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Abstract 

A new first-order system formulation for the linear elasticity problem in displacement-stress form is proposed. The 
formulation is derived by introducing additional variables of derivatives of the displacements, whose combinations represent 
the usual stresses. Standard and weighted least-squares finite element methods are then applied to this extended system. 
These methods offer certain advantages such as that they need not satisfy the inf-sup condition which is required in the 
mixed finite element formulation, that a single continuous piecewise polynomial space can be used for the approximation of 
all the unknowns, that the resulting algebraic systems are symmetric and positive definite, and that accurate approximations 
of the displacements and the stresses can be obtained simultaneously. With displacement boundary conditions, it is shown 
that both methods achieve optimal rates of convergence in the HI-norm and in the if-norm for all the unknowns. 
Numerical experiments with various Poisson ratios are given to demonstrate the theoretical error estimates. 
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1. Introduction 

Over the past decade, increasing attention has been drawn to the use of  least-squares principles in 
connection with finite element applications in the field of  computational fluid dynamics (see, e.g., [4, 
9, 10, 19, 22-26, 36], etc.). In this paper, we attempt to apply the methodology to develop two least- 
squares finite element methods for approximating the solution to the following two-dimensional linear 
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elasticity problem [13, 27] 

-ItAu - (2 + p)V'(!7, u) = f 
u = 0  on Fo, 

2 

Z aiJ(u)nJ = gi 
j-1 

with the following notation: 

in f2, (1.1) 

(1.2) 

on El, i = 1 , 2  (1.3) 

• f2 C ~2 is a bounded domain representing the region occupied by an elastic body. 
• ¢3f2 -- F0 tA F~ is the smooth boundary of f2 partitioned into two disjoint parts F0 and F~ with the 

measure of  F0 being strictly positive. 
• #, 2 are the Lam6 coefficients where 

E 
p -  - - > 0  

2(1 + v) 

with v the Poisson ratio, 0 < v < 0.5, and E the Young modulus and 

Ev 
2 =  >0.  

(1 + v)(1 - 2v) 

The upper limit of  the Poisson ratio, v ~ 0.5-, corresponds to an incompressible material. 
• u - - ( u l , u 2 )  T is the displacement vector field. 
• f = (f~, f2)T is the density of a body force acting on the body. 
• g - - (g l ,g2)  T is the density of a surface force acting o n  F 1. 

• n = (nl,nz) T is the outward unit normal vector to ¢3f2. 
• oij(u) are the stresses defined by 

aij(U)=a:i(U)=2 ( ~ Skk(U)) rij + l <~i, j<~2. 

• e~i(U ) are the strains with 

(Oju~ + Oeuj), 1 <.i, j<.2. c , / ( u )  = c ~ i ( u )  = 

• 6ij is the Kronecker symbol so that 6ij = 0 if i ¢ j ,  and ,5ij = 1 when i = j .  
In the analysis of  structural mechanics, the knowledge of the stresses a,j (strains cij) is often of 

greater interest than the knowledge of the displacements ui. It is well known that the approximation 
of  the stresses can be recovered from the displacements by postprocessing in the standard finite 
element formulation for solving problem (1.1)-(1.3). From a numerical point of  view, however, their 
computation requires the derivatives of  the displacement field u which implies a loss of  precision. 
Thus, the most widely used approach for obtaining a better approximation of the stresses is based 
on the mixed finite element formulation which allows the stresses as new variables along with the 
primary variables (see [13] and many references therein). Consequently, the accurate stresses can 
be obtained directly from the discretized problem. Unfortunately, the approximation spaces in the 
mixed method must be required to satisfy the inf-sup condition which precludes the application of  
many seemingly natural finite elements. 
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We provide herein an alternate way to avoid these difficulties by exploiting the least-squares prin- 
ciples on a new first-order system formulation of the elasticity problem. Introducing additional vari- 
ables of derivatives of the displacements, whose combinations represent the usual stresses (strains), 
the original system of second-order Eqs. (1.1) can be recast as an equivalent first-order square 
system in 6 equations with 6 unknowns, which is called the displacement-stress formulation here. 
The new formulation is very different from the standard one which is extensively studied in the 
mixed finite element method (see, e.g., [3, 13, 33, 34, 40, 41], etc.). We show that the first-order 
formulation is an elliptic system in the sense of Petrovski, and that, with the displacement boundary 
conditions, it satisfies the Lopatinski condition [43]. As a result, the problem can then be solved by 
using least-squares finite element methods (LSFEMs). 

The least-squares approach represents a fairly general methodology that can produce a variety of 
algorithms. In this paper, we shall consider two LSFEMs. According to the boundary treatment, the 
first method is based on the minimization of a least-squares functional that involves only the sum 
of the squared L2-norms of the residuals in the differential equations. In this case, the trial and test 
functions are required to fulfill the boundary conditions. We refer it as the standard least-squares 
finite element method (SLSFEM) (cf. [9, 14, 19, 20, 22, 24-26, 31, 32, 36, 39], etc.). The other 
is based on the minimization of a least-squares functional which consists of the sum of the squared 
L2-norms of the residuals both in the differential equations and the boundary conditions with the 
same weight h -1, where h is the mesh parameter. This method will be referred as the weighted 
least-squares finite element method (WLSFEM) (cf. [4, 5, 11, 21, 43], etc.). 

Recently, Cai, Manteuffel, and McCormick and their coworkers have developed a series of first- 
order systems least-squares (FOSLS) for the general second-order elliptic scalar equations [14, 16], 
the Stokes equations [15, 17], and the linear elasticity equations [15, 17, 18]. They have pointed out 
that one of the benefits of least-squares approach is the freedom to incorporate additional equations 
and impose additional boundary conditions as long as the system is consistent. Instead of applying 
Agmon-Douglis-Nirenberg (ADN) [1] theory, which is restricted to square systems, they use more 
direct tools of analysis for their overdetermined FOSLS (see also [31]). For example, the FOSLS 
of [17] for the elasticity equations with the pure displacement (homogeneous) boundary conditions, 
namely, (1.1) and (1.2) with /'1 = ~, consists of 11 equations and 7 unknowns. They prove that 
the FOSLS is uniformly coercive in the Poisson ratio in an Hi-norm appropriately scaled by the 
Lam6 constants. These FOSLS can be classified into the standard least-squares category mentioned 
above since the least-squares functionals involve only the sum of the squared LZ-norms (or with the 
squared H-l-norms) of the residuals in the differential equations, and thus the trial and test functions 
are required to fulfill the boundary conditions. On the other hand, our formulation for (1.1)-(1.3) 
results in a 6 x 6 FOSLS in order to stay in the regime of the ADN theory. The advantages of 
the ADN-type FOSLS are that the system is smaller and that both SLSFEM and WLSFEM can be 
applied to the system. More specifically, the trial and test functions in the WLSFEM need not satisfy 
the boundary requirements, and thus, it is more convenient for treating nonhomogeneous boundary 
conditions. Convergence results of both approximations can be established in the natural norms 
associated with the least-squares bilinear forms. Furthermore, it is shown that, with displacement 
boundary conditions, both LSFEMs achieve optimal rates of convergence in the Hi-norm and in the 
L2-norm for all the unknowns. However, we do not obtain the uniform coercivity in the Poisson 
ratio under the standard H~-norm without any scaling, although numerical results given in Section 5 
show the uniformity. 
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When compared with the classical mixed FEM formulation, the least-squares approach appears to 
require increased regularity and results in a larger system, i.e., with more equations and unknowns. 
Nevertheless, with a closer inspection, these shortcomings may be dispelled by the following im- 
portant features in practice: 
• Since the approach is not subject to the Babu~ka-Brezzi condition, more flexible finite element 

spaces can be used. In fact, a single continuous piecewise polynomial space can be used for the 
approximation of all the unknowns (cf. Section 5). 

• The resulting linear algebraic systems are symmetric and positive definite and are highly vector- 
izable and parallelizable. The approach thus admits efficient solvers such as multigrid methods 
[16] or conjugate gradient methods [35]. 

• The solution of FOSLS can be accelerated by using two-stage algorithms [6, 19] that first solve 
for the gradients of displacement (which immediately yield deformation and stress), then for the 
displacement itself (if desired), see [18]. 
The layout of the remainder of the paper is as follows. In Section 2, we propose the displacement- 

stress formulation for (1.1)-(1.3). The LSFEMs are given in Section 3, as well as their fundamen- 
tal properties. A priori error estimates with the displacement boundary conditions are derived in 
Section 4. In Section 5, some numerical results are presented to demonstrate the approach. Finally, 
some concluding remarks are addressed in Section 6. 

2. A new displacement-stress formulation 

We first rewrite the system of Eqs. (1.1) as follows: 

t3x (2 + z#)--~x + 2 fffy J - ~y # -~y  + # Ox J = f~ inI2, (2.1) 

 (0Ul 
& #ffyy + #  ~ x J - f f f y  2~-x + ( 2 + 2 # ) O y J = f 2  inf2. (2.2) 

Introducing the auxiliary variables 

~3ul 
q91 = Ox ' (2.3) 

c3u2 
q~2- ~3y' (2.4) 

¢3ul 
q93 = Oy'  (2.5) 

t3u2 
~04- OX' (2.6) 
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defined on O and letting a = 2 + 2#, we can rewrite Eqs. (2 .1)-(2 .2)  as 

& 

0 
(/~P3 + #~o4) - 7 -  (2~ol + ~o2) = f2 in f2. & oy 

(2.7) 

(2.8) 

Note that a combination of  ~oi, i = 1,2, 3, 4, can represent the usual stresses rrij, i , j  = 1,2. Also, by 
(2.3) with (2.5) and (2.4) with (2.6), we obtain the following two compatibility equations: 

0qh &P3 
0y & 

cq~o2 ~0 4 

~x 0y 

- 0 in O, ( 2 . 9 )  

- 0 in O. ( 2 . 1 0 )  

To recover the displacements, we have the equations 

~ul ~ u 2  _ 
d---X- + ~ y  ¢P~ - (P2 = 0  in f2, (2.11) 

,~Ul ,3u2 
Oy & ¢P3 + (P4 = 0 in Q. (2.12) 

Eqs. (2 .7)-(2 .12)  are the so-called displacement-stress formulation of  (1.1) and may be written 
in the matrix form 

5flU = AUx +BUy + DU = F in ~2, 

where 

A = 

D =  

- ~  - 2  0 0 0 
0 0 - #  -/~ 0 
0 0 - 1  0 0 
0 1 0 0 0 
0 0 0 0 1 
0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

- 1  - 1  0 0 0 
0 0 - 1  1 0 

0 
0 
0 
0 ' 
0 

- 1  0,/ 
o o 

- 2  
1 

B =  
0 
0 
0 

/ q~2 

U =  ~o3 
(/14 

Ul 

U2 

0 - / t  -/2 0 
- a  0 0 0 
0 0 0 0 
0 0 - 1  0 
0 0 0 0 
0 0 0 1 

/i/ A 
and F =  . 

(2.13a) 

i/ 
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The system of differential Eqs. (2.13a) will be also supplemented with the boundary conditions 
(1.2)-(1.3)  which may be written as 

( ° 0 ° ° ° 1 0  0 0 0 one0 

(~xnl)~nl  /2n2 #n2 0 00) ( g l )  
2n2 ~n2 /ml /znl 0 U = 92 on Fl. (2.15) 

The boundary condition (2.14) implies that the tangential derivatives of ui, i - -  1,2, vanish 

n2q~l - nlq~3 = 0 on Fo, 

-nl(p2 + n2q~4 = 0 on Fo, 

and also that 

nlUl +n2u2=O on Fo. 

So, we have 

(i /i/ --hi 0 n2 0 0 U = 

0 0 0 n 1 n 2 
on F0. (2.16) 

Conversely, we can show that (2.16) together with (2.3)-(2.6)  implies (2.14) as well. The boundary 
condition (2.16) will play an important role in the later theoretical error analysis. 

Rewrite (2.15) and (2.16) as the following operator form: 

~ U  = G on ~I2. (2.13b) 

It is easily seen that Eqs. (1.1) and (2.13a) are equivalent for smooth solutions. 

Theorem 2.1. u = (ul,u2)TE[C2(~)] 2 satisfies (1.1) /f  and only /f  U ---- ((#1,(#2,(#3, q94, Ul,u2)TE 
[C1(-O)] 4 x [C2(~)] 2 satisfies (2.13a). 

The existence, uniqueness, and smoothness of  the solution of  problem (1.1)-(1.3)  are well known 
(cf. [30, 29]). Therefore, in the sequel, we shall always assume that problem (2.13a/b) has a unique 
solution UE [Hi(f2)] 6 with the given functions F E  [L2(I2)] 6 and g E  [L2(F1)] 2. Our LSFEMs will be 
performed over the first-order system (2.13a/b) to obtain approximations of  the displacements and 
the stresses simultaneously. 

3. Least-squares finite element methods 

We shall require some function spaces defined on f2, F0, and F1 throughout this paper [27, 38]. The 
classical Sobolev spaces HS([2), s ~> 0 integer, L2(Fo), and L2(F1) with their associated inner products 
(', ")s,O, (', ")0,r0, (', ")0,r, and norms II'lls, , II'll0,Fo, II'll0,r, are employed. As usual, L2(O)=n°(f2). For 
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the Cartesian product spaces [ms(~c~)] 6, [L2(/-'o)] 3, and [L2(F1)] 2, the corresponding inner products 
and norms are also denoted by (., ")+,a, (', ")0,to, (', ")0,r,, and I['[[,,a, [[']10,ro, [['[[o,r, when there is no 
chance for confusion. 

Let H~(~2) be the closure of ~(f2)  for the norm [l'[[s,a, where ~(f2)  denotes the linear space of  
infinitely differentiable functions on f2 with compact support. We denote by H-s (O)  the dual space 
of  H~(f2) normed by 

lu(v)l 
Ilull-s,  - -  s u p  

Since the boundary 0f2 of  the bounded domain f2 is smooth, there exists an operator 7o : H l ( f  2) 
--'-~L2(~3(2), linear and continuous, such that 

?or = restriction of  v on ~3f2 for every vECt(O).  

The space 70(HI(f2)) is not the whole space L2(c3f2), it is denoted by H1/2(c3f2) and define its norm 
by 

ll~ll,/2,,~a = inf{l lvl l , ,~;  vESa(a), ?0v- -  ~o}, 

which makes it a Hilbert space. Its dual is denoted by H-~/e(a~2) with the norm ll'll-~/2,aa. Also, the 
associated norms of  the product spaces [H'/2(3~2)] 3 and [H-~/2(a~2)] 3 are still denoted by ]l'Ht/2,aa 
and [l'll-1/2,aa, respectively. 

We now introduce the standard and the weighted LSFEMs for solving problem (2.13a/b) in the 
following two subsections. For simplicity, we assume that G = 0 on 0g2, i.e., g = I} on /'1. 

3.1. The standard least-squares finite element method 

Let 

3 ¢rs = {VE [ol(~-~)]6; ~ V  = 0}, (3.1) 

then define a standard least-squares energy functional gs : ~Us___~ N as 

g s (v )  = £ (5¢V - F ) - ( S e V  - F).  (3.2) 

Obviously, the exact solution U E ~  s of  problem (2.13a/b) is the unique zero minimizer of  the 
functional g+ on ~s ,  i.e., 

g s ( u )  = 0 = min{gS(V); VE Vs}. (3.3) 

Applying the techniques of variations, we can find that (3.3) is equivalent to 

£ ~U.£PV = £ F.~eV, VV E~t/~+. (3.4) 

The SLSFEM for problem (2.13a/b) is therefore to determine U~ E ~ s  such that 

f ~U~.~Vh = f F.SfVh, VVhE ~t/'h+, (3.5) 
Ja J~ 
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where the finite element space ~ s  C y-s is assumed to satisfy the following approximation property. 
For any V E ~e's fq [H p+l (12)] 6, p ~> 0 integer, there exists Vh E ~/:h s such that 

[iV - Vhl10,12 + hIlV - vhl11,12<~Chp+lllVl]p+~,12, (3.6) 

with the positive constant C independent of  V and h. Throughout this paper, in any estimate or 
inequality the quantity C will denote a generic positive constant and need not necessarily be the 
same constant in different places. 

3.2. The weighted least-squares finite element method 

Similar to the standard least-squares case, we define 

y-w = [H,(12)16, (3.7) 

and define a weighted least-squares energy functional gw : y-w__+ R as 

gw(v)  = l ( . t # V  - F ) . ( S f V  - F) + h -1 f ~lV. ~V, (3.8) 
,112 aa g2 

where h is the mesh parameter. The exact solution U E ,//-w of  problem (2.13a/b) is the unique zero 
minimizer of  the weighted least-squares functional gw on ~w,  i.e., 

g w ( u )  = 0 = min{4"w(v); VE ~//'w}. (3.9) 

Taking the first variation, we can find that (3.9) is equivalent to 

VVE~//w. (3.10) 

The WLSFEM for problem (2.13a/b) is then to determine U~'E ¢h w such that 

~ U ~ . ~ V h  +h- ' f~12JIU~.~Vh=~F.~Vh,  V V h E ~  w, (3.11) 

where the finite element space ~ w  C ~ w  is also required to satisfy the following approximation 
property. For any VE .//-w N [HP+~(12)] 6, p>~0 integer, there exists Vh E ~ w  such that 

II V -- V h ll0,12 -Jr- hll v - Vh [[ 1,12 ~ Chp+l II Flip+l,12, (3.12) 

where C is a positive constant independent of  V and h. 

3.3. Some fundamental properties 

In this subsection, we shall discuss the unique solvability of  the numerical schemes (3.5), (3.11), 
and some of their fundamental properties. Before presenting these properties, it is of  interest to note 
that the trial and test functions in the WLSFEM (3.11) need not satisfy the boundary conditions. 
In contrast, in the SLSFEM (3.5), both the trial and test functions are required to fulfill the boundary 
requirements. Moreover, since the original system of  second-order Eqs. (1.1) is transformed into the 
system of first-order Eqs. (2.13a), the same C o piecewise polynomials can be used to approximate 
all the unknown functions. 



S.-Y. Yang, J.-L. LiulJournal of Computational and Applied Mathematics 87 (1997) 39-60 47 

Denote the bilinear form and the linear form in (3.4) as 

as(v, w ) =  fa&eV.~LPW, 

fs(V) = ~ V.~V,  

for all V, W E ~  s. Then (3.4) and (3.5) can be rewritten as 

aS(U, V)- -  fs(V), VVC~//~s, 

and 

aS(U~,Vh)=Ys(Vh), VVhe~h ~, 

respectively. Similarly, denote the bilinear form and the linear form in (3.10) as 

aW(V, W)= __~ £#V.SfW + h-1 _vf ~lv" ~lV, 

(w(v)= faF.ZPV, 

for all V, WE~/w. Then (3.10) and (3.11) can be rewritten as 

aW(U, V) = ~w(v), VVE~ ~w, 

and 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Theorem 3.1. Let U E [ H I ( ~ r ~ ) ]  6 be the exact solution of (2.13a/b) with the given functions FC 
[L2(f2)] 6 and G = O. 

(i) Problem (3.16) has a unique solution U~ C ~h s which satisfies the following stability estimate 

II u llas IlFIIo, . (3.23) 

(ii) The matrix of the linear system associated with problem (3.16) is symmetric and positive 
definite. 

(iii) The following orthogonality relation holds 

aS(U - U~, Vh)=O, 'qVhE ~e"hs. (3.24) 

aW(U~,Fh)=fW(Vh), VVhE~h w, (3.20) 

respectively. 
It is clear that aS( ., .) and aW( ., .) define inner products on ~e ~s × ~ s  and ~e ~w × ~w,  respectively, 

since the positive-definiteness is implied by the fact that the problem (2.13a/b) possesses the unique 
solution U = 0 for F = 0 and G = 0. Denote the associated norms as 

II wllo  = {as(v,v)} 1/2, ~/vE3vs, (3.21) 

[[VNaw = {aW(V, V)} ~/z, VVE'U w. (3.22) 

We first state the fundamental properties of  the SLSFEM (3.16). 
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][U - U~[Ia~ ~ChPi[f[Ip+,,o. 

(iv) The approximate solution U~ is a best approximation o f  U in the II.[[~-norm, 

I I f - u ~ l l ~ =  inf I lu-Vhll~.  (3.25) 

(v) I f  Uc[Hp+I((2)] 6, p>>-O integer, then there exists a positive constant C independent o f  h 
such that 

(3.26) 

Proof. To prove the unique solvability, it suffices to prove the uniqueness of solution since the 
finite dimensionality of ~h s. Let U~ be a solution of (3.16) then, by the Cauchy-Schwarz inequality, 

u~ Ilas -- a (u~, u~) = (F, ~q~U~)0,o 

~< IIFII0,~ll-~U~ll0,~ 
<. IIFIIo,~IIU~Ilos. 

Thus, we obtain (3.23). Consequently, the solution U~ of (3.16) is unique. 
Assertion (ii) follows from the fact that the bilinear form aS( ., -) is symmetric and positive definite. 
To prove (iii), subtracting Eq. (3.16) from Eq. (3.15), we get (3.24). 
To prove (iv), by (3.24) and the Cauchy-Schwarz inequality, 

II u - ush t2a, = aS( U - U2, U - U~) 

= a s ( u -  U L u -  zh), V V h E ~  s 

<~ [ ] u -  U~JJasllU- VhJJas. 

Thus, we have (3.25). 
Finally, assume that UE[HP+l(f2)] 6. Let VhE~h ~ such that (3.6) holds with V replaced by U. 

Then, by (3.25), we have 

I I u -  u~llos ~ I IU-  Vhlla~ <. Cll U - vhll~,o <. fhpllU[[p+~,o. 

In the second inequality above, we use the fact that ~q~ is a first-order differential operator with 
constant coefficients. [] 

Similarly, we have the following results for the WLSFEM (3.20). 

Theorem 3.2. Let  UE[HI(~c~)] 6 be the exact solution o f  (2.13a/b) with the 9iven functions F E  
[L2(g2)] 6 and G = O. 

(i) Problem (3.20) has a unique solution U~ E ~h w which satisfies the followin9 stability estimate: 

{[ U~i{aw ~ ][F[{0,a. (3.27) 

(ii) The matrix o f  the linear system associated with problem (3.20) is symmetric and positive 
definite. 

(iii) The followin9 orthogonality relation holds 

aW(U - UhW, Vh)=0, VVhE~h w. (3.28) 
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(iv) The approximate solution U~ is a best approximation of  U in the [[.[[aw-norm, that is, 

IIU - v;'llow -- inf [ [ u -  Vhll#.. (3.29) 
VhE ~ 

(v) I f  UE[HP+I(~-2)] 6, p>>-O integer, then there exists a positive constant C independent of  h 
such that 

IIu - g2 ' l l~  <~Ch"llvll~÷l,,~. (3.30) 

I I u -  v~llo, o~ 
~< 

Thus, 

Proof. The proofs for ( i)-( iv) are similar to the standard least-squares case. For proving part (v), 
we need the following result whose proof can be found in [12]: there exists a positive constant C 
such that, for any VE[HI (~ ) ]  6 and any 8>0, 

"V"o,o~ <, C @[V[[l,~ + l [lV[[o,~) . 

Taking e = h  1/2 and V replaced by U -  Vh, where VhE~h w is chosen such that (3.12) holds with V 
replaced by U, then we have 

C(hl /Z l lU - vhlll,~ + h-V=ll U - v~llo, o)  

Chp+l/2llUllp+l,w 

U~ II~w ~ IIU V~l[=aw I I U -  w 2 

= I I ~ ( U  - V ~ ) l l ~ o , ~ + h - l l l ~ ( U  - Vh)[Io, o~ 

<~ C( I IU  Vhll~.,~ + h - ~ l l U  = - - v~ll0,0~) 

<~ Ch=PlIUII%+I.,~. 

This completes the proof. [] 

As a consequence of part (v) in the above theorems, the consistency of the approximations 
follows. 

Corollary 3.3. Let U be the exact solution o f  problem (2.13a/b) with the given functions FE 
[L2(~)] 6 and G=0.  I f  UE[Hp+I(~)] 6, p>/O integer, then there exists a positive constant C 
independent o f  h such that 

[ l ~ u x  - FIIo,~ ~<Ch~llUIl~+l,~, (3.31) 

II ~eu~ w - f l l0,~ ~ Ch p II Nil ~+1,~, (3.32) 

II~Uh w - GLLo, o~ <<. Ch ~+'/211U ll p+ l,~. (3 .33)  
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4. Error analysis 

The error estimates of the previous approximations in the H’- and L2-norm are primarily based 
on the theories of ADN and of Dikanskij [28]. Our approach in exploiting these theories follows 
principally that of Wendland [43, Section 3.1, ch. 81 for two-dimensional first-order elliptic systems 
in the sense of Petrovski. The application of the theories to our problem involves some unavoidable 
difficulties concerning the Lopatinski condition if the boundary condition (2.13b) is taken to be as 
that general. For simplicity, we only consider the displacement boundary conditions 

0 -n1 0 0 0 
&?U= 0 -?I] 0 n2 0 0 

0 0 0 0 It1 n2 

4.1. A priori estimates 

on r0 = aa. (2.13b’) 

We first show that _!Z is an elliptic operator in the sense of Petrovski, and that the boundary 
operator B in (2.13b’) satisfies the Lopatinski condition. So (2.13a/b’) is a regular elliptic boundary 
value problem and then (9,9) is a Fredholm operator with zero nullity. This enables us to get the 
coercive type a priori estimates (see Theorem 4.1). 

For all (r, V)E R2 and (&r) # (0, O), 

det(&4 + @) = -(I+ + 2p2)(12 + q2)3 

# 0. 

Thus, (2.13a) is an elliptic system in the sense of Petrovski. Obviously, by taking (5, ye) = (1, 0), 
the matrix A is nonsingular and its inverse is 

-l/a 0 0 -n/c? 0 0 
0 00 100 

A-’ r 
0 0 -1 0 00 
0 -l/p 1 0 0 0 
0 00010 
0 0 0 0 0 -1 1. 

Then the original elliptic system (2.13a) can be transformed into the following form: 

U,+SU,+&J=P in 0, 

where 
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0 0 0 00 
0 0 0 00 
0 0 0 00 

-1 0 0 0 0 
0 l-100 

p = A-‘F= 

-f lb 

0 

-;2/r 
0 

0 

We now check the Lopatinski condition as follows. After elementary operations, we find that the 
eigenvalues of the matrix bT are the imaginary numbers i and -i both with multiplicities three. 
Consider the eigenvalue r+ = i in the upper half-plane, to which there exists a chain of linearly 

independent generalized eigenvectors p1 and p2 of BT defined by 

BTp, - z+p1= 0, 

BTP2 - 7+P2 =p1, 

and a third eigenvector p3 is given by 

BTp3 - z+p3 = 0, 

where 

p1 = l,l,-ei ei 0 0 T 
( > CI’X” ’ 

2P P(A-t3C1) P 
P2 = (jg0’ a(A + p) ) i(JJOS~ 

Then 

9 = (~l,~l,P2,~2~P3>~3~T 

is nonsingular. Let 
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be the inverse matrix of ,#, then 

2 =  

0 0 - ( (2  + #)/4#)i  ((2 + #)/4#)i  0 0 

1/2 1/2 ((2 + #)/4#)i  - ( (2  + #)/4#)i  0 0 

((2 + #)/4#)i  - ( (2  + #)/4#)i  (2 + #)/4# (2 + #)/4# 0 0 

- ( (2  + 3#)/4#)i ((2 + 3#)/4#)i (2 + #)/4# (2 + #)/4# 0 0 

0 0 0 0 1/2 1/2 

0 0 0 0 (1/2)i - (1/2)  i 

Now, check the following determinant: 

det 
°-nl°°°o) ) 

2 0 -n l  0 n2 0 (ql,q2,q3) 
0 0 0 0 nl n2 

= - (1/4#2)(2 + 3#)(2 + #)(hi + n2i) 3 ¢0 ,  

since (nl,n2)yL(O,O). That is, the Lopatinski condition is satisfied for the boundary conditions 
(2.13b'). 

The following estimates then follow the standard results of [43]. 

Theorem 4.1. For the boundary value problem (2.13a/b'), (2.13a) is an elliptic system in the sense 
of  Petrovski, and the boundary condition (2.13b') satisfies the Lopatinski condition. Thus, we have 
the a priori estimates: for each l>>-0 there is a constant C > 0  such that if  VE[HI+I(O)] 6, then 

(4.1) 

By an interpolation argument [28] (cf. [43, Lemma 8.2.1]), the estimate (4.1) can be extended to 
the case l / > -  1. Taking l = 1, l = 0, and l = -  1 in (4.1), we have 

II vl12,~ ~ CIl~Vll 1,K2, 

II vll,,~ ~ CI l~  vll0,~, 

II vll0,~ ~< CIl~e vll-~,o, 

II vl12,~ ~< C(ll ~Vl l  ~,,~ + lt~vll3/z,a~), 

VV E ~V's N [H2 (~"2)] 6, (4.2) 

VV E ~V S, (4.3) 

V V e ' f  s, (4.4) 

~/VE 3 V'w f-) [H2(~2)] 6, (4.5) 

Two 
FEM 

l lVlll ,~C(ll~Vllo,~ + l[~Vl11/2,0~), VVc ~'w, (4.6) 

IlVllo,~c(ll~vll-l ,~ + II~vll-1/2,0~), v v ~  w. (4.7) 

sets of estimates (4.2)-(4.4) and (4.5)-(4.7) imply, respectively, the error estimates for SLS- 
and WLSFEM in the following two subsections. 
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4.2. Error estimates for  the S L S F E M  

For the standard least-squares case, by (4.3), we have 

aS(V, V ) =  I[~evll~o,~>_.Cllv 2 I1,,~, v w c  ~s ,  (4.8) 

i.e., the bilinear form aS( • , .) is coercive on ~s.  Thus, by using the standard argument, we have 

Theorem 4.2. Let  U E~tFsM [Hp+I(Q)] 6, UhSE ~ be the solutions o f  (2.13a/b') and (3.16), respec- 
tively. Then 

1] U - Uh s [[ 1,o ~< Ch p [[ U[[p+I,Q. (4.9) 

Proof. Utilizing (4.8) and (3.24), we have 

IIV s 2 - u~ IIl,~ ~ C a S ( U  - U~ s, U - U~ s) 

= C a S ( U -  Uhs, U -  Vh), VVhEU~ 

~< C l l U -  U ; l l , , . t f u -  V~lll,~. 

Thus, 

I I U -  u~ll,,o~CllU- ~lll,~, V V h ~ .  

Taking Vh E ~//-~ such that (3.6) holds with V replaced by U, we obtain (4.9). [] 

Theorem 4.2 shows that the SLSFEM (3.16) achieves optimal convergence in the Ht-norm. 
For deriving the optimal L2-estimates, we need the following regularity assumption: assume that, 
for any V E [H01((2)] 6 and Q E [Hm(Of2)] 3, the unique solution U* of the following problem 

~EaU * = V  in f2, 
~ U *  = Q  on a~2, (4.10) 

belongs to [H 2(Q)] 6, where ~ is the displacement boundary operator (cf. (2.13b')). This assumption 
is reasonable since ~ is a first-order differential operator. 

Theorem 4.3. Let  U E ~t/~s N [Hp+I(~'~)] 6, Uh s E ~//~ be the solutions o f  (2.13a/b') and (3.16), respec- 
tively. I f  the regularity assumption of  (4.10) holds with Q = 0 ,  then 

II u - v,; IIo,~ ~ Chp+l N UIl,,+,.~. (4. l l )  

Proof. For VE[H~(~2)] 6, let U* E  [H2(O)] 6 be the solution of (4.10) with Q = 0 .  Then, 

I ( ~ ( u  - u~s), V)o,~l 

= I ( .~ (u  - u~s), ~eu*)0,~l 

= l ( S a ( U -  UhS),£*a(U * - Vh))0,nl, VVhE~U~ (by (3.24)) 
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< ~ C l l ~ ( u -  ~)l lo,~l l~(u* - ~)11o,~, v v ~  

< ~ c I I u -  ~=l l , ,~ l lu * - V~ll,,~, v v ~  

~<chl lu-  U,;lll,~llu*ll2,~, (by (3.6)) 

~<chl lu-  ~l l , ,~l l~v*l l , ,~, (by (4.2)) 

= Chl IU-  U;II,,~II VlI,,~. 

In addition, the L2-inner product (L~a(U- Uh s ), V)0, ~ defines a bounded linear functional on [H01 (f2)] 6, 
since 

I ( ~ ( u -  u;) ,  V)o,~l ~ I I~e (u -  U;)llo,~ll Vll,,~, v v  ~ [H~(a)] 6. 

Therefore, by the definition of the [[. [[_,,a-norrn, 

I l Z e ( e -  u~)l l_ , , .<.Chlle-  UhSl[1,12. (4.12) 

The proof is completed by combining (4.12), (4.4), and (4.9). [] 

4.3. Error estimates for the WLSFEM 

Following the techniques developed in [43, pp. 352-356], we shall first present the optimal 
L2-estimates and then the optimal HLestimates for the WLSFEM. 

Similar to the proof of part (v) in Theorem 3.2, we note that, for any WE[Hp+I(Q)] 6, p>~O 
integer, there exists Wh e ~//'~' such that 

II z / -  Whllaw ~< ChPll WHp+I,O, (4.13) 

where C is a positive constant independent of W and h. 

Theorem 4.4. Let U E~I/'w N [Hp+I(Q)] 6, UhwEY/'~ v be the solutions of  (2.13a/b') and (3.20), re- 
spectively. Assume that the regularity assumption of  (4.10) holds, then 

II u - v~ w II0,~-< Ch ~+~ II u]lp+l,a. (4.14) 

Proof. For V E [HI(K2)] 6, let U*E [H2(O)] 6 be the solution of (4.10) with Q = 0. Then, 

I ( ~ ( u  - u~w), v)0,~l 

= I ( ~ ( v  - v~w), ~U*)o,,~l 

= laW(U - Uh w, v*)l  

= l a w ( U  - Uhw, u * - Vh)l, V V h e ~ ; ' ,  ( by  (3 .28) )  

~< {aW(U- UhW, U -  UhW)}'/2{aW(U* - Vh, U* - Vh)} 1/2, VVh e'~(/"h v 

<Ch{aW(U- U~v ,u-  uhw)}l/2llu*llz, a (by (4.13)) 
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<<.ChhPllUI]p+I,aII~LPU*III,a (by (3.30), (4.5)) 

= Ch p+~ 11 U]lp+l,al[ Vlll,a. 

Therefore, we have 

II ~ e ( u  - u~w)l l_, ,~.< Ch '~+1 II UNp+I,(2" (4.15) 

On the other hand, take V = 0E[Hd(I2)] 6 in (4.10), then for any QE [H1/2(~3f2)] 3, 

Ih-~(~(U - UhW), a)o,~al 

_ - Ih -~(~(u  - UhW),~f*)o, ea[ 

--_ laW(U - Uh w, U*)I 

=laW(U--Uhw, u*- -Vh) l ,  V V h E ~ ,  (by (3.28)) 

~<{aW(U - Uhw, u -  UhW)} ' /2{aW(U* - Vh, U *  - Vh)} '/2, 'v'Vh E'U~' 

~C{aw(U - Uhw, u - UhW)}l/211U*ll,,~ (by (4.13)) 

<-Ch"llfllp+,,,~ll~U*lll/2,a,~ (by (3.30),(4.6)) 

= ChPllullp+~,~NOlll/2,a~. 

Thus, for any QE [H1/2(OQ)]3 w e  have 

I (~(U - UhW), O)o, aal ~< Ch p+lll ull,+,,oilall 1/2,~. 

Hence, 

I I ~ ( u  - u~w)ll_ , o ~ C h  p+I U 1 1/2 ~ I p+ ,a. (4.16) 

The proof is completed by combining (4.7), (4.15), and (4.16). [] 

Note that in the proof of Theorem 4.4, we utilize the estimate (3.30) to circumvent the use of 
the optimal HI-estimates which is not yet established. In order to give the optimal HI-estimates, 
we need to define the following Gauss projection [43]: 

~#. ~//-w ~ ~//-~v, f#W -z Wh w, (4.17) 

where Wh w is the solution of the discretized problem (3.20) corresponding to problem (2.13a/b') 
with suitable data function F such that its unique exact solution is W. Since problem (3.20) is 
uniquely solvable, the Gauss mapping is well defined, and we have 

~Vh = Vh, VVhE~//'~ v. (4.18) 

Taking p = 0  in (4.14), then we get 

II~¢ello, a--IIU~Wllo,~ 

IIUllo,~ + I Iu  - u,  hWllo,~ 

I l f l lo ,~  + Ch[tUIl~,,~. 
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Thus, we can conclude that, for any V E f-w, 

IFcvH0,o ~< II vll0,o + Chll vll,,~. (4.19) 

We also need the following inverse assumption on the finite element space 7/~': there exists a 
constant C > 0 independent of h such that 

IlVhll,,o~<Ch-lltVh/10,o, v v h c ~  v. (4.20) 

The inverse assumption is commonly used in many least-squares finite element analyses [4, 43]. 
More precisely, if the regular family {J-h} of triangulations of O associated with the finite element 
space Uh TM is quasi-uniform [27, 37], i.e., there exists a positive constant C independent of h such 
that 

h<.C diam(f2~), V g h E J h ,  ~--hE{J-h}, 

then (4.20) is satisfied. 
The optimal order of convergence for the WLSFEM in the Hi-norm is thus concluded. 

Theorem 4.5. Let UE~//~w n [Hp+I(Q)] 6, UhWE~/'~ v be the solutions of  (2.13a/b') and (3.20), re- 
spectively. Suppose that the regularity assumption of  (4.10) and the inverse assumption (4.20) 
hold, then 

IIv- v~Wll,,o~Ch~llUll~+,,o. (4.21) 

Proof. By (4.18), (4.19), and the approximation property (3.12), we have 

I I u -  U~Wll,,~ 

~< 

~< 

I I u -  VhIII,~-F IIU~ w - ~11,,,~, v v ~ '  

Ilu - ~11~,~ + II~(V - V~)ll,,~, v v ~ '  

I I v -  V h l l l , ~ + C h - l l [ f # ( V  - Vh)[Io,~, V V h E ~ '  

I IU - V~II,,~ + C h - ' { I I U  - V~llo,~ + C h J J U  - V~tll,~) 

ChP[[U]lp+,,o. [] 

5. Numerical experiments 

We shall give a simple example which will be solved by using the SLSFEM (3.16). Consider 
the displacement-stress elasticity Eq. (2.13a) supplemented with the homogeneous displacement 
boundary condition (2.13b'). Taking 12 = (0, 1 ) x (0, 1 ) and choosing 

f l  = (c¢ + #)re 2 sin(~x) sin(try) - (2 + #)rt 2 cos(rex) cosOty), 

f2 = (c¢ + p)rt 2 sin(Ttx) sin(lty) - (2 + p)rt 2 cos(rtx) cos(r~y), 
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Table 1 
The SLSFE approximations with E = 2.5 and v = 0.25 

57 

1/h Llelq0,~ RelErr Conv. rate Ilella~ RelErr Cony. rate 

2 0 .69012 2.1431-10 -1 - -  11 .5018  3.68523.10 -1 - -  
4 0 .19007  5.90235.10 -2 1.86 5 .86070 1,87780.10-1 0.97 
8 0.05076 1.57625.10 -2 1.90 2.96601 9,50326-10 -2 0.98 

16 0.01304 4.05067.10 -3 1.96 1.48868 4,76981.10 -2 0.99 
32 0 .00330  1.02456.10 -3 1.98 0.74511 2,38739.10 -2 1.00 

Table 2 
Rates of convergence in the aS-norm with E = 2.5 

1/h v = 0.05 v = 0.15 v -- 0.35 v = 0.45 v = 0.49 v = 0.499 v = 0.4999 

2 . . . . . . .  

4 0.98 0.98 0.96 0.93 0.90 0.90 0.89 
8 0.99 0.99 0.98 0.96 0.95 0.95 0.95 

16 1.00 1.00 0.99 0.99 0.98 0.98 0.98 
32 1.00 1.00 1.00 1.00 0.99 0.99 0.99 

the exact solution is then given by  

~ol = rt c o s ( n x )  s i n ( n y ) ,  

q~3 = n s i n ( n x )  c o s ( n y ) ,  

u 1 = s i n ( n x )  s i n ( n y ) ,  

q~2 = n s i n ( n x )  c o s ( n y ) ,  

(/)4 - -  ll~ c o s ( u )  s i n ( x y ) ,  

u2 = s i n ( n x )  s i n ( n y ) .  

To simplify the numerical  implementat ion,  we shall assume that the square domain  f2 is uni formly  
parti t ioned into a set o f  1/h 2 square subdomains  f2 h with side-length h. Piecewise bilinear finite 

e lements  are used to approximate  all components  o f  the exact solution. For the case o f  Po isson ' s  
ratio v = 0.25 and Y o u n g ' s  modulus  E = 2.5, the results are collected in Table 1, where e denotes 
the exact error U - Uh s and RelErr  denotes the relative error. Since the H i - n o r m  is equivalent to 
the aS-norm for the standard least-squares case, Table 1 exhibits that the SLSFEM achieves optimal  
convergence both in the LZ-norm and in the H i - n o r m  for all the components .  

The influence by  the Poisson ratio v for the behavior  o f  convergence  is also examined.  Tables  
2 and 3 show that, except  on very  coarse meshes,  the optimal  convergence is still essentially 
insured for various Poisson ratios even for nearly incompressible  elasticity. Table 4 shows that the 
convergence in the aS-norm seems to be uni form in the Poisson ratio. It is not surprising since, 
roughly speaking, the aS-norm can be v iewed as the H i - n o r m  weighted appropriately by  the Lam6 
coefficients 2 and #. However ,  we find that the situation is quite different for the full L2-norm 
case since the values largely increase when  v approaches to 0.5. Thus, one can conclude that in 
order to get opt imal  convergence in some Sobolev norm which is uniform in the Poisson ratio, the 
least-squares functionals need to be weighted appropriately by  the Lam6 coefficients (cf. [15, 17]). 
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Table 3 
Rates of convergence in the L2-norm with E = 2.5 

1/h v = 0.05 v = 0.15 v = 0.35 v = 0.45 v = 0.49 v = 0.499 v = 0.4999 

2 . . . . . . .  

4 1.82 1.83 1.85 1.57 1.47 1.45 1.45 
8 1.90 1.91 1.86 1.77 1.74 1.73 1.73 

16 1.96 1.96 1.95 1.91 1.89 1.89 1.89 
32 1.98 1.98 1.98 1.97 1.97 1.96 1.96 

Table 4 
The values of h -111ell~ II UII~ l 

1/h v = 0.05 v = 0.15 v = 0.35 v = 0.45 v = 0.49 v = 0.499 v = 0.4999 

2 0.758 0.748 0.735 0.763 0.789 0.797 0.797 
4 0.767 0.759 0.756 0.803 0.844 0.856 0.856 
8 0.774 0.767 0.768 0.824 0.874 0.889 0.890 

16 0.777 0.769 0.772 0.832 0.885 0.900 0.902 
32 0.777 0.770 0.773 0.834 0.888 0.904 0.905 

6. Concluding remarks 

In this paper, a new first-order displacement-stress formulation for the elasticity equations is 
introduced. Standard and weighted LSFEMs are proposed and analyzed. Convergence results for 
both methods are established in the natural norms associated with the least-squares bilinear forms. 
Furthermore, with the displacement boundary conditions, both the methods achieve optimal rates o f  
convergence in the H i - n o r m  and in the L2-norm for all the unknowns. Numerical  experiments with 
various Poisson ratios are given to demonstrate the theoretical analysis. 

Although it is interesting to note that the results o f  Tables 2 and 3 do not deteriorate as the Poisson 
ratio v tends to 0.5, we cannot say that the least-squares methods for the elasticity problem by using 
the new first-order system formulation avoid the locking phenomenon [2, 7, 8]. However,  utilizing the 
techniques developed in the appendix in [42] and weighting the least-squares functionals by suitable 
parameters as that in [15, 17], a theoretical verification about possible improvement  in regard to the 
locking problem based on the present first-order formulation appears to be promising. In this case, 
the auxiliary variables ( 2 . 3 ) - (2 .6 )  may be replaced by (~01 = ~ U l / ~ X  , q)2 = ~Ul /~y ,  q)3 ~ ~U2/~X ,  and 
p = - (v /1  - 2 v ) V ' .  u. This issue has become the subject o f  a separate investigation in progress. 

While the basic convergence theory derived in Section 3 works well for the system (2.13a) 
with the displacement-stress boundary conditions (2.15) and (2.16), the error estimates developed 
in Section 4 may not cover  this type o f  boundary conditions since the boundary-value problem 
(2.13a/b) with measu re (F1 )>0  does not satisfy the Lopatinski condition. However ,  it is possible to 
decompose the system (2.13a) into two subsystems. One is the stress system ( 2 . 7 ) - ( 2 . 1 0 )  and the 
other is the displacement system (2.11 ) - ( 2 . 1 2 )  or (2 .3 ) - (2 .6 ) .  The optimal convergence properties 
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for both methods may then be retained for the more general boundary conditions by means of the 
two-stage techniques [6, 18, 19]. 
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