture, results calculated

from formulas (3.6) and (3.7) are, in general, smaller

than (3.5). It means that TSM can usually achieve

shorter execution times for a given architecture. As

Table 2

Variables and their approximate values

Variable Approximate value Comments

N , k, w, m, n N , k, w, m, n Obtains directly from the input problem and system architecture

List(N) C1 � lengthðNÞ C1;C2 are constants ðC1;C2 P 1Þ
List(k) C2 � lengthðkÞ
Length(N) Ceiling (Ops/N) Assumes that all resources are fully utilized

Length(k) Ceiling (Ops/k)

dðNÞ dðNÞ Unpredictable from the input problem and system architecture

dðkÞ dðkÞ
Prologue(N) 0:5 � dðNÞlengthðNÞ dðNÞ iterations are moved into prologue and epilogue

Epilogue(N) 0:5 � dðNÞlengthðNÞ) prologueðNÞ þ epilogueðNÞP dðNÞlengthðNÞ
Prologue(k) 0:5 � dðkÞlengthðkÞ dðkÞ iterations are moved into prologue and epilogue

Epilogue(k) 0:5 � dðkÞlengthðkÞ) prologueðkÞ þ epilogueðkÞP dðkÞlengthðkÞ

Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170 163
variable N increases, because formulas (3.6) and (3.7)

will not be restricted by variable Ops, TSM could

achieve scalable speedup results. Finally, if variable k
increases, the execution time with conventional methods

cannot be decreased, but with TSM, it can be. The

reason is conventional methods always allocate only one

operation to a DSP for each time unit, but TSM allo-

cates more. This analysis is consistent with evaluation
results in Section 3.3.3.

3.4. Summary

We briefly summarize advantages and disadvantages

of TSM. Obviously TSM can achieve better function

unit utilization and performance in terms of execution

time and speedup. Furthermore, since TSM uses both
unimodular transformations and conventional single

DSP scheduling, it can simultaneously exploit the degree

to which the program can be made parallel and

instruction-level parallelism.

But TSM still has some potential problems. From the

definition of retiming technique, it requires several

consecutive iterations to redistribute operations. In

TSM, however, if the nested loop is transformed, barrier
sections at the beginning and end cannot apply retiming

technique because they will not contain enough itera-

tions.

In view of this problem, loop tiling technique seems

useful. Given a nested loop, this technique will divide its

iteration space into tiles contained consecutive itera-
(a)

Fig. 10. Iteration spaces with
tions. Therefore, if we allocate tiles to a DSP instead of

iterations, the retiming technique can always be applied

in TSM.
4. Two-level scheduling method with loop tiling

The second approach of TSM is the two-level sched-
uling method with loop tiling (TSMLT). We still use a

nested loop of depth two and the architecture features

defined above to explain and analyze TSMLT. Similarly

to TSM, TSMLT also can be easily extended to cover

nested loops with depths greater than two.

4.1. Loop tiling steps

Notice that not any nested loop can be tiled. If two

iterations A and B contains dependency with distance

(a;�b) for a; b > 0, Fig. 10 shows the dependency will be

violated after loop tiling. Algorithm LT listed in Fig. 11

is designed to remove such dependencies.

We also need to select the appropriate tile size. The

tile size can be obtained by any one of proposed method,

and we simply assume it is P � Q, where P and Q are
positive integers. WLOG, we let P � QP d because d is

usually smaller. After loop tiling, algorithm TD listed in

Fig. 12 is used to transfer intra-tile (original) depen-

dencies to inter-tile dependencies. The tiled nested loop

and iteration space with tile size 4 · 3 are shown in Fig.

13.
(b)

and without loop tiling.

Fig. 12. Pseudo codes of algorithm TD.

Fig. 11. Pseudo codes of algorithm LT.

for k = 1 to m by 4 begin
for i = k to min (m, k+4–1) begin

for l = 1 to n by 3 begin
for j = l to min (n, l+3–1) begin
 D [i, j] = B [i–1, j] × C [i–1, j–2] ;
 A [i, j] = D [i, j] × 0.5 ;
 B [i, j] = A [i, j] + 1 ;
 C [i, j] = A [i, j–1] + 2 ;

end
end

end
(a) (b)

4, 4

4, 3

4, 2

4, 1

3, 4

3, 3

3, 2

3, 1

2, 4

2, 3

2, 2

2, 1

1, 4

1, 3

1, 2

1, 1

end

l

k

Fig. 13. The tiled nested loop and iteration space of nested loop in Fig. 1(a).

164 Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170
4.2. Main stages of two-level scheduling method with loop

tiling

Given a nested loop with depth two, the process of

TSMLT contains three main stages. The first stage is to

tile the nested loop. The second stage is to parallelize

and allocate tiles to every DSP, and the final stage is to
achieve the scheduling goals for each DSP. All steps of
the first stage are shown in Section 4.1, and we explain

other two stages in detail as follows.

Essentially, the process of second and third stages of

TSMLT is the same as for TSM, using the tile instead of

the iteration. In the second stage, although algorithm LP
can be applied directly to parallelize tiles, it can be

simplified to algorithm TP listed in Fig. 14 by ignoring
dependency with distance ða;�bÞ, a; b > 0.

Fig. 14. Pseudo codes of algorithm TP.

Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170 165
For convenience, we use the same mechanism as
TSM to allocate tiles to every DSP in TSMLT. Simi-

larly, tiles inside each barrier section are independent

and any appropriate single DSP scheduling method can

be applied. We still use the nested loop in Fig. 1(a), with

variables ðm; n; P ;QÞ equal (8, 7, 4, 3), as an example.

Suppose that there are four DSPs, Fig. 15 shows its

parallelized iteration space and allocation result. Fig. 16

contains the entire algorithm TSMLT.

4.3. Preliminary performance analysis

In the following, we analyze TSMLT using the same

analytical model as above. Variable definitions, input

nested loop, and system architecture are all as in Section

3.3. After tiling a nested loop with tile size P � Q, it is

clear that not all tiles contain exactly P � Q iterations.
Although some tiles may be smaller, for convenience we

assume all contain P � Q iterations. Hence, analysis

result in this section can be treated as the worst case, and

the actual execution time is not greater to it.
Fig. 15. (a) Parallelized iteration spac

1 þ m0�1
N

j k� �
� m0�1

N

j k
� N þ m0�1

N

l m
� ððm0 � 1Þmod NÞ �

1 þ n0

N

j k� �
� n0

N

j k
� N þ n0

N

l m
� ðn0mod NÞ � 2 þ ðm0 � n0 �

�ðn0 þ 1Þ � ðm0 � n0 � 1Þ � n0þ1
N

l m
� n0

N

l m� �

8>>><
>>>:
4.3.1. Preliminary analysis

Basically, TSMLT can be classified into four cases

according to whether the nested loop is directly tiled or

not and the tiles parallelized or not. However, generally

the intra-tile dependency distance is smaller than the tile

size in each dimension, so inter-tile dependencies with

distances (1, 0) and (0, 1) are always be generated.

Therefore, we classify TSMLT into two cases just based

on whether the nested loop is tiled directly or not, and

assume the result of algorithm TP is always
1 1

1 0

� �
.

TSMLT1 means that the nested loop can be tiled
directly. This case is similar to TSM2, but using tiles

instead of iterations. Use of Lemmas 4.1 and 4.2 gives

the execution time of TMLT1.
Lemma 4.1. After applying TSMLT and the transforma-
tion matrix T obtained from algorithm LT is identity, the
number of tiles executed by DSP1 is
e, (b) allocation result of tiles.

2 þ m0

N

l m
� ðn0 � m0 þ 1Þ if m0

6 n0

1Þ � n0þ1
N

l m
if m0 > n0

ð4:1Þ

Fig. 16. Pseudo codes of algorithm TSMLT.

166 Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170
where variables ðm0; n0Þ equal ð m=Pd e; n=Qd eÞ.

Proof. After loop tiling it will contains m=Pd e � n=Qd e
tiles. Because the transformation matrix T 0 obtained

from algorithm TP is always
1 1

1 0

� �
and we use similar

allocating mechanism as TSM, this situation is similar
to Lemma 3.3. Hence, we inherit the result from formula

(3.3) and use variables ðm0; n0;wÞ instead of ðm; n; 1Þ. h

Lemma 4.2. After applying TSMLT and the transfor-
mation matrix T obtained from algorithm LT is identity,
its execution time is
ðprologueðkÞ þ epilogueðkÞÞ � ðm0 þ n01Þ

þ lengthðkÞ � ½APQ� dðkÞðm0 þ n0 � 1Þ� ð4:2Þ
where variables ðm0; n0Þ equal ð m=Pd e, n=Qd eÞ, and A is
the number of tiles executed by DSP1 calculated from
formula (4.1).

Proof. As in Lemma 3.4, the number of tiles allocated to

DSP1 are obtained from formula (4.2) and represented

by A. These tiles are partitioned into m0 þ n0 � 1 barrier

sections with unequal numbers of independent tiles.

Since we assume that P � QP dðkÞ, the retiming tech-
Fig. 17. Irregular t
nique can be applied in every barrier section. Clearly

therefore, the entire execution time of this case can be

calculated by formula (4.2). h

TSMLT2 is the most complex because the nested

loop must be skewed twice and permutated. Unfortu-

nately, as shown in Fig. 17(a), tiles may not form a

regular parallelogram after the first skewing and tiling.

In other words, its slope (skew factor) is not a constant,

so we cannot calculate exactly the number of tiles allo-
cated to DSP1. For this problem, we must determine a

constant skew factor to estimate this irregular tiling re-

sult. If we can obtain this constant skew factor, this case

will be reduced to the previous case and results of

Lemmas 4.1 and 4.2 can be used immediately.

We have tried two methods. First we intuitively set the

final skew factor equal to the maximum slope value, but

the estimated tiling result was very different from the real
iteration space as shown in Fig. 17(b). Second we selected

the average slope value even if it was fractional. As shown

in Fig. 17(c), this estimated tiling result is much more

realistic. Notice that we simply use this average skew

factor to represent an irregular parallelogram; the original

tiling result is not changed. We choose the later method

and use Lemma 4.3 to calculate the average skew factor.
iling results.

Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170 167
Lemma 4.3. Applying TSMLT and supposing that the
nested loop must be skewed with factor w, w > 0, before
tiling. After allocating tiles to every DSP, the average
skew factor of the irregular tiling result is mwþ 1�d
w=Qe � 2= m=pd e � 1.

Proof. We select iterations (1, 1) and (m, 1) in the ori-

ginal nested loop to calculate the average skew factor.

After loop tiling, these two iterations will reside in tiles

(1, 1) and m=Pd e; mwþ 1 � w=Qd eð Þ. Then, after paral-

lelizing tiles, they are shifted to tiles (1, 2) and

m=Pd e; mwþ 1 � w=Qd e þ m=Pd eð Þ. Hence, the average

skew factor is mwþ 1 � w=Qd e þ m=Pd e � 2= m=Pd e � 1,

which is calculated from the distance between these two
tiles.

Using the constant skew factor from Lemma 4.3, we

can analyze TSMLT2 by a similar method to the pre-

vious one. Although this result is not exact, its inaccu-

racy may be tolerated because the estimated tiling result

is realistic enough. Lemmas 4.4 and 4.5 give the execu-

tion time of TSMLT2. h

Lemma 4.4. Applying TSMLT and the transformation

matrix T obtained from algorithm LT is
w 1

1 0

� �
, wP 0,

the number of tiles executed by DSP1 is
1 þ m0�1
N

j k� �
� m0�1

N

j k
� Nw0 þ m0�1

N

l m
� ððm0w0 � w0Þmod Nw0Þ � 2 þ m0

N

l m
�ðw0 þ n0 � m0w0Þ if w0m0 þ 16w0 þ n0

1 þ n0

Nw0

j k� �
� n0

Nw0

j k
� Nw0 þ n0

Nw0

l m
� ðn0mod Nw0Þ � 2 þ A� Bþ1

N

� �
� C � A

w0

j k
þ minðC;DÞ

� �
� Bþ1

N

� �
� B

N

� �� �
if w0m0 þ 1 > w0 þ n0

8>>>>><
>>>>>:

ð4:3Þ
where variables ðm0; n0;w0;A;B;C;DÞ equal m=Pd e;ð
n=Qd e; mwþ 1 � w=Qd e þ m=Pd e � 2= m=Pd e � 1;m0w0�
w0 � n0; n0=w0b c; ðn0 þ 1Þmod w0;Amod w0Þ.

Proof. As in Lemma 4.1, we obtain formula (4.3) from

formula (3.3) and use the variables ðm0; n0;w0Þ defined

above in place of ðm; n;wÞ. h

Lemma 4.5. Applying TSMLT and the transformation

matrix T obtained from algorithm LT is
w 1

1 0

� �
, wP 0,

its execution time is

ðprologueðkÞ þ epilogueðkÞÞ � ðm0 þ n0 � w0Þ
þ lengthðkÞ � ½APQ� dðkÞðm0 þ n0 � w0Þ� ð4:4Þ

where variables ðm0; n0;w0Þ equal m=Pd e; n=Qd e;ð
mwþ 1 � w=Qd e þ m=Pd e � 2= m=Pd e � 1Þ, and A is the
number of tiles executed by DSP1 calculated from for-
mula (4.3).

Proof. This proof is the same as for Lemma 4.2. h

4.3.2. Experimental results

In the following, we use the same examples and

architectures as in Section 3.3.3 to compare conven-

tional methods, TSM, and TSMLT. From Fig. 18,

TSMLT outperforms conventional method but not so

clear-cut with TSM. The main reason is that although

retiming technique can always be applied in TSMLT,

more iterations will be allocated to DSP1. This situation

will lower the function unit utilization and lengthen the
execution time. Due to this tradeoff, performance

improvement between TSM and TSMLT becomes

uncertain. Based on our observations, if both dðkÞ and

the skewing factor from algorithm LP are large,

TSMLT performs better.

In Fig. 18, we also consider results for different tile

sizes. Usually, smaller tile sizes achieve better perfor-

mance. It is consistent with the tradeoff mentioned
above, because smaller tile size allows more even allo-

cation of tiles (iterations). Speedup results of TSMLT

shown in Fig. 19 are similar to those shown in Fig. 12.
4.3.3. Formal evaluation

We analyze TSMLT in the same manner as in Section

3.3.4. Formulas (4.2) and (4.4) can be rewritten using the

approximate values of variables listed in Table 2:

execution time of TSMLT1 ¼ APQ� Ops=kd e ð4:5Þ
where variable A is the result calculated from formula

(4.1).

execution time of TSMLT2 ¼ APQ� Ops=kd e ð4:6Þ
where variable A is the result calculated from formula

(4.3).

It is interesting that formulas (4.5) and (4.6) are

similar. Comparing to formula (3.5), TSMLT usually

can obtain shorter execution time with specific archi-

tecture. Speedup results of TSMLT are also more scal-
able for similar reasons as for TSM, no matter how

much we increase N or k. The comparison between TSM

0

1000

2000

3000

4000

5000

6000

7000

8000

10
×10

20
×15

20
×25

25
×25

25
×30

35
×35

35
×40

40
×40

45
×40

50
×50

No. of iterations

ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Conventional
TSM 1
TSMLT 2 (7 × 7)
TSMLT 2 (5 × 5)
TSMLT 2 (3 × 3)

0

2000

4000

6000

8000

10000

12000

10
×10

20
×15

20
×25

25
×25

25
×30

35
×35

35
×40

40
×40

45
×40

50
×50

No. of iterations

ex
ec

ut
io

n
ti

m
e

(c
yc

le
s)

Conventional
TSM 2
TSMLT 1 (7 × 7)
TSMLT 1 (5 × 5)
TSMLT 1 (3 × 3)

0

500

1000

1500

2000

2500

3000

10
×10

20
×15

20
×25

25
×25

25
×30

35
×35

35
×40

40
×40

45
×40

50
×50

No. of iterations

ex
ec

ut
io

n
ti

m
e

(c
yc

le
s)

Conventional
TSM 1
TSMLT 2 (7 × 7)
TSMLT 2 (5 × 5)
TSMLT 2 (3 × 3)

0

5000

10000

15000

20000

25000

10
×10

20
×15

20
×25

25
×25

25
×30

35
×35

35
×40

40
×40

45
×40

50
×50

No. of iterations

ex
ec

ut
io

n
ti

m
e

(c
yc

le
s)

Conventional
TSM 2
TSMLT 2 (7 × 7)
TSMLT 2 (5 × 5)
TSMLT 2 (3 × 3)

0

1000

2000

3000

4000

5000

6000

10
×10

20
×15

20
×25

25
×25

25
×30

35
×35

35
×40

40
×40

45
×40

50
×50

No. of iterations

ex
ec

ut
io

n
ti

m
e

(c
yc

le
s)

Conventional
TSM 2

TSMLT 2 (7 × 7)
TSMLT 2 (5 × 5)

TSMLT 2 (3 × 3)

0

1000

2000

3000

4000

5000

6000

7000

8000

10
×10

20
×15

20
×25

25
×25

25
×30

35
×35

35
×40

40
×40

45
×40

50
×50

No. of iterations

ex
ec

ut
io

n
ti

m
e

(c
yc

le
s)

Conventional
TSM 2

TSMLT 2 (7 × 7)
TSMLT 2 (5 × 5)

TSMLT 2 (3 × 3)

(a) (b)

(c) (d)

(e) (f)

Fig. 18. Scheduling results. (a) Transmission lines, (b) infinite impulse filter, (c) wave digital filter, (d) Floyd–Steinberg algorithm, (e) model A, (f)

model B.

168 Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170
and TSMLT is uncertain, because the number of itera-

tions (tiles) allocated to DSP1 cannot be easily obtained

from above formulas. Usually, if a nested loop can be

scheduled using TSM 1, it can achieve shorter execution

time no matter it belongs to which case of TSMLT. On

the other hand, if a nested loop must be scheduled using
TSM2, and both dðkÞ and the skewing factor from
algorithm LP are large, TSMLT may have better results.

This analysis is also consistent with above evaluations.

4.4. Summary

We summarize advantages and disadvantages of
TSMLT briefly. Similar to TSM, TSMLT can achieve

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8
No. of DSPs

sp
ee

du
p

Conventional

TSM 1

TSMLT 2 (5 × 5)

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8
No. of DSPs

sp
ee

du
p

Conventional

TSM 2

TSMLT 1 (5 × 5)

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

No. of DSPs

sp
ee

du
p

Conventional

TSM 1

TSMLT 2 (5 × 5)

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

No. of DSPs

sp
ee

du
p

Conventional

TSM 2

TSMLT 2 (5 × 5)

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
No. of DSPs

sp
ee

du
p

Conventional

TSM 2

TSMLT 2 (5 × 5)

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

No. of DSPs

sp
ee

du
p

Conventional
TSM 2
TSMLT 2 (5 × 5)

(a) (b)

(c) (d)

(e) (f)

Fig. 19. Speedup results. (a) Transmission lines, (b) infinite impulse filter, (c) wave digital filter, (d) Floyd–Steinberg algorithm, (e) model A, (f) model

B.

Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170 169
higher function unit utilization, shorter execution time,

and more scalable speedup results. Parallel degree and

instruction level parallelism are also exploited. More-

over, TSMLT can takes advantage of data locality be-
cause it applies the loop tiling technique. Compared

with TSM, its performance is uncertain and may depend

on the input nested loop.

In order to simplify above analyses, we employ an

ideal model, which ignores both memory access and

synchronization overheads. However, they cannot be

entirely eliminated in real system. Thus, decreasing the

demands of synchronization and memory access are
design issues for any scheduling method.

TSM and TSMLT both predominate in synchroni-

zation overheads. It needs synchronizations after every

time unit in conventional methods, but only after every

barrier section in our methods. Since the number of

barrier sections is much less than execution time units,

our methods will cause less synchronization overheads.
As for memory access overheads our methods also

have advantages. Generally, fetching an operand from

adjacent DSPs or remote memory is much slower than

local storage. In DSP applications, we find that a vari-
able is usually defined and used in the same iteration. In

this situation, conventional methods will cause many

inter-DSP communications or remote memory accesses,

because they separate operations in the same iteration

into all DSPs. However, in TSM and TSMLT, data

transference is unnecessary within barrier section, be-

cause those iterations and tiles are independent. Thus,

our methods also can cause less memory access over-
heads.
5. Conclusions and future work

In this paper, we have proposed a two-level sched-

uling method to schedule a nested loop on DSMP, and

170 Y.-H. Lee, C. Chen / The Journal of Systems and Software 75 (2005) 155–170
use an analytical model to analyze the preliminary per-

formance. Our method contains two approaches TSM

and TSMLT, which integrate unimodular transforma-

tions, conventional scheduling method used on single

DSP, and loop tiling technique. From our analyses, both

can achieve shorter execution times, higher function unit
utilization, and more scalable speedup, and TSMLT

also advantageously use data locality. Comparing TSM

and TSMLT show that neither is always better than the

other, which may depends on the input nested loop.

Besides previously listed features, there are still sev-

eral promising issues for future research. First is the

construction of a simulation and evaluation environ-

ment. We already have an environment that can sche-
dule MDFG using some conventional methods on

DSMP. After integrating unimodular transformations

and loop tiling techniques, it will help us evaluate TSM

and TSMLT more accurately. Second is the reorgani-

zation of our methods. TSM and TSMLT combine

three methods but leave essential algorithms unchanged.

In the future, we propose designing other scheduling

methods, which preserve features but would not directly
integrate these methods.
Acknowledgements

This research was supported by the National Science

Council of the Republic of China under contract num-
ber: NSC 89-2213-E009-200.
References

Barnwell III, T.P., Gaglio, S., Price, R.M., 1978. A multi-micropro-

cessor architecture for digital signal processing. In: Proceedings of

International Conference on Parallel Processing, August.

Chao, L.F., Sha, E.H.-M., 1993. Static scheduling of uniform nested

loops. In: Proceedings of 7th International Parallel Processing

Symposium, Newport, CA, USA, April, pp. 1421–1424.

Eyre, J., Bier, J., 2000. The evolution of DSP processors. IEEE Signal

Processing Magazine 17 (2), 43–51.

Hsu, Y.C., Jeang, Y.L., 1993. Pipeline scheduling techniques in high-

level synthesis. In: Proceedings of 6th Annual IEEE International

ASIC Conference and Exhibition, Rochester, NY, USA, pp. 396–

403.

Jeng, L.G., Chen, L.G., 1994. Rate-optimal DSP synthesis by pipeline

and minimum unfolding. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 2 (1), 81–88.

Koch, P., Larsen, N., Bauer, T., Ejlersen, O., 1997. GENETICAS: A

multi-DSP scheduling technique based on genetic algorithms. In:

Proceedings of 30th Asilomar Conference on Signals, Systems and

Computers, Pacific Grove, CA, USA, vol. 2. pp. 1391–1395.

Kung, S.Y., 1988. VLSI Array Processors. Prentice Hall, Englewood,

NJ.

Lamport, L., 1974. The parallel execution of DO loops. Commun.

ACM SIGPLAN 17 (2), 82–93.
Lee, Y.H., Tsai, M.L., Chen, C., 2001. RPUSM: An effective

instruction scheduling method for nested loops. In: Proceedings

of National Computer Symposium, Workshop on Computer

Architecture and Parallel Systems, Taiwan, December, pp. C025–

C036.

Leiserson, C.E., Saxe, J.B., 1991. Retiming synchronous circuitry.

Algorithmica 6 (1), 5–35.

Madisetti, V.K., 1995. VLSI Digital Signal Processors: An Introduc-

tion to Rapid Prototyping and Design Synthesis. Butterworth-

Heinemann, Boston.

Man, H., Rabaey, J., Six, P., Claesen, L.J., 1986. Cathedral-II: a

silicon compiler for digital signal processing. IEEE Design and Test

3 (6), 13–25.

Parhi, K.K., 1999. VLSI Digital Signal Processing Systems: Design

and Implementation. Wiley Inter-Science, New York.

Passos, N.L., Sha, E.H.-M., 1996. Achieving full parallelism using

multi-dimensional retiming. IEEE Transactions on Parallel and

Distributed Systems 7 (11), 1150–1163.

Passos, N.L., Sha, E.H.-M., 1998. Scheduling of uniform multi-

dimensional systems under resource constraints. IEEE Transac-

tions on VLSI Systems 6 (4), 719–730.

Passos, N.L., Sha, E.H.-M., Chao, L.F., 1995. Optimizing synchro-

nous systems for multi-dimensional applications. In: Proceedings

of European Design and Test Conference, pp. 54–58.

Shatnawi, A., Ahmad, M.O., Swamy, M.N.S., 1999. Scheduling of

DSP data flow graphs onto multiprocessors for maximum

throughput. In: Proceedings of IEEE International Symposium

on Circuits and Systems, Orlando, FL, USA, vol. 6. pp. 386–389.

Simar, R. Jr., 1998. Codevelopment of the TMS320C6x VelociTI

architecture and compiler. In: Proceedings of IEEE International

Conference on Acoustics, Speech, and Signal Processing, Seattle,

WA, USA, vol. 5. pp. 3145–3148.

Tongsima, S., Sha, E.H.-M., Passos, N.L., 1997. Communication-

sensitive loop scheduling for DSP applications. IEEE Transactions

on Signal Processing 45 (5), 1309–1322.

Wolf, M.E., Lam, M.S., 1991. A loop transformation theory and an

algorithm to maximize parallelism. IEEE Transactions on Parallel

and Distributed Systems 2 (4), 452–471.

Wolfe, M., 1996. High Performance Compilers for Parallel Comput-

ing. Addison-Wesley, Redwood City, CA, USA.

Yu, T.Z., Sha, E.H.-M., Passos, N.L., Ju, R., 1997. Algorithm and

hardware support for branch anticipation. In: Proceedings of IEEE

Great Lakes Symposium on VLSI, pp. 163–168.

Cheng Chen is a professor in the Department of Computer Science and
Information Engineering at National Chiao Tung University, Taiwan,
ROC. He received his B.S. degree from the Tatung Institute of Tech-
nology, Taiwan, ROC in 1969 and M.S. degree from the National
Chiao Tung University, Taiwan, ROC in 1971, both in electrical
engineering. Since 1972, he has been on the faculty of National Chiao
Tung University, Taiwan, ROC. From 1980 to 1987, he was a visiting
scholar at the University of Illinois at Urbana Champaign. During
1987 and 1988, he served as the chairman of the Department of
Computer Science and Information Engineering at the National Chiao
Tung University. From 1988 to 1989, he was a visiting scholar of the
Carnegie Mellon University (CMU). Between 1990 and 1994, he served
as the deputy director of the Microelectronics and Information Sys-
tems Research Center (MISC) in National Chiao Tung University. His
current research interests include computer architecture, parallel pro-
cessing system design, parallelizing compiler techniques, and high
performance video server design.

Yi-Hsuan Lee is a Ph.D. candidate in Computer Science and Infor-
mation Engineering at National Chiao Tung University, Taiwan,
ROC. She received her B.S. degree in Computer Science and Infor-
mation Engineering at National Chiao Tung University, Taiwan, ROC
in 1999. Her current research interests include computer architecture,
parallelizing compiler techniques, multi-processor scheduling problem,
task scheduling for heterogeneous systems, and scheduling problem in
DSP architecture.

	A two-level scheduling method: an effective parallelizing technique for uniform nested loops on a DSP multiprocessor
	Introduction
	Fundamentals and background
	Modeling the problem (Passos and Sha, 1996, 1998)
	Retiming an MDFG (Leiserson and Saxe, 1991)
	Loop transformations (Wolf and Lam, 1991; Wolfe, 1996)

	Two-level scheduling method
	Problem definition
	Main stages of two-level scheduling method
	Preliminary performance analysis
	Basic principles
	Preliminary analysis
	Experimental results
	Formal evaluation

	Summary

	Two-level scheduling method with loop tiling
	Loop tiling steps
	Main stages of two-level scheduling method with loop tiling
	Preliminary performance analysis
	Preliminary analysis
	Experimental results
	Formal evaluation

	Summary

	Conclusions and future work
	Acknowledgements
	References

