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Abstract—Diagnosability has played an important role in the reliability of an interconnection network. The classical problem of fault

diagnosis is discussed widely and the diagnosability of many well-known networks have been explored. In this paper, we introduce a

new measure of diagnosability, called conditional diagnosability, by restricting that any faulty set cannot contain all the neighbors of any

vertex in the graph. Based on this requirement, the conditional diagnosability of the n-dimensional hypercube is shown to be

4ðn� 2Þ þ 1, which is about four times as large as the classical diagnosability. Besides, we propose some useful conditions for

verifying if a system is t-diagnosable and introduce a new concept, called a strongly t-diagnosable system, under the PMC model.

Applying these concepts and conditions, we investigate some t-diagnosable networks which are also strongly t-diagnosable.

Index Terms—PMC model, diagnosability, t-diagnosable, strongly t-diagnosable, conditional faulty set, conditional diagnosability.

�

1 INTRODUCTION

HIGH-PERFORMANCE signal processing architectures have
become quite common with continuing advances in

semiconductor technology. These architectures are used in
several real-time applications and in high-performance
large multiprocessor systems. However, the complexity of
these systems can adversely affect the reliability. Therefore,
the testing and diagnosis of these systems become an
important aspect of system design.

The hypercube structure [24] is awell-known interconnec-
tion model for multiprocessor systems. Fault-tolerant com-
puting for the hypercube structure has been of interest to
many researchers. A hypercube of dimension n, denoted by
Qn, is an undirected graph consisting of 2n vertices and n2n�1

edges. The hypercube Q1 is a complete graph K2 with two
vertices f0; 1g. For n � 2, Qn is constructed from two copies
of Qn�1 by adding a perfect matching between them. Each
vertex u of Qn can be distinctly labeled by a binary n-bit
string, un�1un�2 . . .u1u0. There is an edge between two
vertices if and only if their binary labels differ in exactly one
bit position.

There are several variations of the hypercube, for
example, the Crossed cube [6], the Twisted cube [13], and
the Möbius cube [3]. For each of these cubes, an
n-dimensional cube can be constructed from two copies of
ðn� 1Þ-dimensional subcubes by adding a perfect matching
between the two subcubes. The main difference is that each
of these cubes has various perfect matching between its

subcubes. An n-dimensional cube has 1) 2n vertices,
2) connectivity n, and 3) each vertex has the same degree n
(the two terms connectivity and degree will be defined
subsequently). We define the cube family to include all such
cubes which are constructed recursively by joining two
subcubes with a perfect matching. For n ¼ 0, 1, and 2, an
n-dimensional cube is a single vertex, an edge, and a cycle
of length four, respectively.

In this paper, we use the widely adopted PMC model
[23] as the fault diagnosis model. In [11], Hakimi and Amin
proved that a multiprocessor system is t-diagnosable if it is
t-connected with at least 2tþ 1 vertices. Besides, they gave a
necessary and sufficient condition for verifying if a system
is t-diagnosable under the PMC model. In this paper, we
also propose a new necessary and sufficient condition,
namely, Theorem 2, which will be useful from the graph
theoretical point of view.

Reviewing the previous papers [1], [2], [9], [10], [11], [14],
[15], [24], the Hypercube Qn, the Crossed cube CQn, the
Möbius cube MQn, and the Twisted cube TQn, all have
diagnosability n under the PMC model. Moreover, we
observe that they are almost ðnþ 1Þ-diagnosable except for
the case where all the neighbors of some vertex are faulty
simultaneously. Closely related to this observation, we
introduce the concept of a strongly t-diagnosable system
and propose some conditions to assure which networks are
strongly t-diagnosable.

The connectivity of a system is an important measure of
fault tolerance. It is well-known that, for a system G, the
connectivity of G is less than or equal to its minimum
degree (this term will be defined subsequently). For
example, the hypercube Qn has connectivity n and this
value n is equal to its minimum degree n. However, a
scalable hypercube multiprocessor system can consist of
thousands of processors. Under this complicated environ-
ment, more processors are likely to fail. To explore a more
proper measure of fault tolerance, the conditional connec-
tivity has been investigated in several research works [7],
[12], [17], [22], [25].
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Under the classical PMC diagnosis model, only proces-
sors with direct connections are allowed to test one another.
Given a system, if all the adjacent neighbors of a processor v
are faulty simultaneously, it is not possible to determine
whether processor v is fault-free or faulty. Hence, for most
practical systems that are sparsely connected, only a small
number of faulty processors can be recognized with the
classical diagnosis model. So, it is an interesting problem to
explore some measures for better reflecting fault patterns in
a real system than the existing ones. For example, Das et al.
[5] investigated fault diagnosis with local constraints.

In this paper, we propose a new measure of diagnosa-
bility, called conditional diagnosability, and study the
conditional diagnosability of the hypercube. In classical
measures of system-level diagnosability for multiprocessor
systems, it has generally been assumed that any subset of
processors can potentially fail at the same time. As a
consequence, the diagnosability of a system is upper
bounded by its minimum degree. We then consider these
measures by restricting that, for each processor v in the
network, all the processors which are directly connected to
v do not fail at the same time. Under this condition, we
show that the conditional diagnosability of Qn is
4ðn� 2Þ þ 1, which is about four times larger than that of
the classical diagnosability of Qn.

The rest of this paper is organized as follows: Section 2
provides terminology and preliminaries for diagnosing a
system. Section 3 introduces the concept of a system being
strongly t-diagnosable and proposes some necessary and
sufficient conditions to check if a system is so. We then
define conditional diagnosability and study the conditional
diagnosability of Qn in Section 4. Finally, our conclusions
are given in Section 5.

2 TERMINOLOGY AND PRELIMINARIES

A system or a network is usually represented by a graph.
Throughout this paper, we follow [8] for the graph
definition and focus on undirected graph without loops
(simply abbreviated as graph).

Definition 1 [8]. The components of a graph G are its maximal
connected subgraphs. A component is trivial if it has no edges;
otherwise, it is nontrivial.

The degree of a vertex v in a graph G, written as degGðvÞ
or degðvÞ, is the number of edges incident to v. The
maximum degree is denoted by4ðGÞ, the minimum degree
is �ðGÞ, and G is regular if 4ðGÞ ¼ �ðGÞ. It is k-regular if the
common degree is k. The neighborhood of v, written NGðvÞ
or NðvÞ, is the set of vertices adjacent to v. The connectivity
�ðGÞ of a graph GðV ;EÞ is the minimum number of vertices
whose removal results in a disconnected or a trivial graph.
A graph G is k-connected if its connectivity is at least k.

LetG ¼ GðV ;EÞ (simply abbreviated asG) be a graph. For
a setS � V , the notationG� S represents the graph obtained
by removing thevertices inS fromGanddeleting those edges
with at least one end vertex in S simultaneously. If G� S is
disconnected, then S is called a vertex cut or a separating set.
LetG1,G2 be two subgraphs ofG; if there are ambiguities, we
shall write the vertex set of G1 as VG1

or V ðG1Þ. The
neighborhood set of the vertex set VG1

is defined as

NðVG1
Þ ¼ fy 2 V ðGÞj, there exists a vertex x 2 VG1

such that
ðx; yÞ 2 EðGÞg � VG1

. The restricted neighborhood set of VG1

in G2 is defined as NðVG1
; G2Þ ¼ fy 2 V ðG2Þj, there exists a

vertex x 2 VG1
such that ðx; yÞ 2 EðGÞg � VG1

. We use jXj to
denote the cardinality of set X. The restricted degree of a
vertex v in a subgraph G1 is defined as

degG1
ðvÞ ¼ jNðfvg; G1Þj:

A multiprocessor system is modeled as an undirected
graph G ¼ GðV ;EÞwhose vertices represent processors and
edges represent communication links. Under the classical
PMCmodel [23], adjacent processors are capable of perform-
ing tests on each other. For adjacent vertices u; v 2 V , the
ordered pair ðu; vÞ represents the test performed by u on v. In
this situation, u is called the tester and v is called the tested
vertex. The outcome of a test ðu; vÞ is 1 (respectively, 0) if u
evaluates v as faulty (respectively, fault-free).

A test assignment for a system G ¼ GðV ;EÞ is a collection
of tests ðu; vÞ for some adjacent pairs of vertices. It can be
modeled as a directed graph T ¼ ðV ; LÞ, where ðu; vÞ 2 L
implies that u and v are adjacent in G. Throughout this
paper, we assume that each vertex tests the other whenever
there is an edge between them and all these tests are
gathered in test assignment.

The collection of all test results for a test assignment T is
called a syndrome. Formally, a syndrome is a function
� : L ! f0; 1g. The set of all faulty processors in the system
is called a faulty set. This can be any subset of V . The process
of identifying all the faulty vertices is called the diagnosis of
the system. The maximum number of faulty vertices that
the system G can guarantee to identify is called the
diagnosability of G, written as tðGÞ.

For a given syndrome �, a subset of vertices F � V is
said to be consistent with � if syndrome � can be produced
from the situation that, for any ðu; vÞ 2 L such that u 2
V � F; �ðu; vÞ ¼ 1 iff v 2 F . Because a faulty tester can lead
to an unreliable result, a given set F of faulty vertices may
produce different syndromes. Let �ðF Þ represent the set of
all syndromes which could be produced if F is the set of
faulty vertices.

Two distinct sets F1; F2 � V are said to be indistinguish-
able if �ðF1Þ

T
�ðF2Þ 6¼ ;; otherwise, F1, F2 are said to be

distinguishable. We say ðF1; F2Þ is an indistinguishable pair if
�ðF1Þ

T
�ðF2Þ 6¼ ;, else, ðF1; F2Þ is a distinguishable pair.

Some known results about the definition of a
t-diagnosable system and related concepts are listed as
follows. Some of these previous results are on directed
graphs and others are on undirected graphs.

Definition 2 [23]. A system of n units is t-diagnosable if all
faulty units can be identified without replacement, provided
that the number of faults presented does not exceed t.

Let F1; F2 � V be two distinct sets and let the symmetric
difference F14F2 ¼ ðF1 � F2Þ

S
ðF2 � F1Þ. DahBura and

Masson [4] proposed a polynomial time algorithm to check
whether a system is t-diagnosable.

Lemma 1 [4]. A system GðV ;EÞ is t-diagnosable if and only if,
for each pair F1; F2 � V with jF1j; jF2j � t and F1 6¼ F2, there
is at least one test from V � ðF1

S
F2Þ to F14F2.
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The following two results related to t-diagnosable
systems are due to Hakimi and Amin [11] and Preparata
et al. [23], respectively.

Lemma 2 [23]. Let GðV ;EÞ be the graph representation of a
system G, with V representing the processors and E the
interconnection among them. Let jV j ¼ n. The following two
conditions are necessary for G to be t-diagnosable:

1. n � 2tþ 1 and
2. Each processor is tested by at least t other processors.

Lemma 3 [11]. The following two conditions are sufficient for a
system G of n processors to be t-diagnosable:

1. n � 2tþ 1 and
2. �ðGÞ � t.

For a directed graph G and a vertex v 2 V ðGÞ, the
notation dinðvÞ is used to denote the number of edges
directed toward v in G. Let �ðvÞ ¼ fvijðv; viÞ 2 Eg and
�ðXÞ ¼

S
v2X �ðvÞ �X, X � V . Hakimi and Amin pre-

sented a necessary and sufficient condition for a system G
to be t-diagnosable as follows:

Theorem 1 [11]. Let GðV ;EÞ be the directed graph of a system G
with n units. Then, G is t-diagnosable if and only if:
1) n � 2tþ 1, 2) dinðvÞ � t for all v 2 V , and 3) for each
integer p with 0 � p � t� 1 and each X � V with
jXj ¼ n� 2tþ p, j�ðXÞj > p.

In this paper, we propose some new viewpoints on
diagnosis and we will focus on undirected graph (simply
abbreviated as graph). Let G ¼ GðV ;EÞ be an undirected
graph. The following lemma follows directly from Lemma 1.

Lemma 4. For any two distinct sets F1, F2 � V , ðF1; F2Þ is a
distinguishable pair if and only if there exists a vertex u 2
V � ðF1

S
F2Þ and there exists a vertex v 2 F14F2 such that

ðu; vÞ 2 E (see Fig. 1).

It follows from Definition 2 that the following lemma
holds.

Lemma 5. A system is t-diagnosable if and only if, for each
distinct pair of sets F1, F2 � V with jF1j � t and jF2j � t, F1

and F2 are distinguishable.

An equivalent way of stating the above lemma is the
following:

Lemma 6. A system is t-diagnosable if and only if, for each
indistinguishable pair of sets F1, F2 � V , it implies that
jF1j > t or jF2j > t.

By Lemma 2, a similar result for undirected graph is
stated as follows.

Corollary 1 [23]. Let GðV ;EÞ be an undirected graph. The
following two conditions are necessary for G to be
t-diagnosable:

1. n � 2tþ 1 and
2. �ðGÞ � t.

For our discussion later, an alternative characterization
of the t-diagnosable system is given below.

Theorem 2. Let GðV ;EÞ be the graph of a system G. Then, G is
t-diagnosable if and only if, for each vertex set S � V with
jSj ¼ p, 0 � p � t� 1, every component C of G� S satisfies
jVC j � 2ðt� pÞ þ 1.

Proof. To prove that jVC j � 2ðt� pÞ þ 1 is necessary, we
show this by contradiction. Then, there exists a set of
vertices S � V with jSj ¼ p, 0 � p � t� 1, such that one
of the components G� S has strictly less than 2ðt� pÞ þ
1 vertices. Let C be such a component with
jVC j � 2ðt� pÞ. We then arbitrarily partition VC into
two disjoint subsets, VC ¼ A1

S
A2 with jA1j � t� p and

jA2j � t� p. Let F1 ¼ A1

S
S and F2 ¼ A2

S
S. Then,

jF1j � t and jF2j � t. It is clear that there is no edge
between V � ðF1

S
F2Þ and F14F2. By Lemma 4, F1 and

F2 are indistinguishable. This contradicts the assumption
that G is t-diagnosable.

To prove the sufficiency, suppose, on the contrary,
that G is not t-diagnosable, i.e., there exists an indis-
tinguishable pair ðF1; F2Þ with jFij � t, i ¼ 1; 2. By
Lemma 4, there is no edge between V � ðF1

S
F2Þ and

F14F2. Let S ¼ F1

T
F2. Thus, in G� S, F14F2 is

disconnected from other parts. We observe that
jF14F2j � 2ðt� pÞ, where jSj ¼ p and 0 � p � t� 1.
Therefore, there is at least one component C of G� S
with jVC j � 2ðt� pÞ, which is a contradiction. This
completes the proof of the theorem. tu

3 STRONGLY T-DIAGNOSABLE SYSTEMS

The Hypercube Qn, the Crossed cube CQn, the Möbius cube
MQn, and the Twisted cube TQn are all known to be
n-connected but not ðnþ 1Þ-connected. For each of these
cubes, every vertex cut of size n has a particular structure,
as stated in the following lemma.

Lemma 7. Let n � 2 and let XQn represent any n-dimensional
cube which belongs to the cube family. For each set of vertices
S � V ðXQnÞ with jSj ¼ n, if XQn � S is disconnected, there
exists a vertex v 2 V ðXQnÞ such that NðvÞ ¼ S.

Proof. We prove this lemma by induction on n. A two-
dimensional cube XQ2 is simply a cycle of length four.
Clearly, this lemma is true for XQ2. Assume it holds for
some n � 2. We now show that it holds for nþ 1.

Let an ðnþ 1Þ-dimensional cube XQnþ1 be obtained
from two n-dimensional cubes XQn, denoted by XQL

n

and XQR
n , by adding a perfect matching between them.

Let S � V ðXQnþ1Þ, jSj ¼ nþ 1, and SL ¼ V ðXQL
nÞ

T
S

and SR ¼ V ðXQR
n Þ

T
S. In the remainder of this proof,

we show that XQnþ1 satisfies one of the two condi-
tions: 1) XQnþ1 � S is connected,or 2) XQnþ1 � S is
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disconnected and there is a vertex v 2 V ðXQnþ1Þ such
that NðvÞ ¼ S.

We study three cases: 1) jSLj � n� 1 and jSRj � n� 1,
2) either jSLj ¼ n or jSRj ¼ n, and 3) either jSLj ¼ nþ 1 or
jSRj ¼ nþ 1.

Case 1: jSLj � n� 1 and jSRj � n� 1.
Since XQn is n-connected, both XQL

n � SL and XQR
n �

SR are connected. For n � 2, we know that

jV ðXQL
nÞ � SLj � 2n � ðn� 1Þ > n� 1 � jSRj

and

jV ðXQR
n Þ � SRj � 2n � ðn� 1Þ > n� 1 � jSLj:

So, the subgraph XQL
n � SL is connected to the other

subgraph XQR
n � SR. Hence, XQnþ1 � S is connected.

Case 2: Either jSLj ¼ n or jSRj ¼ n.
Without loss of generality, suppose that jSLj ¼ n and

jSRj ¼ 1. Suppose XQL
n � SL is connected. Using a

similar argument to that used in Case 1, we can prove
that XQnþ1 � S is connected. Otherwise, XQL

n � SL is
disconnected. By induction hypothesis, there exists a
vertex v 2 V ðXQL

nÞ such that Nðfvg; XQL
nÞ ¼ SL. Now,

consider XQR
n and consider the matching neighbor u of v

in XQR
n . Note that XQR

n � SR is connected for n � 2 and
every vertex in XQR

n has a matching neighbor in XQL
n .

Thus, XQnþ1 � S is connected if SR 6¼ fug. If SR ¼ fug,
XQnþ1 � S is disconnected and S ¼ NðvÞ. This proves
Case 2.

Case 3: Either jSLj ¼ nþ 1 or jSRj ¼ nþ 1.
Without loss of generality, suppose that jSLj ¼ nþ 1

and jSRj ¼ 0. Since there is one corresponding matched
vertex for each vertex v 2 V ðXQL

n � SLÞ in V ðXQR
n Þ,

XQnþ1 � S is connected.
Consequently, this lemma holds. tu

Let F1 and F2 be two distinct sets of vertices of XQn with

jFij � nþ 1, i ¼ 1; 2, and let S ¼ F1

T
F2. Then, jSj � n. By

the above lemma, either XQn � S is connected or XQn � S

is disconnected and there is a vertex v 2 V ðXQnÞ such that

S ¼ NðvÞ. If XQn � S is connected, the two sets V ðXQnÞ �
ðF1

S
F2Þ and F14F2 both belong to the same component

XQn � S. Thus, there exists one edge connecting V ðXQnÞ �
ðF1

S
F2Þ and F14F2. By Lemma 4, F1 and F2 are

distinguishable. Therefore, if F1 and F2 are indistinguish-

able, jFij � nþ 1, i ¼ 1; 2, XQn � S is disconnected, and

there exists a vertex v such that S ¼ NðvÞ. S ¼ F1

T
F2, so

NðvÞ � F1 and NðvÞ � F2. We then propose the following

concept.

Definition 3. A system G is strongly t-diagnosable if the

following two conditions hold:

1. G is t-diagnosable and
2. For any two distinct subsets F1, F2 � V ðGÞ with

jFij � tþ 1, i ¼ 1; 2, either

a. ðF1; F2Þ is a distinguishable pair or
b. ðF1; F2Þ is an indistinguishable pair

and there exists a vertex v 2 V such that NðvÞ � F1

and NðvÞ � F2.

A ðtþ 1Þ-diagnosable system is “stronger” than a
t-diagnosable system and, of course, it is strongly
t-diagnosable according to the above definition. However,
among all those strongly t-diagnosable systems, we are
interested in the one which is t-diagnosable but not
ðtþ 1Þ-diagnosable.

Following Lemma 3 and Definition 3, we propose a
sufficient condition for verifying if a system G is strongly
t-diagnosable.

Proposition 1. A system GðV ;EÞ with n vertices is strongly
t-diagnosable if the following three conditions hold:

1. n � 2ðtþ 1Þ þ 1,
2. �ðGÞ � t, and
3. for any vertex set S � V with jSj ¼ t, if G� S is

disconnected, there exists a vertex v 2 V such that
NðvÞ � S.

Proof. With conditions 1 and 2, by Lemma 3, G is
t-diagnosable. Now, we want to prove condition 2 of
Definition 3 holds. Let F1; F2 � V be two distinct sets
with jFij � tþ 1, i ¼ 1; 2, and S ¼ F1

T
F2. Suppose that

G� S is connected. Then, there exists one edge connect-
ing V � ðF1

S
F2Þ and F14F2. By Lemma 4, F1 and F2 are

distinguishable. That is, condition 2.a of Definition 3
holds.

Otherwise, G� S is disconnected. By condition 2, the
connectivity of G is at least t, and 0 � jSj � t, so jSj ¼ t.
Then, by condition 3, there exists one vertex v 2 V such
that NðvÞ � S. Therefore, NðvÞ � F1 and NðvÞ � F2. So,
condition 2.b of Definition 3 holds. This completes the
proof of this proposition. tu

Next, we present a necessary and sufficient condition for
a system G to be strongly t-diagnosable.

Lemma 8. A system GðV ;EÞ with jV j ¼ n is strongly
t-diagnosable if and only if the following three conditions hold:

1. n � 2ðtþ 1Þ þ 1,
2. �ðGÞ � t, and
3. for any two distinct subsets F1, F2 � V ðGÞ with

jFij � tþ 1, i ¼ 1; 2, the pair ðF1; F2Þ satisfy condi-
tion 2.a or 2.b of Definition 3.

Proof. We first prove the necessity. To prove condition 1,
we show that the assumption n � 2ðtþ 1Þ leads to a
contradiction. Assume n � 2ðtþ 1Þ. We can partition V
into two disjoint vertex sets V1 and V2, V1

T
V2 ¼ ; and

V ¼ V1

S
V2, with jVij � tþ 1, i ¼ 1; 2. By Lemma 4, V1

and V2 are indistinguishable. Since G is strongly
t-diagnosable, by Definition 3, NðvÞ � V1 and NðvÞ � V2,
for some vertex v 2 V , contradicting the assumption
V1

T
V2 ¼ ;.

Toprove condition 2, sinceG is strongly t-diagnosable, it
is t-diagnosable by definition. Then, by condition 2 of
Corollary 1,NðvÞ � t for each vertex v 2 V . So, condition 2
is necessary. Condition 3 of this lemma is the same as
condition 2 of Definition 3. This proves the necessity.

To prove the sufficiency of conditions 1, 2, and 3, we
need only show that G is t-diagnosable. Suppose not, then
there exists an indistinguishable pair of sets F1; F2 � V ,
F1 6¼ F2, and jFij � t, i ¼ 1; 2. By condition 2.b of
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Definition 3, there exists a vertex v 2 V such that NðvÞ �
F1 and NðvÞ � F2. By condition 2, jNðvÞj � t. However,
jF1j � t and jF2j � t. Hence, F1 ¼ F2 ¼ NðvÞ. This contra-
dicts the fact that F1 6¼ F2. The lemma follows. tu

We now give another necessary and sufficient condition
for checking whether a system is strongly t-diagnosable. The
motivation of these conditions is as follows: Let GðV ;EÞ be
a strongly t-diagnosable system. Suppose that G is
ðtþ 1Þ-diagnosable. Then, by Theorem 2, for every set
S � V , 0 � p � t, where jSj ¼ p, each component C of G�
S satisfies jVC j � 2ððtþ 1Þ � pÞ þ 1. Otherwise, G is
t-diagnosable, but not ðtþ 1Þ-diagnosable. Then, there exists
an indistinguishable pair ðF1; F2Þ, F1 6¼ F2, with jFij � tþ 1,
i ¼ 1; 2. By condition 2.b of Definition 3, there exists a vertex
v 2 V such that NðvÞ � F1 and NðvÞ � F2, i ¼ 1; 2. Note that
�ðGÞ � t and, therefore, jNðvÞj � t. It means that fvg is a
trivial component of G� ðF1

T
F2Þ. Setting S ¼ F1

T
F2 and

jSj ¼ t, G� S has a trivial component.

Theorem 3. A system G ¼ ðV ;EÞ is strongly t-diagnosable if
and only if, for each vertex set S � V with cardinality jSj ¼ p,

0 � p � t, the following two conditions are satisfied:

1. For 0 � p � t� 1, every component C of G� S
satisfies jVC j � 2ððtþ 1Þ � pÞ þ 1 and

2. for p ¼ t, either a) every component C of G� S
satisfies jVC j � 3 or else b) G� S contains at least one
trivial component. (Remark: 2ððtþ 1Þ � pÞ þ 1 ¼ 3 as
p ¼ t.)

Proof. We use Theorem 2 to prove the sufficiency of
conditions 1 and 2. Let S be a set of vertexices with
jSj ¼ p, 0 � p � t� 1. By condition 1, every component C
of G� S satisfies jVC j � 2ððtþ 1Þ � pÞ þ 1 � 2ðt� pÞ þ 1.
Then, by Theorem 2, G is t-diagnosable.

To show that G is strongly t-diagnosable, we need to
prove that condition 2 of Definition 3 holds. Suppose that
conditions 1 and 2.a are both satisfied. Then, by
Theorem 2, G is ðtþ 1Þ-diagnosable. Now, consider the
case that G is not ðtþ 1Þ-diagnosable. Let ðF1; F2Þ be an
indistinguishable pair, F1 6¼ F2, with jF1j � tþ 1 and
jF2j � tþ 1. We let S ¼ F1

T
F2 and X ¼ V � ðF1

S
F2Þ,

then 0 � p � t, where jSj ¼ p. Since F1 and F2 are
indistinguishable, by Lemma 4, there is no edge between
X and F14F2. Therefore, in G� S, F14F2 is discon-
nected from the other components. Observe that
jF14F2j � 2ððtþ 1Þ � pÞ, by condition 1, p cannot be in
t h e r a n g e f r om 0 t o t� 1. S o , p ¼ t a n d
jF14F2j � 2ððtþ 1Þ � pÞ ¼ 2ððtþ 1Þ � tÞ ¼ 2. Then, by
condition 2.b, G� S must have a trivial component
fvg. So, NðvÞ � S. G is t-diagnosable by condition 2 of
Corollary 1, jNðvÞj � t. Hence, S ¼ NðvÞ. Since
S ¼ F1

T
F2, NðvÞ � F1, and NðvÞ � F2. Therefore, G is

strongly t-diagnosable.
This proves the sufficiency. Next, we show that

conditions 1 and 2 are also necessary.
To show condition 1, suppose on the contrary that

there exists a set of vertices S � V with jSj ¼ p,
0 � p � t� 1, such that G� S has a component with
strictly less than 2ððtþ 1Þ � pÞ þ 1 vertices. Let C be such
a component with jVC j � 2ððtþ 1Þ � pÞ. We can partition

VC into two disjoint subsets A1 and A2, A1

S
A2 ¼ VC and

A1

T
A2 ¼ ;, with jAij � ðtþ 1Þ � p, i ¼ 1; 2. Let F1 ¼

A1

S
S and F2 ¼ A2

S
S. Then, jFij � tþ 1, i ¼ 1; 2, and

F1 and F2 are indistinguishable by Lemma 4. Since G is
strongly t-diagnosable, by condition 2.b of Definition 3,
there exists a vertex v such that NðvÞ � F1 and
NðvÞ � F2. G is t-diagnosable, by Corollary 1, each vertex
of G has degree at least t. So, jNðvÞj � t. However,
NðvÞ � F1

T
F2 ¼ S and jSj ¼ p � t� 1; this is a contra-

diction. Thus, condition 1 is necessary.
Now, we prove that condition 2 is necessary. Let S be a

set of vertex with jSj ¼ p and p ¼ t. Suppose that G is
ðtþ 1Þ-diagnosable. By Theorem 2, for p ¼ t, every compo-
nentC ofG� S satisfies jVC j � 2ððtþ 1Þ � tÞ þ 1 ¼ 3. That
is, condition 2.a holds if G is ðtþ 1Þ-diagnosable.
Otherwise, G is not ðtþ 1Þ-diagnosable and there exists
a component C in G� S with strictly less than three
vertices, jVC j � 2. We have to show that there is a trivial
component in G� S. If jVC j ¼ 1, we are done. Assume
that jVC j ¼ 2, say, VC ¼ fv1; v2g. Let F1 ¼ S

S
fv1g and

F2 ¼ S
S
fv2g. Then, jF1j ¼ tþ 1, jF2j ¼ tþ 1, and F1 and

F2 are indistinguishable. Since G is strongly t-diagnosable
by condition 2.b of Definition 3, there exists a vertex v
such that NðvÞ � F1 and NðvÞ � F2. We have S ¼ F1

T
F2

and NðvÞ � S. Therefore, fvg is a trivial component in
G� S; this proves condition 2.b.

Consequently, the theorem holds. tu

The above theorem again states that a strongly
t-diagnosable system is almost ðtþ 1Þ-diagnosable, if it is not
so. The only case that stops it from being ðtþ 1Þ-diagnosable
occurs in the following situation: All the neighboring vertices
NðvÞ of some vertex v are faulty simultaneously.

In previous studies, the diagnosability of many practical
interconnection networks has been explored. Actually,
some of them are not only n-diagnosable, but also strongly
n-diagnosable, for example, the Hypercube Qn, the Crossed
cubeCQn, theMöbius cubeMQn, and the Twisted cube TQn

are so. In the following, we shall prove that all members in
the cube family are strongly n-diagnosable for n � 4.

A family of interconnection networks, called the Match-

ing Composition Networks (MCN) [18], which can be

constructed from two graphs G1 and G2 with the same

number of vertices by adding a perfect matching M

between the vertices of G1 and G2. We shall call these two

graphs G1 and G2 the M-components of MCN. Formally, we

use the notation G1

L
M G2 to denote an MCN, which has

vertex set V ðG1

L
M G2Þ ¼ V ðG1Þ

S
V ðG2Þ and edge set

EðG1

L
M G2Þ ¼ EðG1Þ

S
EðG2Þ

S
M. MCN includes many

well-known interconnection networks as special cases, such

as the Hypercube Qn, the Crossed cube CQn, the Twisted

cube TQn, and the Möbius cube MQn.
Under the comparison model [19], [20], it is proven that a

MCNwith two t-connected and t-diagnosableM-components
is ðtþ 1Þ-diagnosable in [18]. In the following theorem, we
shall show that an MCN with two t-diagnosable M-compo-
nents is strongly ðtþ 1Þ-diagnosable under the PMCmodel.

Theorem 4. Let G1ðV1; E1Þ, G2ðV2; E2Þ be two t-diagnosable
systems with the same number of vertices, where t � 2. Then,
MCN G ¼ G1

L
M G2 is strongly ðtþ 1Þ-diagnosable.
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Proof. We use Theorem 3 to prove it. Let G ¼ GðV ;EÞ ¼
G1

L
M G2 and S � V with jSj ¼ p, 0 � p � tþ 1. Let

S1 ¼ S
T
V1, S2 ¼ S

T
V2, jS1j ¼ p1, and jS2j ¼ p2. In the

following proof, we consider two cases: 1) S1 ¼ ; or S2 ¼
; and 2) S1 6¼ ; and S2 6¼ ;. We shall prove that: i) jVC j �
2ððtþ 2Þ � pÞ þ 1 for every component C of G� S as 0 �
p � t and ii) for p ¼ tþ 1, either a) every component C of
G� S satisfies jVC j � 3 or else b) G� S contains at least
one trivial component. Then, by Theorem 3, G is strongly
ðtþ 1Þ-diagnosable.

Case 1: S1 ¼ ; or S2 ¼ ;.
Without loss of generality, assume S1 ¼ ; and S2 ¼ S.

Weknow that each vertex ofV2 has an adjacent neighbor in
V1, soG� S is connected. The only componentC ofG� S
isG� S itself.Hence, jVC j ¼ jV � Sj ¼ jV1j þ jV2j � p.Gi is
t-diagnosable, i ¼ 1; 2, by Corollary 1, jVij � 2tþ 1. So,
jVC j � 2ð2tþ 1Þ � p � 2ððtþ 2Þ � pÞ þ 1 for t � 2. That is,
conditions 1 and 2.a of Theorem 3 are satisfied.

Case 2: S1 6¼ ; and S2 6¼ ;.
S1 6¼ ; and S2 6¼ ;, it implies p1 � 1 and p2 � 1. Then,

we divide the case into two subcases: 2.a) both p1 � t� 1
and p2 � t� 1 and 2.b) either p1 ¼ t or p2 ¼ t. Note that
0 � p � tþ 1 and p ¼ p1 þ p2. For subcase 2.a), 1 � p1 �
t� 1 and 1 � p2 � t� 1 and, for subcase 2.b), either p1 ¼
t and p2 ¼ 1 or p2 ¼ t and p1 ¼ 1.

Subcase 2.a: 1 � p1 � t� 1 and 1 � p2 � t� 1.
Let C1 be a component of G1 � S1. G1 is

t-diagnosable by Theorem 2, jVC1
j � 2ðt� p1Þ þ 1. We

claim that 2ðt� p1Þ þ 1 � p2 þ 1. Since p ¼ p1 þ p2,
2ðt� p1Þ þ 1 ¼ 2ðt� ðp� p2ÞÞ þ 1 ¼ 2p2 þ 2ðt� pÞ þ 1.
Suppose p � t, jVC1

j � 2p2 þ 1. Otherwise, p ¼ tþ 1.
Since p1 � t� 1, p2 � 2 and 2p2 þ 2ðt� pÞ þ 1 � p2 þ 1.
Hence, jVC1

j � 2ðt� p1Þ þ 1 � p2 þ 1. That is, VC1
has at

least one adjacent neighbor v 2 V2 and v 62 S2. G2 is
t-diagnosable by Theorem 2, every component of G2 � S2

has at least 2ðt� p2Þ þ 1 vertices. Let C2 be the
component of G2 � S2 such that v 2 VC2

and let C be
the component of G� S such that VC1

S
VC2

� VC . Then,

jVC j � jVC1
j þ jVC2

j � ð2ðt� p1Þ þ 1Þ þ ð2ðt� p2Þ þ 1Þ
¼ 2ð2t� pþ 1Þ � 2ððtþ 2Þ � pÞ þ 1

as t � 2. So, every component of G� S has at least 2ððtþ
2Þ � pÞ þ 1 vertices in this subcase. It means that
conditions 1 and 2.a of Theorem 3 are satisfied.

Subcase 2.b: Either p1 ¼ t and p2 ¼ 1 or p2 ¼ t and
p1 ¼ 1.

Without loss of generality, assume p2 ¼ t and p1 ¼ 1.
Since p ¼ p1 þ p2 ¼ tþ 1, we need only to prove either
condition 2.a or 2.b of Theorem 3 holds. Let C1 be a
component of G1 � S1. G1 i s t-diagnosable by
Theorem 2, jVC1

j � 2ðt� p1Þ þ 1 ¼ 2ðt� 1Þ þ 1. Since
t � 2, jVC1

j � 2ðt� 1Þ þ 1 � 3. So, the component of G�
S containing the vertex set VC1

has at least three vertices.
Let C2 be a component of G2 � S2, NðVC2

; V2Þ � S2. If
VC2

has some adjacent neighbor v1 2 V1 and vertex v1
belongs to some component C1 of G1 � S1, then the
component C containing the two vertex sets VC1

and VC2

has at least four vertices. Thus, condition 2.a of
Theorem 3 holds. Otherwise, NðVC2

; V1Þ � S1. Since
jS1j ¼ p1 ¼ 1, jNðVC2

; V1Þj ¼ 1. That is, jVC2
j ¼ 1 and

NðVC2
Þ � S1

S
S2. Hence, C2 is a trivial component of

G� S and, therefore, condition 2.b of Theorem 3 holds.
Consequently, the theorem follows. tu

For t ¼ 1, the above result is not necessarily true; we give

an example shown in Fig. 2. Let G1 and G2 be two path

graphs of length four with vertex sets fu1; u2; u3; u4; u5g and

fv1; v2; v3; v4; v5g, respectively. Let G be the Matching

Composition Network constructed by adding a perfect

matching (the dashed lines in Fig. 2a) between G1 and G2.

By Lemma 3, both G1 and G2 are 1-diagnosable and G is

2-diagnosable. See Fig. 2b, let F1 ¼ fu1; u2; v2g and

F2 ¼ fv1; v2; u2g. By Lemma 4, F1 and F2 are indistinguish-

able, but there no vertex exists v 2 V ðGiÞ, i ¼ 1; 2, such that

NðvÞ � F1 andNðvÞ � F2. So,G is not strongly 2-diagnosable.
It follows from Theorem 4 and Definition 3 that the

following corollary holds.

Corollary 2. Let G1ðV1; E1Þ, G2ðV2; E2Þ be two t-diagnosable
systems with the same number of vertices, where t � 2. Then,
MCN G ¼ G1

L
M G2 is ðtþ 1Þ-diagnosable.

Applying Theorem 4, all systems in the cube family

are strongly ðtþ 1Þ-diagnosable if their subcubes are

t-diagnosable for t � 2. The Hypercube Qn, the Crossed

cubeCQn, the Twisted cube TQn, and theMöbius cubeMQn

are well-known members in the cube family. For n ¼ 2,

these cubes are all isomorphic to the cycle of length four;

they are 1-diagnosable, but not 2-diagnosable. For n ¼ 3,

these cubes are all 3-connected, by Lemma 3, they are

3-diagnosable. So, we have the following corollary.

Corollary 3. The Hypercube Qn, the Crossed cube CQn, the
Möbius cube MQn, and the Twisted cube TQn are all strongly
n-diagnosable for n � 4.

We now give some examples which are not strongly
t-diagnosable. Consider the three-dimensional hypercube
Q3, it is 3-diagnosable, but not strongly 3-diagnosable due
to the fact that jV ðQ3Þj ¼ 8 � 2ðtþ 1Þ þ 1 as t ¼ 3, which
contradicts condition 1 of Lemma 8. Let Cn be a cycle of
length n, n � 7. By Lemma 3, Cn is 2-diagnosable, but it is
not strongly 2-diagnosable. Another nontrivial example is
presented in Fig. 3. This graph G is 3-regular, 2-connected
and, by Theorem 2, it is 3-diagnosable. As shown in Fig. 3,
F1 ¼ f1; 2; 5; 6g and F2 ¼ f3; 4; 5; 6g. ðF1; F2Þ is an indistin-
guishable pair, but there does not exist any vertex v in V ðGÞ
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Fig. 2. An example of nonstrongly ðtþ 1Þ-diagnosable as t ¼ 1.



such that NðvÞ � F1 and NðvÞ � F2. By Definition 3, the
graph is not strongly 3-diagnosable.

4 CONDITIONAL DIAGNOSABILITY OF Qn

Consider a system G with diagnosability tðGÞ ¼ t; so G is
t-diagnosable but not ðtþ 1Þ-diagnosable. In previous
research on diagnosability, the investigated networks are
often strongly t-diagnosable, for example, members in the
cube family are so. Given a system G, suppose that it is
strongly t-diagnosable but not ðtþ 1Þ-diagnosable. As we
mentioned before, the only case that stops it from being
ðtþ 1Þ-diagnosable is that there exists a vertex v whose
neighboring vertices are faulty simultaneously. We are,
therefore, led to the following question: How large can
the maximum value of t be such that G remains
t-diagnosable under the condition that every faulty set F

satisfies NðvÞ 6� F for each vertex v 2 V ?
For classical measurement of diagnosability, it is usually

assumed that processor failures are statically independent.
It does not reflect the total number of processors in the
system and the probabilities of processor failures. In [21],
Najjar and Gaudiot have proposed fault resilience as the
maximum number of failures that can be sustained while
the network remains connected with a reasonably high
probability. For hypercube, the fault resilience is shown as
25 percent for the four-dimensional cube Q4 and it increases
to 33 percent for the 10-dimensional cube Q10. More
particularly, for the 10-dimensional cube Q10, 33 percent
of processors can fail and the network still remains
connected with a probability of 99 percent. They also gave
a conclusion that large-scale systems with a constant degree
are more susceptible to failures by disconnection than
smaller networks. With the observation of Lemma 4, a
connected network gives higher probability to diagnosis
faulty processors and has better ability to distinguish any
two sets of processors.

Motivated by the deficiency of the classical measurement
of diagnosability and the broadness of a system being
strongly t-diagnosable, we introduce a measure of condi-
tional diagnosability by claiming the property that any
faulty set cannot contain all neighbors of any processor. We
formally introduce some terms related to the conditional
diagnosability. A faulty set F � V is called a conditional
faulty set if NðvÞ 6� F for any vertex v 2 V . A system
GðV ;EÞ is conditionally t-diagnosable if F1 and F2 are
distinguishable, for each pair of conditional faulty sets F1,

F2 � V , and F1 6¼ F2, with jF1j � t and jF2j � t. The
conditional diagnosability of a system G, written as tcðGÞ, is
defined to be the maximum value of t such that G is
conditionally t-diagnosable. It is clear that tcðGÞ � tðGÞ.
Lemma 9. Let G be a network system. Then, tcðGÞ � tðGÞ.

LetF1; F2 � V andF1 6¼ F2.We say ðF1; F2Þ is a distinguish-
able conditional-pair (an indistinguishable conditional-pair,
respectively) if F1 and F2 are conditional faulty sets and are
distinguishable (indistinguishable, respectively).

It follows from the definition that a strongly t-diagnosable
system is clearly conditionally ðtþ 1Þ-diagnosable. However,
the conditional diagnosability of some strongly t-diagnosable
systems can be far greater than tþ 1. This motivates us to
study the conditional diagnosability of the hypercube.

Lemma 10. Let G be a strongly t-diagnosable system. Then, G is
conditionally ðtþ 1Þ-diagnosable.

Before discussing the conditional diagnosability, we have
some observations as follows: Let F1; F2 � V be an indis-
tinguishable conditional-pair. Let X ¼ V � ðF1

S
F2Þ. Then,

there is no edge between X and F14F2. So, NðF14F2; XÞ ¼
� and NðX;F14F2Þ ¼ �. Let vertex v 2 F1 � F2 (or
v 2 F2 � F1). Then, NðvÞ � ðF1

S
F2Þ. F1 is a conditional

faulty set, so NðvÞ 6� F1 and NðvÞ
T
ðF2 � F1Þ 6¼ �. Similarly,

F2 i s a cond i t i ona l f au l ty se t , NðvÞ 6� F2 and
NðvÞ

T
ðF1 � F2Þ 6¼ �. S o , jNðvÞ

T
ðF1 � F2Þj � 1 a n d

jNðvÞ
T
ðF2 � F1Þj � 1 for every vertex v 2 F14F2. Now,

consider a vertex u 2 X ¼ V � ðF1

S
F2Þ. Since F1 and F2 are

an indistinguishable conditional-pair, NðuÞ
T
ðF14F2Þ ¼ �,

NðuÞ 6� F1 and NðuÞ 6� F2. So, NðuÞ 6� ðF1

S
F2Þ. Therefore,

every vertex u 2 X has at least one neighbor inX (see Fig. 4).
We state this fact in the following lemma.

Lemma 11. Let GðV ;EÞ be a system. Given an indistinguishable
conditional-pair ðF1; F2Þ, F1 6¼ F2, the following two condi-
tions hold:

1. jNðuÞ
T
ðV � ðF1

S
F2ÞÞj � 1 f o r u 2 ðV �

ðF1

S
F2ÞÞ and

2. jNðvÞ
T
ðF1 � F2Þj � 1 and jNðvÞ

T
ðF2 � F1Þj � 1

for v 2 F14F2.

Let ðF1; F2Þ be an indistinguishable conditional-pair and
let S ¼ F1

T
F2. By the above observations, every compo-

nent of G� S is nontrivial. Moreover, for each component
C1 of G� S, if VC1

T
ðF14F2Þ ¼ �, degC1

ðvÞ � 1 for v 2 VC1
;

for each component C2 of G� S, if VC2

T
ðF14F2Þ 6¼ �,

degC2
ðvÞ � 2 for v 2 VC2

. To find the conditional diagnosa-
bility of the hypercube Qn, we need to study the cardinality
of the set S.
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First, we give an example to show that the conditional
diagnosability of the hypercube Qn is no greater than
4ðn� 2Þ þ 1. As shown in Fig. 5, we take a cycle of length
four in Qn, let fv1; v2; v3; v4g be the four consecutive vertices
on this cycle, and let F1 ¼ Nðfv1; v2; v3; v4gÞ

S
fv1; v2g and

F2 ¼ Nðfv1; v2; v3; v4gÞ
S
fv3; v4g. It is a simple matter to

check that ðF1; F2Þ is an indistinguishable conditional-pair.
Note that the hypercube Qn has no triangle and any two
vertices have at most two common neighbors. As we can
s e e , jF1 � F2j ¼ jF2 � F1j ¼ 2 and jF1

T
F2j ¼ 4ðn� 2Þ.

Hence, Qn is not conditionally ð4ðn� 2Þ þ 2Þ-diagnosable
and tcðQnÞ � 4ðn� 2Þ þ 1. Then, we shall show that Qn is, in
fact, conditionally t-diagnosable, where t ¼ 4ðn� 2Þ þ 1.

Lemma 12. tcðQnÞ � 4ðn� 2Þ þ 1 for n � 3.

LetS bea set ofvertices,S � V ðQnÞ. Suppose thatQn � S is
disconnected andC is a component ofQn � S.We need some
results on the cardinalities of S and VC under some restricted
conditions. The results are listed in Lemmas 13 and 14.

These two lemmas are both proven by dividing Qn

into two Qn�1s, denoted by QL
n�1 and QR

n�1. To
simplify the explanation, we define some symbols as
follows: VL ¼ V ðQL

n�1Þ, VR ¼ V ðQR
n�1Þ, CL ¼ QL

n�1

T
C,

CR ¼ QR
n�1

T
C, VCL

¼ V ðCLÞ, VCR
¼ V ðCRÞ, SL ¼ VL

T
S,

and SR ¼ VR

T
S.

The following result is also implicit in [16].

Lemma 13. Let Qn be the n-dimensional hypercube, n � 3, and
let S be a set of vertices S � V ðQnÞ. Suppose that Qn � S is
disconnected. Then the following two conditions hold:

1. jSj � n and
2. If n � jSj � 2ðn� 1Þ � 1, then Qn � S has exactly

two components, one is trivial and the other is
nontrivial. The nontrivial component of Qn � S
contains 2n � jSj � 1 vertices.

Proof. Since �ðQnÞ ¼ n [24], condition 1 holds. We need only
to prove condition 2 is true. Because Qn � S is discon-
nected, there are at least two components in Qn � S. We
consider three cases: 1)Qn � S contains at least two trivial
components, 2) Qn � S has at least two nontrivial
components, 3) there are exactly one trivial component
andonenontrivial component inQn � S. In cases 1) and 2),
we shall prove that jSj � 2ðn� 1Þ. Then, n � jSj �
2ðn� 1Þ � 1 implies Qn � S belongs to case 3).

Case 1: Qn � S contains at least two trivial compo-
nents.

Let vi 2 V , i ¼ 1; 2 and fv1g; fv2g � V ðQnÞ be two
trivial components of Qn � S. It means that Nðv1Þ � S
and Nðv2Þ � S. For Qn, it is not difficult to see that any

two vertices have at most two common neighbors. That
is, jNðv1Þ

T
Nðv2Þj � 2. Hence,

jSj � jNðv1Þ
[

Nðv2Þj ¼ jNðv1Þj þ jNðv2Þj � jNðv1Þ
\

Nðv2Þj
� 2n� 2 ¼ 2ðn� 1Þ:

Case 2:Qn � S has at least two nontrivial components.
We prove, by induction on n, that jSj � 2ðn� 1Þ. For

n ¼ 3, suppose n � jSj � 2ðn� 1Þ � 1, which implies that
jSj ¼ 3. The connectivity of Q3 is 3. By Lemma 7, the only
vertex cut S with jSj ¼ 3 in Q3 is S ¼ NðvÞ for some
vertex v 2 V ðQ3Þ. It follows that Q3 � S has exactly two
components, one is trivial and the other is nontrivial.
Therefore, if Q3 � S has at least two nontrivial compo-
nents, jSj � 2ðn� 1Þ, where n ¼ 3. Assume the case
holds for some n� 1, n� 1 � 3. We now show that it
holds for n.

Let C and C0 be two nontrivial component of Qn � S.
So, jVC j � 2. It is feasible to divide Qn into the two
disjoint Qn�1s, denoted by QL

n�1 and QR
n�1, such that

jVCL
j � 1 and jVCR

j � 1. There is another component C0 of
Qn � S, so at least one of the two graphs QL

n�1 � SL and
QR

n�1 � SR is disconnected.

Suppose that both QL
n�1 � SL and QR

n�1 � SR are

disconnected. Since �ðQn�1Þ ¼ n� 1, jSLj � n� 1 and

jSRj � n� 1. Then, jSj ¼ jSLj þ jSRj � 2ðn� 1Þ. Other-

wise, one of the two subgraphs QL
n�1 � SL and QR

n�1 � SR

is connected. Without loss of generality, assume that
QL

n�1 � SL is connected and QR
n�1 � SR is disconnected.

Then, VL ¼ VCL

S
SL and the other nontrivial component

C0 of Qn � S is completely contained in QR
n�1 � SR. Since

VC0 is disconnected from VCL
, the corresponding matched

vertices ofVC0 inQL
n�1 are inSL. That is, NðVC0 ; QL

n�1Þ � SL.

Hence, jSLj � jVC0 j � 2.
If jSRj � 2ðn� 2Þ, then

jSj ¼ jSLj þ jSRj � 2þ 2ðn� 2Þ ¼ 2ðn� 1Þ:

Otherwise, n� 1 � jSRj � 2ðn� 2Þ � 1, by induction
hypothesis that QR

n�1 � SR cannot have two nontrivial
components and, by the result of Case 1, QR

n�1 � SR has
exactly two components, one is trivial and the other is
nontrivial. We know that QR

n�1 � SR has CR and C0 as its
components and C0 is a nontrivial component. So, CR

must be a trivial component of QR
n�1 � SR and

jVC0 j ¼ 2n�1 � jSRj � 1. Note that NðVC0 ; QL
n�1Þ � SL.

Then, jSj ¼ jSLj þ jSRj � jVC0 j þ jSRj ¼ 2n�1 � jSRj � 1þ
jSRj ¼ 2n�1 � 1 � 2ðn� 1Þ for n � 4.

Consequently, condition 2 is true and the lemma
holds. tu

Suppose that Qn � S is disconnected, every component
of Qn � S is nontrivial, and there exists one component C of
Qn � S such that degCðvÞ � 2 for every vertex v in C. In view
of the example given in Fig. 4 and Lemma 11, we shall
prove that either jSj is sufficiently large or else jVC j is large,
as stated in the following lemma.

Lemma 14. Let Qn be the n-dimensional hypercube and n � 5
and let S be a vertex set S � V ðQnÞ. Suppose that Qn � S is
disconnected and every component of Qn � S is nontrivial and
suppose that there exists one component C of Qn � S such that
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Fig. 5. An indistinguishable conditional-pair ðF1; F2Þ, where

jF1j ¼ jF2j ¼ 4ðn� 2Þ þ 2.



degCðvÞ � 2 for every vertex v in C. Then, one of the following

two conditions holds:

1. jSj � 4ðn� 2Þ or
2. jVC j � 4ðn� 2Þ � 1.

Proof. Since degCðvÞ � 2 for everyvertex v inC, it is feasible to

divide Qn into two disjoint Qn�1s, denoted by QL
n�1 and

QR
n�1, such that V ðQL

n�1

T
CÞ 6¼ � and V ðQR

n�1

T
CÞ 6¼ �.

Let CL ¼ QL
n�1

T
C and CR ¼ QR

n�1

T
C. For each vertex x

inCL (y inCR, respectively), it has at most one neighbor in

CR (CL, respectively). Hence, degCL
ðxÞ � 1 and degCR

ðyÞ �
1 for x 2 VCL

and y 2 VCR
, respectively.

Qn � S is disconnected, there are at least two compo-

nents in Qn � S. Let SL ¼ VL

T
S and SR ¼ VR

T
S. Note

that both QL
n�1 and QR

n�1 contain some nonempty part of

the component C. So, at least one of the two subgraphs

QL
n�1 � SL andQR

n�1 � SR is disconnected. In the following

proof, we investigate two cases: 1) One of QL
n�1 � SL and

QR
n�1 � SR is connected, 2) both QL

n�1 � SL and QR
n�1 � SR

are disconnected.
Case 1: One of QL

n�1 � SL and QR
n�1 � SR is connected

and the other is disconnected.

Without loss of generality, assume QL
n�1 � SL is

connected and QR
n�1 � SR is disconnected. Let C0 be

another component of Qn � S other than C. Then, VL ¼
SL

S
VCL

and the component C0 of Qn � S is in

QR
n�1 � SR � VCR

. Since CR and C0 are both nontrivial

components, by Lemma 13, jSRj � 2ðn� 2Þ. If

jSLj � 2ðn� 2Þ, then jSj ¼ jSLj þ jSRj � 4ðn� 2Þ and

condition 1 holds. Otherwise, jSLj � 2ðn� 2Þ � 1. Then,

jVCL
j ¼ 2n�1 � jSLj � 2n�1 � 2ðn� 2Þ þ 1. That is, jVC j ¼

jVCL
j þ jVCR

j � ð2n�1 � 2ðn� 2Þ þ 1Þ þ 2 ¼ 2n�1 � 2ðn�
2Þ þ 3 � 4ðn� 2Þ � 1 for n � 4 and condition 2 holds.

Case 2: Both QL
n�1 � SL and QR

n�1 � SR are discon-
nected.

By Lemma 13, we consider the following three
subcases:

2a. jSLj � 2ðn� 2Þ and jSRj � 2ðn� 2Þ,
2b. n� 1 � jSLj � 2ðn� 2Þ � 1 and

n� 1 � jSRj � 2ðn� 2Þ � 1, and
2c. either jSLj � 2ðn� 2Þ, n� 1 � jSRj � 2ðn� 2Þ � 1

or jSRj � 2ðn� 2Þ, n� 1 � jSLj � 2ðn� 2Þ � 1.

Subcase 2.a: jSLj � 2ðn� 2Þ and jSRj � 2ðn� 2Þ.
Since jSLj � 2ðn� 2Þ and jSRj � 2ðn� 2Þ,

jSj ¼ jSLj þ jSRj � 4ðn� 2Þ:

Hence, condition 1 holds.
Subcase 2.b: n� 1 � jSLj � 2ðn� 2Þ � 1 and

n� 1 � jSRj � 2ðn� 2Þ � 1.
I n t h i s s u b c a s e , jVCL

j ¼ 2n�1 � jSLj � 1 a n d
jVCR

j ¼ 2n�1 � jSRj � 1. So,

jVC j ¼ jVCL
j þ jVCR

j ¼ 2n � jSj � 2:

Suppose jSj � 4ðn� 2Þ. Then, condition 1 holds. Other-

wise, jSj � 4ðn� 2Þ � 1. Then, jVC j ¼ 2n � jSj � 2 � 2n �
ð4ðn� 2Þ � 1Þ � 2 ¼ 2n � 4ðn� 2Þ � 1 � 4ðn� 2Þ � 1 for

n � 4. Hence, condition 2 holds.

Subcase 2.c: Either jSLj � 2ðn� 2Þ, n� 1 � jSRj �
2ðn� 2Þ � 1 or jSRj � 2ðn� 2Þ,

n� 1 � jSLj � 2ðn� 2Þ � 1:

Without loss of generality, assume that
jSLj � 2ðn� 2Þ, n� 1 � jSRj � 2ðn� 2Þ � 1. T h e n ,
jVCR

j ¼ 2n�1 � jSRj � 1 � 2n�1 � 2ðn� 2Þ. Since

degCL
ðxÞ � 1;

for each vertex x 2 VCL
, we have jVCL

j � 2. Thus, jVC j ¼
jVCL

j þ jVCR
j � 2þ ð2n�1 � 2ðn� 2ÞÞ ¼ 2n�1 � 2ðn� 2Þ þ

2 � 4ðn� 2Þ � 1 for n � 5.
This completes the proof of the lemma. tu

We are now ready to show the conditional diagnosability
of Qn is 4ðn� 2Þ þ 1 for n � 5. Let F1; F2 � V ðQnÞ be an
indistinguishable conditional-pair, n � 5. We shall show
our result by proving that either jF1j � 4ðn� 2Þ þ 2 or
jF2j � 4ðn� 2Þ þ 2. Let S ¼ F1

T
F2. We consider two cases:

1) Qn � S is connected and 2) Qn � S is disconnected.

Lemma 15. Let Qn be the n-dimensional hypercube, n � 5. Let
F1; F2 � V ðQnÞ, F1 6¼ F2, be an indistinguishable condi-
tional-pair and S ¼ F1

T
F2. Then, either jF1j � 4ðn� 2Þ þ

2 or jF2j � 4ðn� 2Þ þ 2.

Proof. Suppose that Qn � S is connected. Then, F14F2 ¼
V ðQn � SÞ and V ðQnÞ ¼ F1

S
F2. Suppose, on the con-

trary, that jF1j � 4ðn� 2Þ þ 1 and jF2j � 4ðn� 2Þ þ 1.
Then,

2n ¼ jF1j þ jF2j � jF1

\
F2j

� ð4ðn� 2Þ þ 1Þ þ ð4ðn� 2Þ þ 1Þ � 0 ¼ 8ðn� 2Þ þ 2:

This contradicts the fact that 2n > 8ðn� 2Þ þ 2 for n � 5.
Hence, the result holds as Qn � S is connected.

Now, we consider the case that Qn � S is discon-
nected, by Lemma 11, Qn � S has a component C with
degCðvÞ � 2 for every vertex v 2 VC . By Lemma 14, we
have jSj � 4ðn� 2Þ or jVC j � 4ðn� 2Þ � 1.

Suppose jSj � 4ðn� 2Þ. Since degCðvÞ � 2 for every

vertex v in C and Qn does not contain any cycle of length

three, so jVC j � 4. With the observation that VC � F14F2,

we conclude that either ðF1 � F2Þ � djVC j
2 e � 2 or

ðF2 � F1Þ � djVC j
2 e � 2. Therefore, either jF1j ¼ jSj þ jF1 �

F2j � 4ðn� 2Þ þ 2 or jF2j ¼ jSj þ jF2 � F1j � 4ðn� 2Þ þ 2.

Otherwise, jVC j � 4ðn� 2Þ � 1. Then, either ðF1 �
F2Þ � djVC j

2 e � 2ðn� 2Þ o r ðF2 � F1Þ � djVC j
2 e � 2ðn� 2Þ.

Because there are at least two nontrivial components in

Qn � S, by Lemma 13, jSj � 2ðn� 1Þ. Hence, jF1j ¼
jSj þ jF1 � F2j � 4ðn� 2Þ þ 2 or

jF2j ¼ jSj þ jF2 � F1j � 4ðn� 2Þ þ 2:

Therefore, for any indistinguishable conditional-pair
F1; F2 � V ðQnÞ, it implies that jF1j � 4ðn� 2Þ þ 2 or
jF2j � 4ðn� 2Þ þ 2. This proves the lemma. tu

By Lemma 12, tcðQnÞ � 4ðn� 2Þ þ 1, and by Lemmas 6
and 15, Qn is conditionally ð4ðn� 2Þ þ 1Þ-diagnosable for
n � 5. Hence, tcðQnÞ ¼ 4ðn� 2Þ þ 1 for n � 5. For Q3 and
Q4, we observe that Q3 is not conditionally 4-diagnosable
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and Q4 is not conditionally 8-diagnosable, as shown in
Fig. 6a and Fig. 6b. So, tcðQ3Þ � 3 and tcðQ4Þ � 7. Hence, the
conditional diagnosabilities of Q3 and Q4 are both strictly
less than 4ðn� 2Þ þ 1.

Q3 is 3-diagnosable and it is not conditionally
4-diagnosable. It follows from Lemma 9 that tcðQ3Þ ¼ 3.
For Q4, we prove that tcðQ4Þ ¼ 7 in the following lemma.

Lemma 16. tcðQ4Þ ¼ 7.

Proof. We already know tcðQ4Þ � 7. Suppose, on the
contrary, that Q4 is not conditionally 7-diagnosable. Let
F1; F2 � V ðQ4Þ be an indistinguishable conditional-pair
with jFij � 7, i ¼ 1; 2, and let S ¼ F1

T
F2. It follows from

Lemmas 11 and 13 that jSj � 2ðn� 1Þ ¼ 6 for n ¼ 4.
Furthermore, jF1 � F2j � 2 and jF2 � F1j � 2. Then,
jF1j � 8 and jF2j � 8, which is a contradiction. So,
tcðQ4Þ ¼ 7. tu

Finally, the conditional diagnosability of hypercube Qn is
stated as follows:

Theorem 5. The conditional diagnosability of Qn is tcðQnÞ ¼
4ðn� 2Þ þ 1 for n � 5, tcðQ3Þ ¼ 3, and tcðQ4Þ ¼ 7.

5 CONCLUSIONS

In probabilistic models of multiprocessor systems, proces-
sors fail independently, but with different probabilities. The
probability that all faulty processors are neighbors of one
processor is very small. In this paper, we propose the
concept of a strongly t-diagnosable system and derive some
conditions for verifying whether a system is strongly
t-diagnosable. To grant more accurate measurement of
diagnosability for a large-scale processing system, we also
introduce the conditional diagnosability of a system under
the PMC model. The conditional diagnosability of the
hypercube Qn is demonstrated to be 4ðn� 2Þ þ 1.

In the area of diagnosability, the comparison model is
another well-known and widely chosen fault diagnosis
model. Hence, it is worth investigating the issue of a system
being strongly t-diagnosable and determining the conditional
diagnosability of a system under the comparison model.

The classical diagnosability of a system is small owing to
the fact that it ignores the unlikelihood of the corresponding
processors failing at the same time. Therefore, it is attractive
work to develop more different measures of diagnosability
based on application environment, network topology,
network reliability, and statistics related to fault patterns.
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Fig. 6. Two indistinguishable conditional-pairs for Q3 and Q4.
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