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This study proposes quantum secret sharing protocols using product states. The first two protocols adopt the
quantum key distribution protocol using product statesfGuo et al.Phys. Rev. A64, 042301s2001dg. In these
two protocols, the sender does not reveal any information about the qutrits until confirming that each receiver
has received a qutrit. This study also considers the security and some possible eavesdropping strategies. In the
third proposed protocol, three-level Bell states are exploited for qutrit preparation via nonlocality swapping.
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I. INTRODUCTION

The problem of secret sharing is as follows. Alice, the
president of a bank, wants to give access to a vault to two
vice presidents, Bob and Charlie. Alice knows that one of
them, and only one, may be dishonest and she does not know
who is the honest one. Nevertheless, any classical secret
sharing cannot prevent an eavesdropper with unlimited
power from accessing secret bits. On the other hand, it is
believed that secret communication using quantum bits can
be absolutely secure. In quantum physics, one cannot take a
measurement without perturbing the system. That is, an
eavesdropper cannot access full information without being
detected in quantum secret communication. Recently, people
have become interested in quantum secret sharing. Hilleryet
al. introduced the quantum secret sharing protocol using
Greenberger-Horne-ZeilingersGHZd states f1g. Moreover,
Koashi and Imoto considered the correlation of the two-qubit
Bell state in their quantum secret sharing schemef2g. Ka-
rimipour et al. then proposedd-level secret sharing via en-
tanglement swappingf3g. Furthermore, Cabellos suggested a
quantum secret sharing scheme using entanglement swap-
ping between three-qubit GHZ states and two-qubit Bell
statesf4g. Also, Bagherinezhad and Karimipour introduced
the protocol for quantum secret sharing based on the reusable
GHZ states as secure carriersf5g. In addition, Hillery and
Mimih considered quantum secret sharing with restricted
classical communicationf6g. Nevertheless, the above quan-
tum secret sharing protocols cannot be implemented without
entangled states.

This study proposes some quantum secret sharing proto-
cols using product states. The obvious advantage of the first
two proposed protocols is that there is no need to prepare any
entanglement. In quantum cryptography, the nonorthogonal-
ity of the state vectors is exploited to detect any possible
eavesdropping. For example, using the BB84 or B92 proto-
cols, quantum key distribution can be performed without en-
tanglementf7,8g. Therefore, performing quantum secret shar-

ing using product states is possible. Notably, Guoet al.
considered quantum key distribution using the orthogonal
product statesf9,10g. In the protocol of Guoet al., the sender
has to prepare one of the two-qutrit bases in a complete set
hucllj:

uail ubil

uc1l = u1l u0l,

uc2l = u0l
1
Î2

su0l + u2ld,

uc3l = u0l
1
Î2

su0l − u2ld,

uc4l = u2l
1
Î2

su0l + u1ld,

uc5l = u2l
1
Î2

su0l − u1ld,

uc6l =
1
Î2

su0l + u1ld u1l,

uc7l =
1
Î2

su0l − u1ld u1l,

uc8l =
1
Î2

su1l + u2ld u2l,

uc9l =
1
Î2

su1l − u2ld u2l. s1d

This study writes the Hilbert space of the bipartite complete
set basis asHA ^ HB. That is, everyucll with state indexl can
be written asuall ^ ubll, where uallPHA and ubllPHB, re-
spectively. Bennettet al. proved that full information of an*Electronic address: lyhsu@phys.cts.nthu.edu.tw
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unknownucll is inaccessible via local operations and classi-
cal communication unless the specific joint measurement is
performedf11g. Hence, the nonlocality without entanglement
is embedded in the complete sethucilj f11g. These nonlocal
complete sets of product states are graphically illustrated in
Fig. 1. In addition, as shown in Fig. 1, indicesi, j , k, i8, j8,
andk8 can be rearranged as different nonlocal complete sets.
This study denotes the nonlocal complete sets as that in Fig.
1 by (si , j ,kd ,si8 , j8 ,k8d). For example, the complete set
hucllj can be denoted as(s0, 1, 2d,s1, 0, 2d). It is easy to
verify that (si , j ,kd ,si8 , j8 ,k8d) and (sk, j , id ,sk8 , j8 , i8d) indi-
cate the same complete set. Consequently, in the three-level
two-partite system, 18 complete sets of product states pos-
sess nonlocality without entanglement.

It is noteworthy to examine the complete set
(si , j ,kd ,si8 , j8 ,k8d). Figure 1 contains four rectangular domi-
nos: two horizontal dominos and two vertical dominos. The
two horizontal dominos in Fig. 1 are denoted bysi ± jd / i8 and
s j ±kd /k8, respectively. Similarly, the two vertical dominos in
Fig. 1 are denoted byi / s j8±k8d andk/ si8± j8d, respectively.
Obviously, these 18 nonlocal complete sets contain nine dif-
ferent horizontal dominos and nine different vertical domi-
nos. In addition, the nonlocality in the complete set
(sk, j , id ,sk8 , j8 , i8d) is preserved even if theu jl ^ u j8l state is
excludedf11g. In this study, the sender never sends states of
the u jl ^ u j8l kind. That is, the sender always sends some state
lying in some horizontal or vertical domino.

However, if the two distant parties know the order of the
local measurements, then both can access full information
via local operations and classical communication. For in-
stance, the unknown state is one of the bases in the nonlocal
complete set(si , j ,kd ,si8 , j8 ,k8d) and, moreover, the un-
known state is known to lie in one of the horizontal dominos.
To distinguish the unknown state, at first, the local measure-
ment is performed on the Hilbert spaceHB in the basishu0l,
u1l, u2lj. The conditioned local measurement then can be per-
formed on the Hilbert spaceHA. If the outcomes of the mea-
surement onHB are ui8l and uk8l, the conditioned local mea-
surements are then to be performed in the basishuil+ u jl , uil

− u jl , uklj and hu jl+ ukl , u jl− ukl , uilj, respectively. This ap-
proach is now accessible to full information via local opera-
tions and classical communication. In other words, nonlocal-
ity is embedded in the unknownorder of the local
measurements. That is, since whether an unknown state lies
in a horizontal domino or a vertical domino is unknown, the
correct order of local measurements cannot still be known.

This study proposes three quantum secret sharing proto-
cols. The first two proposed protocols are based on these
nonlocal complete sets. Reviewing the quantum key distribu-
tion protocol of Guoet al. is helpful. The protocol is as
follows f10g: s1d The sender, Alice, sends the receiver, Bob,
one qutrit of a basis state in the complete sethucllj. s2d After
receiving the qutrit, Bob informs Alice, via classical commu-
nication, that he has received the qutrit.s3d Alice sends the
other qutrit.s4d Bob performs the measurement in thehucllj
basis. The key feature of this protocol is that Alice does not
send the second qutrit before ensuring that Bob has received
the first qutrit. Thus, Eve, the eavesdropper, is incapable of
performing any joint measurement on the two sent qutrits
without being detected. However, this protocol implicitly as-
sumes that the sending order is always the same. For ex-
ample, Alice and Bob both preagree that Alicealwayssends
uallPHA in steps1d and then sendsubllPHB in steps3d. If
the Hilbert space of thehucllj basis is permuted, the complete
set(s0, 1, 2d,s1, 0, 2d) becomes another different complete set
(s2, 0, 1d,s0, 1, 2d) and vice versa. Thus, the protocol of Guo
et al. is modified as follows. Alice randomly exchanges the
sending order in stepss1d and s3d. As a result, in steps4d,
Bob does not know that the first received qutrit isuall or ubll.
Bob performs his joint measurement randomly in the basis of
the complete set either(s0, 1, 2d,s1, 0, 2d) or (s2, 0, 1d,s0, 1,
2d). In the next step, Bob must tell Alice his measurement
basis via classical communication. Alice then informs Bob
which outcomes are to be disregarded via classical commu-
nication. Significantly, Alice and Bob consider the permuta-
tion effect of the Hilbert spaces. This modified protocol is
now adaptable to be used in quantum secret sharing. In the
quantum secret sharing protocol of Hilleryet al. or Koashi
and Imoto, the three-qubit GHZ states or two-qubit Bell
states are invariant under the permutation of Hilbert space. In
effect, the eavesdropper does not have to consider the effect
of the permutation of Hilbert space. However, such an effect
is the advantage of the proposed protocol to prevent success-
ful cheating.

This paper is organized as follows. Section II considers
the effect of the permutation of Hilbert space using a simpler
protocol. Section III then explores another protocol, which is
the generalization of the protocol in Sec. II. Section IV ana-
lyzes the security and investigates some possible eavesdrop-
ping strategies on the protocols I and II. Section V discusses
the third protocol based on nonlocality swapping. Finally,
Sec. VI then draws some conclusions.

II. QUANTUM SECRET SHARING PROTOCOL
VIA PRODUCT STATE: PROTOCOL I

In the following proposed protocols, the secret is the state
index l of the prepared qubit systemucll. Since the stateu jl

FIG. 1. The complete set(si , j ,kd ,si8 , j8 ,k8d). The complete set
hucllj can represented as(s0, 1, 2d,s1, 0, 2d). There are two horizon-
tal dominos and two vertical dominos. For example, the horizontal
domino si ± jd / i8 represents two statess1/Î2dsuil+ u jld ^ ui8l and
s1/Î2dsuil− u jld ^ ui8l; the vertical dominok/ si8± j8d. This domino
represents two statess1/Î2dukl ^ sui8l+ u j8ld and s1/Î2dukl ^ sui8l
− u j8ld.
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^ u j8l is discarded, the state index of the other eight basis
vectors in the complete set(si , j ,kd ,si8 , j8 ,k8d) can be en-
coded as three bits in the binary representation. That is, the
sender splits the information of three secret bits,l, via send-
ing each receiver a qutrit—i.e., sendinguall and ubll to Bob
and Charlie, respectively. The task of the receivers is to de-
termine the state index of the transmitted two-qutrit system.
Only when the receivers access full information of the prod-
uct states do they decode the secret bits correctly. This study
now considers how to modify the quantum key distribution
of Guoet al. for quantum secret sharing. The proposed quan-
tum secret sharing protocol is as follows.

Protocol I

Preparation phase

s1d Alice creates two ordered qubit sets ofB and C,
where

B = hual1
lS1

,ual2
lS2

, . . . ,ualn
lSn

j s2d

and

C = hubl1
lS1

,ubl2
lS2

, . . . ,ubln
lSn

j. s3d

Notably, ual i
lSi

^ ubl i
lSi

is a basis vector of the complete set
either (s0, 1, 2d,s1, 0, 2d) with Si =0 or (s2, 0, 1d,s0, 1, 2d)
with Si =1. In addition, Alice permutes the element order in
setC based on the bijective functionr−1sxd:

r−1sxd = y, andrsxd Þ x ∀ x, y = 1, . . . ,n. s4d

That is, thexth element in the ordered setC now becomes
the fr−1sxdgth element. Therefore, the new ordered setC8 is

C8 = hublrs1d
lSrs1d

,ublrs2d
lSrs2d

, . . . ,ublrsnd
lSrsnd

j. s5d

s2d Alice prepares twon-bit strings b and b8. Then she
performs the three-level Hadama transformation

H = 11 1 1

1 v v2

1 v2 v
2, v = expS2pi

3
D , s6d

on ith qutrits in the setsB andC8 if the ith bits of b andb8
are 1, respectively.

s3d Each time Alice sends the qutritsA sual i
lSi

PHAd andB
sublrsid

lSrsid
PHBd to Bob and Charlie, respectively. Once Bob

and Charlie receive one qutrit, they publicly announce
the facts, respectively. Then Alice sendsual i+1

lSi+1
and

ublrsi+1d
lSrsi+1d

after she confirms their respective receptions.

s4d After sending all qutrits and confirmation, Alice an-
nounces the stringsb andb8. Bob and Charlie performH−1

on qutritsA andB for which b andb8 are 1, respectively.
s5d Alice publicly announces the functionrsmd. Eventu-

ally, Bob and Charlie sharen qutrit pairs ual i
lSi

^ ubl i
lSi

, i
=1, . . . ,n.

s6d Alice announces the informationsk,k8d of the picked
n8 qutrit pairs. Then Bob performs the measurement on
ual i

lSi
using either the basishuil , u jl , uklj or hs1/Î2dsuil

+ u jld ,s1/Î2dsuil− u jld , uklj. Charlie performs the measure-
ment on ubl i

lSi
using either the basishui8l , u j8l , uk8lj or

hs1/Î2dsui8l+ u j8ld ,s1/Î2dsui8l− u j8ld , uk8lj. They publicly an-
nounce their respective measurement results. Alice discards
the results with the outcomes of inappropriate measurement
bases. If there are too many errors for the remaining out-
comes, Alice aborts the secret. Otherwise, the othersn−n8d
qutrit pairs are used in the revealing phase.

Revealing phase

s7d To know the state indexl i of ual i
lSi

^ ubl i
lSi

, Bob and
Charlie discuss who performs the first local measurement in
the basishu0l, u1l, u2lj and then the other performs the con-
ditioned local measurement. For example, Bob and Charlie
access a random independent coin flip. If the coin is 0s1d,
Bob sCharlied and CharliesBobd should perform the first and
the conditioned local measurements, respectively. In this
study, F and S denote the receivers, who perform the first
and conditioned measurements, respectively.F tells S his
measurement outcome in private.

s8d The receiverSperforms the second local measurement
and then broadcasts the measurement basis and consequently
tells the receiverF his measurement outcome in private.

s9d Alice tells Bob and Charlie which outcomes should be
disregarded owing to the incorrect local measurement order.
In this protocol, eitheru0l ^ u1l or u1l ^ u0l are disregarded.

s10d This study divides the measurement outcomes based
on correct measurement into two subsets: those for which
Bob performs the first local measurement, denoted byB, and
those for which Charlie performs the first local measurement,
denoted byC. On average, there are about equal element
numbers of subsetsB andC. Alice randomly selects half of
the elements from subsetsB andC, respectively, after which
Bob and Charlie then broadcast the selected measurement
outcomes, respectively. As a result, Alice checks these out-
comes to detect possible eavesdropping behavior. If too
many errors occur, Alice announces to abort the secrets.

The proposed protocol is described in detail. At first, we
explain stepss1d, s2d, ands3d, which are the essential differ-
ences from the protocol of Guoet al. f16g. Suppose Eve
intercepts the qutritsual i

lSi
andublrsid

lSrsid
for any i in steps3d.

Then Eve can perform some joint measurement onual i
lSi

and
ublrsid

lSrsid
before resending one qutrit pair. In this case, Eve

can get very little information because she cannot measure
ual i

lSi
^ ubl i

lSi
jointly. In the protocol of Guoet al., Alice can

send a qutrit at one timef10g. In the proposed protocol, Alice
can send two qutrits at a time in steps3d. On the other hand,
suppose Eve wants to access full information of single qutrit
ual i

lSi
sublrsid

lSrsid
d. In this case, Eve has to knowbi sbi8d at

least. Therefore, steps2d is to reduce Eve’s mutual informa-
tion when she attacks on only a qutrit. Correspondingly, Al-
ice and Bob recover allual i

lSi
’s and ublrsid

lSrsid
’s in steps4d. In

step s5d, Bob rearranges the order of allublrsid
lSrsid

’s so that

Alice and Bob’sith qutrits areual i
lSi

’s and ublrsid
lSrsid

, respec-

tively.
Second, there are two steps to detect possible eavesdrop-

ping attacks. In the preparation phase, Alice tries to detect
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possible attacks actively in steps6d. Suppose Alice an-
nounces the informationsk,k8d for the i8th qutrit pair. In the
error-free case, she expects that Bob or Charlie can find
someual i8

lSi8
or ubl i8

lSi8
if an appropriate measurement basis

is exploited. As a result, deception can be detected if receiv-
ers announce wrong outcomes in the appropriate measure-
ment basis. In the revealing phase, as previously stated, Bob
and Charlie both have full access to information if they per-
form the local measurements in the correct order. In steps7d,
if Bob and Charlie randomly decide the person to perform
the first local measurement in the basishu0l, u1l, u2lj, per-
forming the local measurements in the correct order yields a
probability 1

2. For the present discussion, Bob is to be the
receiver that performs the second local measurement. Mean-
while, honest Bob supposes that they both employ the cor-
rect order of local measurements and then he tries to guess
the complete set to which this product state belongs. For
example, Bob knows that Charlie’s measurement outcome is
u1l su2ld. In addition, Bob guesses that the product state is a
basis vector of the complete set(s0, 1, 2d,s1, 0, 2d). Conse-
quently, Bob must measure his qutrit in the basishs1/Î2d
3su0l± u1ld , u2lj (hs1/Î2dsu1l± u2ld , u0lj). If the measurement
outcome of honest Bob in steps8d is u2l su0ld, he immediately
knows that either they have employed the wrong measuring
order or some eavesdropping has occurred. Alice learns the
order of the local measurements in steps8d. Therefore, in
steps9d, Alice can inform Bob and Charlie which measure-
ment outcomes with the incorrect measurement orders is to
be dropped over a classical channel. In the above example, if
Bob expects that the measurement order is wrong but Alice
tells Bob and Charlie to keep this outcome, honest Bob will
immediately know that Charlie may have cheated. Moreover,
since Bob and Charlie keep the measurement outcomes only
when they employ the correct measuring orders, Bob and
Charlie generally will have to drop half of the measurement
outcomes in steps9d.

III. QUANTUM SECRET SHARING PROTOCOL
VIA PRODUCT STATE: PROTOCOL II

In the previous protocol, the secret can be revealed only
when Bob and Charlie perform the local measurements in the
correct order. In addition, the sent product state is one of the
basis vectors of the complete set, either(si , j ,kd ,si8 , j8 ,k8d)
or (si8 , j8 ,k8d ,si , j ,kd). In general, Alice can prepare a prod-
uct state, which can be a basis vector lying in some domino
of the 18 nonlocal complete sets. Therefore, protocol I can be
modified as follows.

sad As in steps1d of the protocol in Sec. II, Alice prepares
a product state, which is one of the basis vectors of the 18
nonlocal complete sets. This study assumes the prepared
product state to be one of the basis vectors of the complete
set (si , j ,kd ,si8 , j8 ,k8d).

sbd Following the confirmation in steps5d, Alice broad-
casts the indexsi8 , j8 ,k8d and si , j ,kd. Notably, the correct
local measurement order remains unknown to Bob and Char-
lie.

Now suppose the eavesdropper can intercept two-qutrit
systemual i

lSi
^ ubl i

lSi
simultaneously. In addition, Alice does

not reveal any information of the complete set. The eaves-
dropper can employ the basis of a nonlocal complete set as
the collective measurement basis. For example, suppose that
Alice preparess1/Î2dsuil+ u jld ^ ui8l. The eavesdropper inter-
cepts both qutrits and then performs some collective
measurement with one of the 18 complete set basis. If he
chooses one of the complete sets(si , j ,kd ,si8 , j8 ,k8d),
(s j , i ,kd ,si8 , j8 ,k8d), (si , j ,kd ,si8 ,k8 , j8d), or (s j , i ,kd ,
si8 ,k8 , j8d) as the measurement basis, the eavesdropper can
access full information without any disturbance. Therefore,
the probability of successful and undisturbed eavesdropping
is 2

9.
In the quantum key distribution protocol of Guoet al., the

sender and receiver preagree on the sending order of qutrits
and the measurement basis. The key point is that the sender
must ensure that, after sending a qutrit, the receiver has also
received a qutrit. In proposed protocol I and its modification,
the receivers have to discuss the order of the local measure-
ments. The following discussion investigates the quantum
secret sharing protocol, in which the receivers do not need to
discuss the local measurement order. In following discussion,
each complete set is denoted by the corresponding indexSi.
This protocol is as follows.

Protocol II

Preparation phase

The steps froms1d to s6d are just about equivalent to those
in protocol I. The main difference is that the indexSi can be
0, 1,…, 17. Now Bob and Charlie are assumed to hold the
ordered sets ofB andC in Eqs.s2d and s3d, respectively.

Revealing phase

s7d Alice broadcasts then binary bit stringsd as the ap-
propriate local measurements. If theith bit of d is 1 s0d, Bob
sCharlied shouldF to perform the foremost local measure-
ment on qutritual i

lki
subl i

lki
d. After the receiverF has per-

formed the first local measurement in the basishu0l, u1l, u2lj,
F broadcasts that he has performed his measurement. In ad-
dition, F privately informs the other receiver of the measure-
ment outcome. For example, let Alice prepares1/Î2dsuil
+ u jld ^ ui8l. Alice broadcasts that CharliesFd performs the
first local measurement in the basishu0l, u1l, u2lj.

s8d Each time Alice receives the broadcast ofF, she then
broadcasts the complete set to which the sent product states
belong. Sinces1/Î2dsuil+ u jld ^ ui8l is one basis of the four
complete sets (si , j ,kd ,si8 , j8 ,k8d), (s j , i ,kd ,si8 , j8 ,k8d),
(si , j ,kd ,si8 ,k8 , j8d), and (s j , i ,kd ,si8 ,k8 , j8d), Alice can pub-
licly announce that the state of the prepared qutrits is one of
the basis vectors in the complete set(si , j ,kd ,si8 , j8 ,k8d).

s9d Bob and Charlie must announce some portion of the
secret bits to detect possible deception behaviors. Conse-
quently, Bob and Charlie perform steps10d of the proposed
protocol I.

The protocol used in this investigation is described in de-
tail. Obviously, Alice initially does not reveal the sending
order and measurement basis information, to prevent the
eavesdropper from accessing full information without aware-
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ness. For example, suppose that Alice prepares one of the
following four states: ukl ^ s1/Î2dsui8l± u j8ld and uil
^ s1/Î2dsu j8l± uk8ld. After Alice broadcasts the measuring or-
der and the complete set basis(si , j ,kd ,si8 , j8 ,k8d) in steps8d,
Bob sFd performs the measurement in the basishu0l, u1l, u2lj.
The outcome should be eitherukl or uil. Bob then informs
Charlie sSd of his outcome. After Alice broadcasts the mea-
surement basis in steps8d, Charlie performs his measurement
in the basis hs1/Î2dsui8l± u j8l , uk8lj or hs1/Î2dsu j8l± uk8l ,
ui8lj, respectively. Charlie should tell Bob his outcome. As a
result, Alice can share a secret bit with Bob and Charlie.
Notably, if Bob is honest, he will not measureu jl in this
example. If Bob measuresu jl, honest Bob immediately
knows that some deception has occurred in the error-free
condition.

In general, a quantum secret sharing protocol can be
modified to be a quantum key distribution as follows. Bob
and Charlie are regarded as the same receiver. In addition,
Alice can send the second qutrit only after confirming that
the receiver has received the first one. As the sender does in
steps4d of the proposed quantum secret sharing protocol II,
Alice also broadcasts the measurement basis. Nevertheless,
this protocol offers minimal advantage over the other quan-
tum key distribution schemes.

This study examines how Alice performs the initial prepa-
ration. Alice can prepare two supplies ofu0l and u0+1l, re-
spectively. To prepare the statesu1l or u2l, Alice can perform
the unitary transformationM: utl→ ut+1l on u0l once or
twice, respectively. Similarly, Alice also can prepare some
ui + jl in this manner. If Alice has to prepareui − jl, she may
perform the unitary transformationD: diags1,−1,1d fol-
lowed byMs. Both D andM are one-qutrit unitary transfor-
mations. Consequently, Alice does not require any pairwise
unitary transformation for the preparation. Therefore, physi-
cally realizing such preparation will be much easier than the
preparation of the Bell states and GHZ states.

Finally, we compare the proposed protocols with quantum
secret sharing using GHZ statesf1g. In the error-free case,
the efficiency of quantum secret sharing using either GHZ
states or product states is nearly 100%. In the case of quan-
tum secret sharing using GHZ states, leaving out any re-
ceiver, the rest can have no information about the secret bit.
In the proposed protocols, any receivers can obtain mutual
information even without classical communication. Conse-
quently, Eve can gain some mutual information. The pro-
posed protocols can reduce Eve’s mutual information in
steps s1d and s2d. On the other hand, let Eve be able to
entangle the sent qubits with ancilla qubits. If the GHZ en-
tanglement introduces no errors into secret sharing proce-
dures, an eavesdropper can gain no information in this way.
Or if Eve can gain information about secret bits, inevitable
errors must occur. In the proposed protocols, the ideal eaves-
dropping attack is to clone the untangled qutrit states per-
fectly. However, the nonorthogonality and no-clone theorem
guarantee the impossibility of such an attack.

IV. SECURITY ANALYSIS OF PROTOCOLS I AND II

Now we consider the security of protocols I and II. Recall
that four possible states shu0l , u1l ,s1/Î2dsu0l+ u1ld ,

s1/Î2dsu0l− u1ldjd are exploited in the BB84 protocol. Proto-
col II can be regarded as the hybrid of three BB84 protocols
based on three different sets of four stateshuil , u jl ,s1/Î2d
3suil+ u jld ,s1/Î2dsuil− u jldj, wheresi , jd ares0, 1d, s1, 2d, s2,
0d, respectively. In addition, the sender smashes the informa-
tion si , jd using three-level Hadama transformation. Further-
more, the sender must always confirm that the receiver has
received the previous qutrit before the next qutrit is sent.
Therefore, protocol II is much more secure than the ordinary
BB84 protocol. As for protocol I, Guoet al. prove that, in
their protocol, an eavesdropper cannot access full informa-
tion even if an eavesdropper can interceptsual i

l ^ ubl i
ldSi

si-
multaneously. In addition, an eavesdropper can never inter-
cept sual i

l ^ ubl i
ldSi

simultaneously in protocol I. To access
full information in protocols I and II, an eavesdropper has to
know the following information after intercepting and before
resending the other’s qutrit: the complete set indexSi, the
stringsb and b8, and the functionrsmd. In steps6d and the
last step of protocols I and II, the sender checks possible
eavesdropping. That is, Alice can always find the possible
eavesdropping with higher probability than the BB84 proto-
col. Next we just consider some possible attacks. Further
security proof is considered in Sec. V.

A. Misstate strategy

Since Bob and Charlie have to discuss Alice’s prepara-
tion, the intuitive cheating is to lie to the honest receiver. For
simplicity, let Bob and Charlie be receiversF andS, respec-
tively. If the eavesdropper is receiverS, the simplest method
of cheating is to misstate local measurement outcomes to the
other receiver. However, such deception can be detected in
steps6d because the honest receiver can choose and broad-
cast a portion of such false outcomes to the sender.

Moreover, the no-clone theorem guarantees that a perfect
clone of possible nonorthogonal states is impossiblef12g. In
protocol II, if the eavesdropper, Bob or Charlie, takes the
intercept-resend strategy, he can access full information us-
ing the correct basis with probability29. Otherwise, the
eavesdropper will disturb the quantum state. Therefore, the
probability of successful eavesdropping without disturbance
is 2

9. On the other hand, since receiverS is assumed to per-
form his measurement after receiverF, S always can access
full information beforeF. Therefore, ifS is the eavesdropper,
S can cheatF by stating false outcomes. This condition also
happens in other quantum secret sharing schemes. In some
quantum secret sharing schemes, the two receivers have to
discuss Alice’s outcomesf1g or preparationf2g. In practice,
either Bob or Charlie must expose his outcome to the other
first. Inevitably, the second receiver to expose his outcome
can always have access to full information before the other
receiver. However, since the sender is aware of any of incor-
rect public measurement outcomes in steps6d, false outcome
statements can be detected.

In addition, the dishonest receiverF can also misstate the
outcomes: For example, Alice prepares the product stateukl
^ s1/Î2dsui8l+ u j8ld. If the receiverF misstates his outcome
as u jl, receiverS can detect this cheating immediately after
Alice broadcasts the complete set basis as(si , j ,kd ,
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si8 , j8 ,k8d) in steps5d. Meanwhile, ifF misstates the outcome
asuil, receiverSshould perform his local measurement in the
basis hs1/Î2dsu j8l± uk8ld , ui8lj. If the outcome isui8l with
probability 1

2, S can immediately detect the cheating. In ad-
dition, Alice is definitely aware of this cheating if the out-
come is broadcast in steps6d. Therefore, any misstatements
can be detected.

B. Intecept-resend strategy

For simplicity, we just considerrsmd=m. Either dishonest
Bob sFd or dishonest CharliesSd can take the intercept-
resend strategy. In the quantum key distribution protocol of
Guoet al., the eavesdropper can only perform local measure-
ments. In the protocol presented here, the eavesdropper can
perform any joint measurement. However, only when the
eavesdropper performs a correct collective or local measure-
ment on these two intercepted qutrits can the eavesdropper
access full secret information. Otherwise, the eavesdropper
will fail to know the secret. For example, in protocol I, the
eavesdropper intercepts the product stateu0l ^ s1/Î2dsu0l
+ u2ld. If the eavesdropper performs the measurement in the
basis of the complete set(s2, 0, 1d,s0, 1, 2d), he will get
s1/Î2dsu0l± u2ld ^ u0l or s1/Î2dsu0l± u1ld ^ u2l with equal
probability 1

4. The corresponding density matrix is

1

4
su00lk00u + u20lk20u + u02lk02u + u12lk12ud. s7d

Apparently, the eavesdropper cannot gain any information
from this density matrix. As a result, the eavesdropper can
perform successful eavesdropping with probability1

2.
This study considers that, in protocol II, dishonest Bob

sFd intercepts Charlie’s qutrit and resends a qutrit to Charlie
before Alice’s first broadcast in steps4d. This study assumes
that Bob sends Charlie the qutritul8l, which is equally likely
to be u0l, u1l, or u2l. Also, it is assumed that Alice sends the
quantum systemukl ^ s1/Î2dsui8l+ u j8ld or ukl ^ s1/Î2dsui8l
− u j8ld, and then announces that the corresponding complete
set is (si , j ,kd ,si8 , j8 ,k8d). In addition, Charlie should per-
form his local measurement in the basishs1/Î2dsui8l
± u j8ld , uk8lj after Bob tells him the faithful outcome. Iful8l
= u j8l or ui8l and Bob honestly tells Charlie the outcomes,
then Charlie fails to detect the deception. Nevertheless, if the
outcomes are public in steps6d, Alice can detect the cheating
with probability 1

2. If ul8l= uk8l, Bob must misstate his out-
come to be certain of avoiding Charlie’s detection. Neverthe-
less, Alice can definitely detect such cheating if the outcomes
are public in steps6d.

This study now assumes that dishonest Charlie, receiver
S, intercepts Bob’s qutrit and resends the qutritull, which can
be u0l, u1l, or u2l with equal probability. Again this study
assumes that Alice sends the receivers the quantum system
ukl ^ s1/Î2dsui8l+ u j8ld and then announces that the corre-
sponding complete set is(si , j ,kd ,si8 , j8 ,k8d). If ull= u jl, Bob
can directly detect the cheating in steps5d since Bob’s out-
comes should be eitheruil or ukl. If ull= ukl, the eavesdrop-
ping is ineffective. In addition, Charlie’s misstatement is de-
tected in steps6d. If ull= uil, Charlie may misstate his

outcome. However, Alice can detect such cheating in step
s6d. Suppose that the eavesdropper performs the intercept-
resend strategy on every pair of sent qutrits. In this example,
only when Charlie resends Bobukl and tells Bob the faithful
outcome will Charlie not be found to be cheating. In other
words, dishonest Charlie’s cheating must be detected. Impor-
tantly, the eavesdropper cannot know the measuring order in
advance. That is, Alice can prevent Trojan horse attacks quite
well f13g. Otherwise the proposed protocol will be ineffec-
tive.

C. Guo–Li–Shi–Li–Guo strategy

For simplicity, we just considerrsmd=m. The quantum
key distribution protocol of Guoet al. considers the follow-
ing eavesdropping strategy. The eavesdropper, Bob or Char-
lie, intercepts the other’s qutrit. The eavesdropper performs
the orthogonal measurement on one qutrit in the basishu0l,
u1l, u2lj. Based on the outcome, the eavesdropper performs
another orthogonal measurement on the other qutrit in some
different basis. Guoet al. used only one complete sethucilj.
Now suppose that the eavesdropper takes such an eavesdrop-
ping strategy in our quantum secret sharing protocol II. The
eavesdropper first performs an orthogonal measurement on a
single qutrit in the basishu0l, u1l, u2lj. Without loss of gener-
ality, the first outcome can be allowed to beu0l. Furthermore,
the eavesdropper infers that the probability of the statesu0l
^ s1/Î2dsui8l± u j8ld (si8 , j8d=s0,1d ,s1,2d , or s2,0d) and
u0±kl ^ uk8l sk=1, 2 andk8=0,1,2d may be prepared with
equal probability. Finally, suppose the eavesdropper guesses
that the state is one of the statesu0l ^ ui8± j8l. The eavesdrop-
per then can perform the nonorthogonal measurement with
the following six positive-valued operators:

P0±1 =
1

2
u0 ± 1lk0 ± 1u, P1±2 =

1

2
u0 ± 2lk0 ± 2u,

P2±1 =
1

2
u2 ± 1lk2 ± 1u, s8d

whereu0±1l denotes the statess1/Î2dsu0l± u1ld and so on. It
is easy to verify thatoi,jsPi+j +Pi−jd=1, where 1 denotes the
identity operator. Alice is assumed to prepareu0l ^ ui9+ j9l. In
this case, the rate that stateui9+ j9l projects into thePi9+j9 is
1
2. In this way, the probability that an eavesdropper can ac-
cess full information without awareness is1

4.

V. QUANTUM SECRET SHARING PROTOCOL
VIA PRODUCT STATE: PROTOCOL III AND A SIMPLE

PROOF OF SECURITY

In this section, we propose another protocol similar to the
Ekert protocolf14g. Recently, many researches focused on
proving the unconditional security of the quantum key dis-
tribution f15,16g. The main theme of proof is to purify the
raw two-level Bell states and then measure the syndrome of
the stabilizer codef17g. As a result, the receiver and sender
can share perfect Bell states. Nevertheless, in this paper,
three-level qutrits are exploited. To prove the unconditional
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security of protocols I and II, we first introduce the nonlo-
cality swappingf18g

uC00ls1,2duC00ls3,4d =
1

3o
l=1

9

ucllSi,s1,4ducllSi,s2,3d, s9d

where 1, 2, 3, 4 are qutrit indices anduClsi,jd is the three-
level Bell state:

uC00lsi,jd =
1
Î3

su00l + u11l + u22ld. s10d

Alice holds the qutrits 1 and 4. Bob and Charlie hold qutrits
2 and 3, respectively. Alice performs the measurement in the
basishucllSi

= uallSi
^ ubllSi

j of some complete set of set index
Si, wherei =0, . . . ,17. In this way, Bob and Charlie possess
uallSi

and ubllSi
, respectively. It is noteworthy that it is non-

locality rather than entanglement which is preserved after the
measurementf18g. Therefore, the main idea of the proposed
protocol III is as follows. The sender and each receiver ini-
tially share the first and second halves of eachuC00l. After
performing the purification and the purity test, the sender and
each receiver can share perfect three-level Bell statesf13g.
Then the sender performs nonlocality swapping and then
publicly announces the set index. Finally, the two receivers
discuss the state index of the shared states at hand. Never-
theless, few papers investigate how to purify multilevel Bell
states. Here we propose a quantum privacy amplification al-
gorithmsQPA algorithmd on three-level Bell states as follows
f19g. s1d The sender performs the three-level Hadama trans-
formation and the receiver performs the inverse Hadama
transformation.s2d The sender and receiver each perform
two instances of the quantum bilateral controlled-NOT

sCNOTd operations,

ualubl → ualua % b mod 3l,a,b P h0,1,2j, s11d

between the control pair and target pair. Notably, any of the
control pairs and the target pair comprise two qutrits in the
initial stateuC00l. s3d The sender and each receiver then mea-
sure the target qutrits in the basishu0l, u1l, u2lj. Each receiver
publicly announces the measurement outcomes. If the sender
finds that the outcomes coincide, they keep the control pair
for the next round and discard the target pair. Notably, it is
Alice who decides whether a target pair should be kept. In
this way, the eavesdropper’s forgery will fail the proposed
QPA algorithm. We denote the three-level Bell basis by
uC jkl, where

uC jkl =
1
Î3

o
l=0

2

vlkullul + j mod 3l, j ,k = 0,1,2. s12d

In addition, the fidelity of the stateuC jkl is denoted bypjk.
After one round of the proposed QPA algorithm, the new
density matrix comprises the survived controlled pairs with
hp̃jkj, where

p̃00 = N−1sp00
2 + p10

2 + p20
2 d, s13d

p̃01 = N−1sp00p10 + p10p20 + p20p00d,

p̃02 = N−1sp00p20 + p10p00 + p20p10d, s14d

p̃10 = Ã20 = N−1sp01p02 + p11p12 + p21p22d, s15d

p̃11 = Ã22 = N−1sp01p12 + p11p22 + p21p02d,

p̃12 = Ã21 = N−1sp01p22 + p11p02 + p21p12d, s16d

and the normalization constantN=sp00+p10+p20d2+2sp01

+p11+p21dsp02+p12+p22d. Our simulation of the iterative
mapping in Eq.s16d is shown in Fig. 2. Therefore, if the
sender and each receiver perform the above QPA algorithm
iteratively, they can purify the three-level Bell stateuC00l
with the initial diagonal elementp00.0.5. Furthermore, if
the initial diagonal elementsp10=p20=0, we can purifyuCl
even with the initial diagonal elementp00.Î2−1.

After purifying the raw entanglement, the sender and each
receiver measure the syndrome of the three-ary—i.e.,
nonbinary—stabilizer code for purity testingf17g. In other
words, three-ary quantum stabilizer codes are required for
purity. Recently, nonbinary quantum stabilizer codes have
been studiedf20–25g. There must exist three-ary quantum
stabilizer codes that encodem qutrit into n qutrit and can
correctt “nice” errorsTkRl, where

T:upl → up + 1 mod 3l, R:upl → expS2ppi

3
Dupl s17d

f21g. On the other hand, it is easy to verify

uCkll = s1 ^ TkRlduC00l, ∀ l,m= 0,1,2. s18d

Suppose that the states shared between Alice and each re-
ceiver are assumed to be nearly in stateuC00l^n. The sender
and each receiver can correctt nice errors via quantum error
correction codesf15,16,26g. Still, each receiver should
broadcast the necessary measurement results. It is the sender
that performs the needed local operations for error correct-
ing. As a result, the sender can share perfect stateuC00l^m.
Next, the sender performs the nonlocality swapping. Now we
propose protocol III of quantum secret sharing as follows.

Protocol III

Preparation phase

s1d The sender Alice and the each receiver of Bob and
Charlie agree on some stabilizer purity testing. In addition,
Alice prepares two strings of Bell states

huC00lB1
,uC00lB2

, . . . ,uC00lBn8
j

and

huC00lC1
,uC00lC2

, . . . ,uC00lCn8
j

.
s2d Alice selects two randomn8-bit stringsb andb8. Alice

performs the three-level Hadama transformation on the sec-
ond half ofuC00lBi

anduC00lCi
if the ith bitvalues ofb andb8

are 1, respectively.
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s3d Alice sends the second half of eachuC00lBi
and

uC00lCi
, i =1, . . . ,n8, respectively. Alice holds the first half of

uC00lBi
and uC00lCi

, i =1, . . . ,n8.
s4d When Bob and Charlie receive their qutrits, they in-

form Alice that they have received the qutrit over a classical
channel, respectively.

s5d Alice announces the bit stringsb and b8 after she
confirms that all qutrits have been received. Bob and Charlie
then perform the three-level inverse Hadama transformation
on the qutrits whereb andb8 are 1, respectively.

s6d Alice and each of Bob and Charlie perform the pro-
posed QPA algorithm to purifyuC00l. Notably, Alice decides
whether the purification is successful. If they fail to purify
uC00l, Alice aborts the secret. Otherwise, Alice performs the
following steps.

s7d Next they have to perform purity testing via measur-
ing the syndrome of the preagreed stabilizer codef17g.

s8d Alice performs nonlocality swapping in the basis of
the complete set(si , j ,kd ,si8 , j8 ,k8d) with set indexSi.

Revealing phase

s9d Alice publicly announces the set indexSi of the mea-
surement basis and who should perform the foremost mea-
surement via classical communication.

s10d Bob and Charlie discuss the state index of the qutrits
at hand.

s11d Bob and Charlie must announce some portion of the
secret bits to detect possible deception behaviors. Conse-
quently, Bob and Charlie perform steps6d of the proposed
protocol I.

After nonlocality swapping, Bob and Charlie have to dis-
cuss the state index of the shared product state based on
Alice’s announcement. The eavesdropper can forge the mea-
surement results. Moreover, the eavesdropper can forge the
measurement results in the error-correction process of distil-
lation. Eventually, the sender and each receiver could share
some Bell states other thanuC00l. In this case, the state of the
qutrits 1 and 4 is not identical that of the qutrits 2 and 3 after
the nonlocality swapping in Eq.s9d. Therefore, any misstate-
ment can be detected in steps11d.

VI. CONCLUSION

This study introduces how to perform the quantum secret
sharing via product states. These three proposed protocols
can split information and detect eavesdropping simulta-
neously using product states. Since the proposed protocols I
and II in this study do not require any entanglement, their
physical realization is very feasible. This study also investi-
gates possible eavesdropping attacks. In addition, this study
can revise the quantum key distribution protocols using
product states as the quantum secret sharing protocols using
product states. Furthermore, we provide a simple proof of
protocols I and II.
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FIG. 2. sColor onlined Average
fidelity of the proposed three-level
quantum privacy amplification,
which is a function of the initial
fidelity and the number of
iterations.
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