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ABSTRACT
This paper proposes a robust multivariate threshold vector autoregressive 
model with generalized autoregressive conditional heteroskedasticities and 
dynamic conditional correlations to describe conditional mean, volatility and 
correlation asymmetries in fi nancial markets. In addition, the threshold variable 
for regime switching is formulated as a weighted average of endogenous vari-
ables to eliminate excessively subjective belief in the threshold variable deci-
sion and to serve as the proxy in deciding which market should be the price 
leader. The estimation is performed using Markov chain Monte Carlo methods. 
Furthermore, several meaningful criteria are introduced to assess the forecast-
ing performance in the conditional covariance matrix. The proposed methodol-
ogy is illustrated using daily S&P500 futures and spot prices. Copyright © 
2010 John Wiley & Sons, Ltd.

key words dynamic conditional correlation; generalized autoregressive con-
ditional heteroskedasticity; hedge performance; Markov chain 
Monte Carlo; value at risk

INTRODUCTION

The vector autoregressive (VAR) model, popularized by Sims (1980), has been used widely and 
extensively by economists to study the dynamic behavior of economic variables. However, most 
covariance matrices of fi nancial asset returns are serially correlated, and multivariate generalized 
autoregressive conditional heteroskedastic (GARCH) models that have been introduced to take care 
of this problem have become increasingly popular in fi nancial econometrics in the past decade. A 
number of different multivariate GARCH models have been proposed, including the simplifi ed 
diagonal VECH model of Bollerslev et al. (1988), the BEKK model of Engle and Kroner (1995), 
the constant conditional correlation (CCC) model of Bollerslev (1990), the factor ARCH model of 
Engle et al. (1990) and the dynamic conditional correlation (DCC) model of Engle (2002). In par-
ticular, the DCC-GARCH model is simpler and has successfully solved many practical problems. 
For example, hedges require estimates of the correlation between the returns on the assets. It is well 
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known that fi nancial market volatility changes over time. If the correlations and volatility are chang-
ing, then the hedge ratio should be adjusted to account for the most recent information. In addition, 
the construction of an optimal portfolio with a set of constraints requires a forecast of the covariance 
matrix of returns.

Furthermore, multivariate threshold models are widely applicable, including co-integrated systems. 
A growing body of research in the recent time series literature has concentrated on incorporating 
nonlinear behavior in conventional linear reduced-form specifi cations such as autoregressive and 
moving average models. The motivation for moving away from the traditional linear model with 
constant parameters has typically come from the observation that many economic and fi nancial time 
series are often characterized by regime-specifi c behavior and asymmetric responses to shocks. For 
such series the linearity and parameter constancy restrictions are typically inappropriate and may 
lead to misleading inferences about their dynamics.

We next consider the situation in which each linear regime follows an autoregressive process. For 
instance, we have the well-known threshold autoregressive class of models, the statistical properties 
of which have been investigated in the early work of Tong (1990) and Tsay (1989). Multivariate 
threshold VARs are piecewise linear models with different autoregressive matrices in each regime, 
which is determined by a transition variable (one of the endogenous variables), a delay and a thresh-
old (see Tsay, 1998). They were more recently reconsidered and extended in Hansen (2000) and 
Caner and Hansen (2001), among others. Hansen and Seo (2002) examined a two-regime vector 
error correction model with a single co-integrated vector and a threshold.

Bayesian methods have also recently become popular to researchers in econometrics. The VAR 
model usually has a large number of parameters, which are often estimated by means of maximum 
likelihood or least squares. In the threshold VAR, however, fi nite-sample frequentist analysis of the 
nonlinear functions is diffi cult. For instance, for some distributions of data, the maximum likelihood 
estimation (MLE) does not have an analytical form or simply does not exist, or in some applications 
of VAR models nonlinear functions of VAR parameters are the focus of research. The diffi culties 
faced in the frequentist approach to VAR inference can be circumvented by the Bayesian approach, 
which combines information from observations with researchers’ priors. When the objective of the 
model is to forecast, the Bayesian approach is more satisfactory. This approach consists of imposing 
prior restrictions on the VAR model parameters. The estimates of the model parameters are obtained 
by combining the prior belief and the likelihood, so that more accurate forecasts can be achieved 
(see Bauwens et al., 1999; Vrontos et al., 2003; Osiewalski and Pipień, 2004; So et al., 2005).

In this paper, we present a robust threshold VAR (or VECM)-DCC-GARCH model and use the 
Metropolis–Hastings (MH) algorithm and the Gibbs sampling algorithm to estimate the parameters 
simultaneously. Our model extends existing approaches by admitting thresholds in conditional 
means, conditional volatilities and correlations of multivariate time series. Such an extension allows 
us to account for rich asymmetric effects and dependencies of conditional means, volatilities and 
correlations, as they are often encountered in practical fi nancial applications. In addition, we use the 
concept of Chen and So (2006) to defi ne the threshold variables as the linear combination of endog-
enous variables. This setting can eliminate excessively subjective belief in threshold variable deci-
sion. Besides, the weight coeffi cient can serve as the proxy in deciding which market is the price 
leader and which market is the price follower. Finally, the threshold values in our model are not 
fi xed ex ante but are estimated from the data, together with all other parameters in the model.

We investigate the empirical performance of our model in the S&P500 futures and spot markets. 
Our study attempts to use the posterior odds ratio and Bayes factors as a formal tool for making 
comparisons between competing models. We reduce our testing problem to a Bayesian model 
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selection problem. We can then select the model with a higher posterior odds ratio. We also present 
the performance comparison results of the one-step-ahead forecast in the conditional covariance 
matrix. The forecast results are assessed by several criteria which include the views of statistical 
loss and risk managers.

Based on the estimation results, we fi nd that the asymmetric dynamic structure is obvious in the 
dynamic relationship between the S&P500 futures and spot markets. We also detect that the S&P500 
futures market is the price leader between the S&P500 futures and spot markets. Furthermore, based 
on several in-sample and out-of-sample performance measures in the conditional covariance matrix 
prediction, we fi nd that the threshold model outperforms the linear model across most measurement 
criteria.

The rest of the paper is organized as follows. In the next section, a robust multivariate threshold 
vector autoregressive is introduced. Then, the Bayesian approach is specifi ed including the setting 
of the priors, and then the conditional posterior distributions for relevant parameters are derived. In 
addition, the Markov chain Monte Carlo (MCMC) simulation method and implementation algorithm 
are taken into consideration. We then illustrate the empirical applications and the model performance 
comparisons. Finally brief conclusions are given.

THRESHOLD VAR-DCC-GARCH MODEL

Let Yt be a K-dimensional time series with threshold variable zt−d, so the threshold VAR-DCC-
GARCH model is given by the following equations:
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(g) is the intercept vector, the Φl

(g) for 

l = 1, . . . , Lg are regression coeffi cient matrices in the gth regime, Lg ∈ � is the lag of VAR in 
the gth regime, εt is an innovation term, and d ∈ � is the threshold lag of the model with 
maximum delay d0. �t-1 is the information set up to t − 1, and Ht is the time-varying 
covariance matrix with elements hii,t and hij,t, i = 1, . . . , K, i = 1, . . . , K, j = i + 1, . . . , K. Rt is a 
time-varying correlation matrix, and Dt is a time-varying diagonal matrix with element
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operator, ηt = Dt
−1εt is the vector of standardized errors, Q−(g) is the unconditional correlation matrix 

of εt in the gth regime, and the parameters A(g) and B(g) are symmetric and positive semidefi nite 
matrices. To ensure that Q is positive semidefi nite, we also restrict (ıı′ − A(g) − B(g)) being positive 
semidefi nite. In addition, the threshold values rg must satisfy −∞ = r0 < r1 < . . . < rG = ∞, and thus 
the intervals [rg−1, rg), j = 1, . . . , G, form a partition of the space of zt−d.

The threshold variable zt−d is defi ned by a weighted average of yit−d and this can be viewed as a 
extension of Tsay (1998) and Brooks (2001), who set the threshold variable to be a specifi c endog-
enous variable,yit−d. We think that this setting of the threshold variable may have the following 
advantages and economic meanings. First, when the yit−d are the returns of different markets, we can 
regard wk and zt−d as the weight and the return of a portfolio without short sales, respectively, and 
the dynamic structure or leverage effect may be infl uenced by the portfolio return. That is, the 
structural change in the markets may rely on the global economic conditions instead of a specifi c 
market condition. Second, the setting of the threshold variable can eliminate excessively subjective 
beliefs in the threshold variable decision and allow the data to choose a more appropriate zt−d by 
estimating the weights, wk. Third, the weights wk can refl ect the relative signifi cance of each endog-
enous variable yit−d. This cannot only govern the time series behavior of Yt but from it we can also 
fi nd which market is the price leader and which markets are price followers.

Under the assumption of conditional normality for the error process in equation (2), the likelihood 
function for the parameters can be expressed as
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where θ is the set of all parameters, P = max(L1, . . . , LG, m1, . . . , mg, n1, . . . , ng, d0), and εt, Dt, 
and Rt obey equations (1), (4), and (5), respectively.

However, when the variables Yt in the model are integrated and of order one or more, performing 
the estimation by means of equation (1) is subject to the hazard of regressions involving nonstation-
ary variables. In addition, Engle and Yoo (1987) have also argued that, in the presence of co-
integration, a VAR model with an error correction mechanism should outperform a VAR over a 
longer forecasting horizon. Therefore, by taking into account the explicitly long-run equilibrium 
relationship, the mean equation (1) is modifi ed to the threshold vector error correction model, which 
can be written as
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, b is the K × γ full rank matrix of 

co-integrating vectors, a(g) is the K × γ full rank matrix of coeffi cients associated with the error 
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correction terms, and the value γ determines the number of co-integrating relationships (γ < K). To 
Avoid the identifi cation problem, we impose the so-called linear normalization where b = (Iγ bo)′. 
Thus the likelihood function for the parameters is similar to equation (7) except that εt must follow 
equation (8).

BAYESIAN INFERENCE AND MCMC IMPLEMENTATION

In this section, we fi rst explain why the Bayesian method is used in this paper to analyze the threshold 
VAR (or VECM)-DCC-GARCH models. The reason is that by using the maximum likelihood 
method it is diffi cult to estimate the parameters in the threshold VAR-DCC-GARCH models. The 
main problems are the large number of parameters to be estimated and the diffi culty of estimation 
due to the positive defi niteness restrictions of the covariance matrix. This will therefore result in 
unstable estimates. In addition, due to the unknown threshold variable zt in this paper, we are pre-
vented from implementing a two-step estimation procedure similar to that considered by Tsay (1998) 
and Brooks (2001). Even if the threshold variable is known, Tsay (1998) showed that the asymptotic 
properties for the threshold lag, d, and the threshold parameter, rg, are hard to infer. Thus, to 
deal with the above unfeasible procedure by using the maximum likelihood method, we extend the 
Bayesian method using MCMC techniques introduced by Chen and So (2006).

The implementation of the Bayesian analysis depends on a willingness to assign probability dis-
tributions not only to the data variable y but also to all unknown parameters. Consider a situation in 
which absolutely weak previous subjective information is known about the phenomenon of interest, 
so as to mitigate frequentist criticisms of intentional subjectivity. In this paper, we choose non-
informative or weakly informative priors for most parameters to interject the least amount of prior 
knowledge. The specifi cation of priors is listed below.

First, we assume that the discrete uniform prior for the threshold lag parameter d with maximum 
delay d0 can be written as π(d) = 1/d0, d = 1, . . . , d0, and does not favor any one of the candidate 
d values over any other. Since the weighted vector w = (w1, . . . , wK) relies on d, the conditional 
prior of w given d, π(w|d) is assumed to be a symmetric Dirichlet distribution, w|d ~ D(δ, . . . , δ ), 
where the hyper-parameter δ > 0. Similarly, zt−d depends on d and w, and so we assume the condi-
tional prior of every threshold parameter, rg, for g = 1, . . . , G − 1, to be a continuously bounded 
uniform distribution, π(rg|d, w) = 1/(rup

(g) − r(g)
low), r (g)

low ≤ rg ≤ rup
(g). The lower and upper bounds of the 

threshold parameters are employed to ensure that at least τ% of the observations are in each regime. 
In addition, τ depends on the number of observations. When the sample size is small, a higher τ is 
recommended. The purpose of this setting is to make the parameter estimates more effi cient and 
more reliable.

We subsequently divide the parameters in each regime into four independent blocks, which are 
the parameters in the VAR model (1, 8), the error correction term (8), the volatility process (4), and 
the dynamic correlation procedure (6), and we assume that the priors are independent between any 
two regimes. For the priors of the VAR parameters, Litterman (1980) and Kinal and Ratner (1986) 
have indicated that VAR sometimes suffers from overparameterization. The requirement that a large 
number of coeffi cients in VAR be estimated often leads to large standard errors for inferences and 
forecasts. The imposition by the Bayesian VAR of some prior restrictions on parameters will usually 
provide more accurate forecasts. In this paper, we adopt Litterman’s (1980) Minnesota prior for 
VAR parameters and make some appropriate modifi cations. For convenience, we defi ne Φ(g) = [Φ0

(g), 
Φ1

(g), . . . , ΦLg
(g)]′, which is a K × (1 + K · Lg) matrix, and consider vectorized Φ(g), vec(Φ(g)), which 
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we denote by φ(g). We assume that the vector φ(g) follows a multivariate normal distribution with zero 
mean and diagonal covariance matrix Σφ. That is, we believe in advance that the unconditional mean 
and short-run dynamics center around zero, and that investors are unable to earn excess returns based 
on this short-run dynamic relationship. In addition, the priors are made independently across ele-
ments of φ(g), and the standard deviation of the coeffi cient φijl

(g), which is an element of φ(g) and 
describes how variable i is affected by variable j of lag l in the gth regime, is given by
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where the hyper-parameter λ controls the tightness of beliefs on φ(g), τi/τj is a correction for the scale 
of series i compared with series j, and the restriction 0 < η < 1 implies that the series are more likely 
to be infl uenced by their own lags than by the lags of other series.

The above model requires that we choose specifi c values for the hyper-parameters λ, τi, τj, and 
η. The correction term τi/τjis used in modifying the inconsistency in variation of each series variable. 
While in principle these should be chosen on the basis of a priori reasoning or knowledge, we will 
in practice follow Litterman (1986) in choosing these as the sample standard deviations of residuals 
from univariate autoregressive models that fi t the individual series in the sample. For the remaining 
hyper-parameters, λ is commonly set from 0.1 to 0.9, and η ranges from 0.2 to 0.5 (see Litterman, 
1986; Doan, 1990). In addition, Villani (2001) showed that the selection of these two parameters 
is not sensitive to the forecasting results. We therefore use λ = 0.5 and η = 0.4 in our empirical 
analysis. We also set the standard deviation of the intercept coeffi cient to 1 to employ a more 
diffuse prior.

For the prior on the long-term structure (i.e., the error correction term) in each regime, we follow 
Geweke (1996) to choose uniform priors for both the matrix of co-integrating vectors b(g) and the 
associated weighting matrix a(g), and the prior can be written as π(a(g), b(g)) ∝ 1. Furthermore, a 
uniform prior with some restrictions is assumed for the parameters of the GARCH and is written as
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where I(·) is the indicator function, which takes on a value of unity if the constraint holds and zero 
otherwise, and ω(g) = (ω1
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Kmg). Finally, we also choose a uniform prior for the dynamic correlation 
structure

 π A B Qg g g I( ) ( ) ( )( ) ∝ ( ), ,  (11)

where ϒ is the set of (A(g), B(g), Q−(g)), which must satisfy the requirement that A(g), B(g), and (ıı′ − A(g) 
− B(g))are symmetric and positive semidefi nite matrices, and Q−(g)is a form of the correlation coeffi -
cient matrix. Therefore, the prior of all unknown parameters in the threshold VAR-DCC-GARCH 
model can be expressed as

ϒ
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Bayesian inference regarding the parameter vector θ conditional upon the data matrix y is con-
structed through the posterior density p(θ|y). Using Bayes’ theorem, the posterior density is formed 
by the prior density π(θ) and the likelihood L(y|θ), and it can be expressed as

 p
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Therefore, the optimal Bayes estimator of θ under quadratic loss is simply the posterior mean, 
which is

 q̂ q q q q= ( ) = ( )∫E dY yp  (14)

However, for many realistic problems, the posterior distribution p(θ|y) may not have an analyti-
cally tractable form, particularly for high dimensions, and so calculating the posterior mean is a 
diffi cult task. In fact, to settle our major problems, we can use numerical or asymptotic methods to 
compute the approximate posterior mean for the full Bayesian model. Because the posterior density 
has a very high dimension and is only known up to a constant, in this paper we adopt the MCMC 
sample algorithm as our tool for this purpose.

We will therefore subsequently use Bayes factors to select the appropriate order of the VAR 
process and to choose between linear (G = 1) and nonlinear (G ≥ 2) versions of our model. When 
comparing any two competing parametric Bayesian models (Mi, Mj) for the same data matrix y, the 
Bayes factor (BF) can be calculated based on the marginal likelihood concept. In general terms, by 
letting θj be the appropriate set of parameters under model Mj, the marginal likelihood can be 
written as

 p M p M p Mj j j j

j

y y( ) = ( ) ( )∫ q q q, d
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where p(y|θ, Mj) and p(θ|Mj) are the sampling density function and the prior density function, 
respectively.

For the Bayesian model selection, we can determine the posterior odds ratio (POR) of Mi against 
Mj by the Bayes factors Bij = p(y|Mi)/p(y|Mj) and the prior odds ratio p(Mi)/p(Mj), and it can be 
expressed as

 PORij
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If there is an absence of a prior preference for either model, i.e., p(Mi) = p(Mj) = 1/2, the Bayes 
factors can be interpreted as a measure of the extent to which the data support Mi over Mj. When Bij 
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> 1 the data prefer Mi over Mj, and when Bij < 1 the data favor Mj over Mi. Thus, in this paper, we 
can compare any two threshold VAR-GARCH time series models of different orders and regimes 
by computing Bayes factors as the ratio of the marginal likelihood concept evaluated along the route 
of Chib (1995).

EMPIRICAL APPLICATIONS

Data description
The models are applied to daily data on the S&P500 index and S&P500 index futures for the period 
3 January 1995 to 31 October 2007. The sample size for each stock market is 3221. Both spot and 
futures prices are collected from TICK DATA. For S&P500 index futures, we switch to a new contract 
as the contract’s maturity approaches in order to construct a continuous futures contract series. To 
avoid thin markets and expiration effects, we roll over to the next nearest contract at least one week 
prior to the expiration of the current contract. The daily spot and futures returns are calculated as 
the differences in the logarithms of daily price indices multiplied by 100. In addition, intraday 
5-minute prices are used to construct the series of realized covariances, as was the case in similar 
related studies in the past.

The descriptive statistics for S&P500 spot and futures returns are summarized in Table I. The 
statistics reported are the sample mean, standard deviation, maximum, minimum, Jarque–Bera (JB) 
statistics, and the Ljung–Box (LB) statistics for the return and the square return series. The standard 
deviation of futures returns is larger than that of the spot returns, indicating that the futures market 
is more volatile than the spot market. Both spot and futures returns are negatively skewed and 
present concerns for excess kurtosis. The JB test statistics provide clear evidence that reject the null 

Table I. Descriptive statistics for S&P500 futures and spot returns

rFt rSt

Mean (%) 0.038 0.038
SD (%) 1.110 1.069
Skewness −0.181 −0.138
Kurtosis 6.882 6.480
Max. (%) 5.814 5.308
Min. (%) −7.706 −7.112
JB 2040.496 1635.338
ADF −58.831 −57.796
Q(12) 28.694 31.957
Q2(12) 902.800 943.49
Johansen test 84.926

Note: This table reports the descriptive statistics for daily S&P500 futures and spot 
returns for the sample period from 3 January 1995 to 31 October 2007. rFt and rSt 
refer to S&P500 futures and spot returns, respectively. Daily returns are calculated 
by 100 × (ln(Pt) − ln(Pt−1)). The values in rows JB, ADF and Johansen are statistics 
of the Jarque–Bera normality test, the augmented Dickey–Fuller unit root test, and 
the Johansen co-integration test, respectively. Q(12) and Q2(12) report the Ljung–
Box (LB) portmanteau test statistics including 12 lags for the return and square 
return series. The critical values at the 5% level of the JB, ADF, Johansen, and LB 
statistics are 5.991, −2.862, 15.495, and 21.026, respectively.
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hypothesis of normality for each returns series and this is mainly due to the presence of skewness 
and excess kurtosis. The augmented Dickey–Fuller unit root test results suggest that both return 
series are stationary. The LB Q statistics indicate possible serial correlations for both returns series. 
Moreover, the Q2 statistics suggest that there are autoregressive conditional heteroskedasticity effects 
on each returns series. The Johansen co-integration test indicates a long-run equilibrium relationship 
between S&P500 spot and futures indices.

Goodness-of-fi t results
In this section, we apply the bivariate threshold VECM-DCC-GARCH model to the S&P500 futures 
and spot markets. We also use two different time lengths (5 years and 10 years) to perform model 
comparisons. In addition, we simplify our model by assuming that L1 = . . . = LG = L, and the 
GARCH(1,1) model is considered to be a parsimonious model that is found to be appropriate in 
most applications. The matrix parameters A(g) and B(g) in equation (6) are also reduced to scale 
parameters. Thus, to ensure that Q is positive semidefi nite, we restrict A(g) + B(g) < 1, for g = 1, . . . , 
G. Therefore, we only need to choose proper L and G based on the Bayes factor criterion.

To implement our MCMC sampling scheme, we carry out 30,000 iterations, which are performed 
with the fi rst 10,000 burn-in iterations discarded, to reach the convergence of every parameter. The 
logarithmic marginal likelihood, the logarithmic Bayes factors, which are on the basis of a simple 
linear VECM(1)-DCC-GARCH(1, 1) model, and the overall ranking of models for different L and 
G, are shown in Table II. For the period 2000–2004, Table II shows that the best model to describe 
the dynamic relationship between the S&P500 futures and spot markets is the two-regime threshold 
VECM(3)-DCC-GARCH(1, 1) model with a logarithm of the marginal likelihood value of −1926.714. 
If we compare the best model with the linear VECM(1)-DCC-GARCH(1, 1) model, i.e., a model in 
which there is no asymmetric effect on the mean, variance, and correlation equations, then the dif-
ference in the logarithmic marginal likelihood is ln(B6,1) = 69.606, which yields a Bayes factor of 
B6,1 = 1.696 × 1030. This means the two-regime threshold VECM(3)-DCC-GARCH(1, 1) model is 
1.696 × 1030 times more likely than the linear VECM(1)-DCC-GARCH(1, 1) model. Table II also 
indicates that the two-regime threshold VECM(3)-DCC-GARCH(1, 1) model is more satisfactory 
than the other competitors considered here, regardless of whether 5-year or 10-year data are used. 
Generally speaking, the results in Table II show that models which consider asymmetric effects and 
longer lags have larger logarithms of marginal likelihood. This suggests that there are asymmetric 
effects on the mean, covariance, or error correction processes in regard to the dynamic relationship 
between the S&P500 futures and spot markets. In addition, the logarithmic marginal likelihood of 
the model with longer lags is larger than that with shorter lags, suggesting that taking longer lags 
into consideration will benefi t the model’s explanatory power.

Bayesian estimation results
In this section, we will illustrate the Bayesian estimation results for the period 1995–2004. The linear 
and threshold VECM(3)-DCC-GARCH(1, 1) models estimation results for the mean equation (8) 
and variance–covariance matrix equations (4–6) for the dynamic relationship between S&P500 
futures and spot markets are presented in Table III. In the three-regime threshold model, the feedback 
effects between each pair of S&P500 futures and spot markets are observed for all kinds of market 
conditions (i.e., downside, neutral, and upside markets). That is, lagged spot (futures) returns help 
to predict current futures (spot) returns. In addition, most lagged spot (futures) returns have negative 
effects on current spot (futures) returns except for the futures returns in the upside market. The 
futures (spot) returns tend to decrease (increase) when the spread is large in order to restore the 
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long-run equilibrium relationship only in the neutral market. The evidence suggests that the S&P500 
futures (spot) price tends to converge to the spot (futures) price and the effect is more apparent in 
the neutral market. Furthermore, the structures of the error correction terms are asymmetric for dif-
ferent market conditions.

The weighted coeffi cient in the threshold variable, w1, is signifi cantly larger than 0.5, especially 
in the three-regime threshold model. This indicates that the S&P500 futures market is the price leader 
whereas the spot market is the price follower. Furthermore, we fi nd that the threshold values, r1 and 
r2, are not symmetric and point out the asymmetric dynamic structures between downside and upside 
markets. For the coeffi cients of the variance covariance equations, we fi nd that the volatility is most 
persistent in the downside market for both the futures and spot markets. However, the persistence 
of the correlation between futures and spot returns has an opposite outcome. In addition, the uncon-
ditional correlation coeffi cients, ρ−, in the downside market is larger than that in the upside market. 
The short-term effects of shocks on the correlation are apparent in all kinds of market conditions, 
while the long-term correlation only infl uences the current correlation in the upside market.

Covariance matrix forecast comparison
In this section, the data from 3 January 2000 to 31 December 2004, consisting of 1256 trading days, 
are used for in-sample estimation and forecasting performance evaluation in the one-step-ahead 
conditional covariance matrix. The 702 observations from 3 January 2005 to 31 October 2007 are 
used for out-of-sample performance evaluation purposes. The out-of-sample forecasting procedure 
is carried out as follows. The models are estimated 702 times based on 702 samples of 1256 obser-
vations. The fi rst sample, starting 3 January 2000 and ending 31 December 2004, is used to forecast 
the covariance matrix of 3 January 2005 based on the estimated model for the fi rst sample. The 
forecast of the covariance matrix is generated for 4 January 2005 based on the estimated model for 
the second sample, starting 4 January 2000 and ending 3 January 2005.These estimation and fore-
casting steps can be repeated 702 times for the available sample and we produce the 702 one-step-
ahead covariance matrix forecasts.

In addition, we present two categories of criteria to measure the forecasting performance of dif-
ferent competitive models. One category is based on the views of the statistical loss function, which 
is a non-negative function that generally increases as the distance between the actual value and the 
forecast value increases, and three different types of criteria are adopted here. The other category of 
performance measure is based on the views of risk managers and two types of criteria are 
introduced.

Statistical loss performance
Three types of loss functions are introduced as follows (IS denotes in-sample and OS denotes 
out-of-sample):

 IS-MAE FCM RCM OS-MAE FCM RCM= − = −
= = +
∑ ∑1 1

1 1T N
t t

t

T

t t
t T

Nout

,  (17)

 IS-MSE FCM RCM OS-MSE FCM RCM= −( ) = −( )
= = +
∑ ∑1 12

1

2

1T N
t t

t

T

t t
t T

Nout

,  (18)
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IS-LINEX FCM RCM FCM RCM

OS-LI
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t t t t
t

T

exp

NNEX FCM RCM FCM RCM
out

ζ ζ ζ( ) = −( )[ ]− −( )−{ }
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∑1

1
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t t t t
t T

N

exp
 (19)

where T = 1256 is the total number of in-sample observations, Nout = 702 is the total number of out-
of-sample observations, and ζ is a given parameter to control the asymmetric effect. FCMt and RCMt 
denote the forecast and realized values at time t, respectively.

The fi rst two loss functions are symmetric, which are the mean absolute error (MAE) statistic and 
the mean square error (MSE) statistic, respectively. The third loss function is asymmetric, which is 
the linear-exponential (LINEX) loss. When ζ is close to 0, the LINEX loss function is nearly sym-
metric and is not much different from the MSE statistic. In the LINEX loss function, positive errors 
are weighed differently from the negative errors when ζ ≠ 0. If ζ > 0 (ζ < 0), the LINEX loss func-
tion is approximately linear (exponential) for FCMt − RCMt < 0 and exponential (linear) for FCMt 
− RCMt > 0. This implies that an overestimate (underestimate) needs to be taken more seriously into 
consideration. More specifi cally, in all the above cases, a lower loss measure indicates a higher 
forecasting power.

As a result of the unobservable property of the covariance matrices, here we use intraday 5-minute 
data to construct the proxies for the daily-realized covariance observations. The concept of the real-
ized volatility has been proposed by French et al. (1987) and Andersen et al. (2001). The realized 
volatility is nothing more than the sum of the squared high-frequency returns over a given sampling 
period. Similarly, we can directly express the realized covariance (RCOV) as

 RCOV t R t j R t j
j

, , ,Δ Δ Δ Δ Δ
Δ

( ) = − + ⋅( ) − + ⋅( )′
=
∑ 1 1

1

1

 (20)

where R(t, Δ) denotes the K × 1 vector of logarithm returns over the [t − Δ, t] time interval.
A comparison of the results of the forecast performance measures in the conditional covariance 

matrix between S&P500 futures and spot returns for the different models is presented in Table IV. 
When looking at the in-sample prediction, we observe that the threshold model yields better perfor-
mance relative to the linear model for the forecast of covariance between the S&P500 futures and 
spot returns, cov(rFt, rSt), regardless of which symmetric (MAE and MSE) or asymmetric (LINEX) 
loss functions are used. The better covariance forecast mainly comes from the improvement in the 
volatility forecast of the S&P500 futures and spot returns, var(rFt) and var(rSt). The results of the 
correlation forecasts between S&P500 futures and spot returns, corr(rFt, rSt), for linear or threshold 
models are similar. For the out-of-sample forecast, two-regime threshold models perform more 
appropriately for the covariance forecast, while three-regime threshold models have worse forecast-
ing ability than linear models except for the VECM(3)-DCC-GARCH(1, 1) model.

Risk management performance
Predictability in the covariance between two assets’ returns, as measured by traditional criteria that 
focus on the size of the forecast error, does not necessarily imply that an investor can make profi ts 
or reduce risk from a trading strategy based on such forecasts. Therefore, we also use the other 
category of performance measure which is based on the views of risk managers, and two types of 
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criteria are used. One involves calculating the value at risk (VaR) as an evaluation of the estimator. 
For a two-asset portfolio with δ1 invested in the fi rst asset and δ2 in the second asset, the one-step-
ahead VaR at time t and at α%, assuming normality, is

 VaR t t t t tr r z h h hα δ δ δ δ δ δα( ) = − +( )− ⋅ + +1 1 2 2 1
2

11 2
2

22 1 2 12ˆ ˆ ˆ ˆ ˆ
, , , , 22,t

⎡
⎣

⎤
⎦  (21)

where za is the right quantile at α%. To compare and evaluate model performances for several 
different model specifi cations, we choose the following criteria. By defi nition, the failure rate (FR) 
is the proportion of returns (in absolute value terms) that exceed the forecast VaR, i.e. 
FR VaR= ( ) + < − ( )( )

=∑1 1 1 2 21
T I r rt t tt

T δ δ α, , , where I(·) is the indicator function. Hence, if the VaR 
model is correctly specifi ed, the failure rate should be equal to the prespecifi ed VaR level. We also 
use the Kupiec (1995) LR test to examine whether the model is correctly specifi ed. To test H0 : f = 
α against H1 : f ≠ α, the LR statistic is LR = −2 ln(αN(1 − α)T−N) + 2 ln((N/T)N(1 − (N/T))T−N), where 
N is the number of VaR violations, T is the total number of observations and f is the theoretical 
failure rate. Under the null hypothesis, the LR test statistic is asymptotically distributed 
as χ2(1).

The fractions of VaR violations and p-values of the Kupiec (1995) failure rate test for a hedged 
portfolio with weights (δFutures, δspot) = (−1, 1) are reported in Table V. For in-sample data, the p-values 
for the null hypothesis of the hedged portfolio are all smaller than 0.05 when the linear model is 
considered. The threshold model performs very well as there are no p-values smaller than 0.05. Thus 
the switch from the linear model to the threshold model yields a signifi cant improvement in the VaR 
performance in the hedged portfolio. For the out-of-sample VaR performance comparison, the 
p-values of the linear and threshold models with the lag of VAR L = 1 are all smaller than 0.05. 
However, for L = 2 and L = 3, we fi nd that the fractions of the VaR violation based on the threshold 
model are closer to the prespecifi ed VaR level than those based on the linear model. In view of the 
in-sample and out-of-sample empirical results, we fi nd that the linear model may sometimes over-
estimate the VaR, and so using the threshold model to calculate the portfolio’s VaR may be more 
appropriate.

Table V. In- and out-of-sample 5% VaR failure rate results for the S&P500 futures–spot hedged portfolio

Model (Mi) (A) Fraction of VaR violation (B) p-value of Kupiec LR test

In-sample Out-of-sample In-sample Out-of-sample

M1 2.070 3.419 0.000 0.042
M2 1.592 3.846 0.000 0.144
M3 2.787 3.989 0.000 0.203
M4 4.459 3.419 0.370 0.042
M5 4.618 4.131 0.529 0.277
M6 5.971 4.131 0.125 0.277
M7 5.573 3.419 0.360 0.042
M8 5.096 4.131 0.877 0.277
M9 5.175 4.558 0.777 0.586

Note: This table shows the 5% VaR forecast results of S&P500 futures–spot hedge portfolios for alternative models. Panel 
(A) is the fraction of VaR violations, and the results of the Kupiec LM test (1995) are shown in panel (B). The in-sample 
data period extends from 3 January 2000 to 31 December 2004 and the out-of-sample data period extends from 3 January 
2005 to 31 October 2007. M1, M2, . . . , M9 refer to the same models as in Table II.
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While futures contracts are popular among investors as a class of speculative assets, they are 
important in the fi nancial markets due to their use as a hedging instrument. Furthermore, hedging 
with futures contracts may be the simplest method to manage market risk resulting from adverse 
movements in the prices of various assets. In this section, we assume the hedger attempts to minimize 
the conditional variance of the spot–futures portfolio. It is well known that the optimal hedge ratio 
(OHR) is the ratio of the conditional covariance between spot and futures returns over the conditional 
variance of the futures return. Thus the one-step-ahead forecasts of optimal hedge ratios can then 
be calculated as

 HR s f ft t t t tr r r* cov , var= ( ) ( )+ +1 1  (22)

where rs and rf are spot and futures returns, respectively. The variance of the estimated optimal 
hedged portfolio can be characterized as

 var( * ), ,r rt t ts fHR− ⋅  (23)

To evaluate hedging performance, the typical criterion is based on the percentage variance reduc-
tion (PVR) of the hedged portfolio relative to the unhedged position. It can be calculated as

 PVR
var hedged portfolio

var unhedged portfolio
%( ) = −

( )
( )

⎛
⎝⎜

⎞
⎠1 ⎟⎟

⎡
⎣⎢

⎤
⎦⎥
×100%  (24)

When the futures contract completely eliminates risk, PVR = 100 is obtained, otherwise PVR = 
0 is obtained when hedging with the futures contract does not reduce risk. Hence a larger PVR 
indicates better hedging performance.

The in- and out-of-sample hedged portfolio variances and hedging effectiveness of alternative 
models for the S&P500 futures contract are presented in Table VI. The variances of hedged portfolio 
returns are calculated under the following 11 alternative models: three linear VECM-DCC-GARCH 
models with different lag parameters L(M1, M2, M3), six threshold VECM-DCC-GARCH models 
with different lag parameters L and the number of regimes G(M4, . . . , M9), hedging with a constant 
OHRs estimate using regression methods of returns and the naïve hedge with a hedge ratio of 1 at 
all times. The results show that the three-regime threshold VECM(3)-DCC-GARCH model has the 
lowest in-sample hedged portfolio variance, with a 94.587% in-sample variance reduction compared 
to the variance of the unhedged position. In addition, the in-sample hedging performance of the 
linear model with L = 1 is even worse than that of OLS or a naïve strategy.

However, active hedgers are likely to be more concerned about future hedging performance. 
Therefore, the comparison of out-of-sample performance is a better way to evaluate our hedging 
strategy. We fi nd that the ranking of out-of-sample hedging effectiveness is very similar to that of 
in-sample hedging effectiveness. The two-regime threshold VECM(2)-DCC-GARCH model has a 
98.145% out-of-sample variance reduction and outperforms all of the linear dynamic and static 
hedging models that we considered. Overall, the dynamic hedge with a threshold model has better 
hedging performance than that with the linear VECM-DCC-GARCH model. This fact may indicate 
that the threshold model has a superior ability to forecast the optimal hedge ratios.
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CONCLUSIONS

We have proposed a robust multivariate VAR-DCC-GARCH model that extends existing approaches 
by admitting multivariate thresholds in conditional means, conditional volatilities and conditional 
correlations. In addition, such threshold variables are defi ned by a weighted average of endogenous 
variables and the weights are estimated from the data. This threshold setting cannot only enhance 
the robustness of the model but also has some economic meaning or value. Moreover, the MCMC 
method is implemented for the Bayesian inference. We have studied the performance of our model 
in an application to daily S&P500 futures and spot prices.

We develop a Bayesian testing scheme for model selection among several competing models and 
select the model with a higher posterior probability. We also adopt several criteria, which are based 
on the views of statistical loss and risk managers, to evaluate the prediction performance of the 
conditional covariance matrix.

In our real data application we fi nd that estimated conditional volatilities are strongly characterized 
by both GARCH and multivariate threshold effects. Dynamic correlations are still apparent between 
the S&P500 futures and spot markets. In addition, the estimation results suggest that the S&P500 
futures market is the price leader between the S&P500 futures and spot markets. Based on a com-
parison of covariance matrix forecasting performance, it is found that the threshold model has better 
in-sample and out-of-sample forecasting performance relative to the linear model across most mea-
surement criteria.
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