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Summary & Conclusions - This paper uses a fuzzy line- 
segment method to calculate the fuzzy unreliability of a system when 
only discrete-interval probabilities of stress & strength inside an 
interference region are available. The discrete-interval probabilities 
are treated as fuzzy numbers. A stress-strength interference model 
and extended operations of fuzzy numbers are used to calculate 
the fuzzy unreliability. Probability density functions are approx- 
imated by piecewise fuzzy line-segments that are expressed by linear 
fuzzy polynomials; the centroid of the membership function for 
the fuzzy unreliability is treated as the point estimate of unreliabili- 
ty. This method requires less computer time than previous methods 
in the literature, and is useful iince it does not require informa- 
tion on distribution types of stress & strength. Numerical examples 
demonstrate the method. 

1. INTRODUCTION 

Acronyms & Abbreviations 

LR left, right 
TFN triangular fuzzy number 
fi- fuzzy, or fuzzified 
LSM line-segment method. 

Stress-strength interference models have been widely used 
for reliability analysis. Unreliability, in such models, is Pr {stress 
> strength}. The point estimate and bounds on the failure prob- 
ability can be computed by analytic or numerical approaches 
[ l ]  once the distributions of stress & strength are available. 
However, in the real world, it is often difficult to know the true 
distributions over the complete range of the r.v. of the stress 
& strength. Although there are methods [2] of fitting parametric 
models for the distributions, Kapur [3] devised an approach that 
requires only information regarding the interval probabilities 
within an interference region for determining the bounds on the 
exact unreliability . Ref [3] assumed that failure occurs whenever 
stress and strength fall into the same subinterval. However, the 
domination degree of stress, which in essence represents 
Pr{stress > strength} in a subinterval, can be any value be- 
tween 0 and l. As a result, the bounds in [3] are overestimated. 
Other approaches [4 - 61 also deal with the domination degree 
of stress. 

All approaches in [l - 61 use only the distinct values 0, 
0.5, or 1 for the domination degree of stress. To determine the 
domination degree of stress, Wang & Liu [7] developed a 
multiple-LSM based on a geometrical viewpoint regarding rela- 
tionships between the distributions of stress & strength. Their 
results demonstrated that the accuracy is satisfactory even if 
there are only 8 subintervals. However, the time consumed in 
solving a quadratic programming problem increases rapidly with 
the number of variables. 

This paper regards the interval probabilities of stress & 
strength as TFN of LR-type, which are efficient in computa- 
tion. In section 2, the line segments introduced in [7] for ap- 
proximating the pdf become Ji-line-segments. Section 3 presents 
two numerical examples to demonstrate the low computation 
time and high accuracy of fi-LSM. 

Notation 

L measure of fuzziness 
L ( . ) ,  
R(  .) [left, right] reference function of a fi-number 
CP failure probability 
La, U, [lower, upper] bound of failure probability 
N number of subintervals 
S, C [stress, strain] 
6 point estimate of CP 
p ( a )  membership function 
ai - l ,  ai [left, right] ends of subinterval i 

implies: fi-number 
0, 0 [addition, subtraction] 
0 multiplication of a scalar and afi-number 
@ multiplication of two fi-numbers. 

Other, standard notation is given in ‘‘Information for Readers 
& Authors” at the rear of each issue. 

2. fi-LINE-SEGMENT METHOD 

Assumptions 

0. (see appendix) 
la .  Stress & strength are continuous s-independent r.v. 
lb. S,,, & Cmin are specified. 
2. Pr{stress > Smax} = 0. 
3. Pr{strain < Cmin} = 0.  
4. The fuzziness of&-pdf remains constant throughout each 

subinterval. 4 

Thus, 
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n i - 1  

i = l  k = l  

Di = domination degree of stress 

8. CY,, = P,, = ?her, ,  0 < er, - 0, to satisfy assumption 
#4. ((9) 

Eq (7) & (8) each comprise 3 equations, for a total of 6 depen- 
dent equations. There are 3 degrees of freedom to choose 6 
unknown variables for defining ?, & f j r  in (6). (2)  

q, = Pr{u,-, < C I a [ ) ,  (4) The 7, are now well defined; thus f j L  can be obtained by solv- 
ing (7). 

The x ( x )  must be positive over its domain [ a L p l ,  a,]. 
Because of the linearity of ( 6 ) ,  examine the sign o f x ( x )  only 
at both endpoints of subinterval i. 

A. .f(.[-l) = ( m a l - ~ j  CYa,-i' P u , - I ) L R  

for i = l ,  2, ..., n. 

The interval probabilities are, in general, obtained by ex- 
periment; thus they suffer from uncertainty. To deal with this 
uncertainty, we treat interval probabilities ask-numbers of LR- 
type denoted by: 

PI = (mF,, a F , ,  PF, )LR > 0, 

Redefine 7, such that x (a ,  - ) may become a very small 
positive fi-number. 

mF, = point estimate of the interval probability 

Solve (7), then, 
(5 )  

The value of h depends on the fuzziness of mF, The unknown 
pdf's of stress & strength in each subinterval are approximated 
by fi-line segments, which can in turn be represented by 
piecewise linear fz-polynomials: B . f ( u , )  5 0 

. f ( x )  = (.r,Ox)Of,, (6)  Similarly, 

= - mrz.aL-l' 4 

To determine ?[ & qil, use assumptions 5 - 7. rnV8 = ma, - mrt.a,. 4 

Assumptions (for ease of computation) D,, see (3), also becomes thefi-number, 
5 .  1 = a, - independent of i. 
6. The value of the pdf at the midpoint of subinterval i DI = ( m ~ ~ ,  %,7 PD,)LR. 

The r.h.s of (3) leads to: 
equals the average value of the pdf in the subinterval: 

J ( c i , )  = FJl ,  

6, = % ( a ,  + u ~ - ~ ) .  

7. F, remains invariant under the approximation of the pdf By (A-2) and further manipulation: 
curve in subinterval i; thus, 

mDt = m ~ s , . ? c , ' B I l [  + mrr,'mrls.A1,, + mqsJ.mrc,'A2,i 

+ mqs, . myc; B2 ; 
F, = 1'' x ( x )  dx. (8) 

a,-1 
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yo, =  cy) . B I , ~  + $ l ( ~ , q ; 7 )  a - 4 1 , ~  + G l ( q , ~ ; ~ )  240 computer. Thefi-LSM is examined in terms of the CPU 

The centroid of p~ can be treated as a point estimate of the 
crisp unreliability, and 

can be treated as the [lower, upper] bounds of the crisp 
unreliability . 

Sincefi-unreliability is obtained from (12), thefi-LSM is 
anticipated to be very efficient no matter how many subinter- 
vals the interference interval has. Furthermore, (6) is derived 
from a geometrical viewpoint regarding the distributions of 
stress & strength based on the point estimates of the interval 
probabilities. The number of subintervals to be discretized and 
the accuracy of the point estimates, on the other hand, depend 
on the amount of experimental data available. If the experimental 
data are sufficient, not only is the accuracy of the interval prob- 
abilities guaranteed with many subintervals, but the interference 
interval can be enlarged. Thus, the accuracy of thefi-LSM 
depends only on the amount of experimental data available and 
is not affected by the distributions of stress & strength. 

time consumed compared with that consumed by methods in 
[6, 71. 

3.1 Example 1 (Adapted from [4]) 

Given 

1. Strength is a 3-parameter Weibull distributed r.v. with 
location parameter C,,, = 30, shape parameter P =2 ,  and scale 
parameter 0 - C,,, = 30. 

2. Stress is s-normally distributed with mean p, = 30 and 
4 

9,,,, = 0.0049. To calculate unreliability bounds, let the 
interference region be [30, 501. Figure 1 shows the exact & 
approximate pdfs of stress & strength. Table 1 compares results 
from [6], [7], [O] ([O] = current study); thefi-LSM results in 
a small bound width and the most accurate point estimate of 
unreliability. Even if the number of subintervals is only 6 ,  the 
relative error resulting from thefi-LSM is only 2.9% and the 
bounds contain the exact unreliability. Thefi-LSM requires only 
0.03 sec of CPU time to calculate the unreliability with 10 
subintervals, while the method in [7] requires 0.18 sec. The 
time consumed by thefi-LSM is almost invariant with respect 
to N. By contrast, the time consumed by methods [3-71 that 
resort to solving a quadratic programming problem increases 
appreciably with N, eg ,  when N =  100, thefi-LSM consumes 
only 0.04 sec, whereas that of [7] consumes 26 sec. 

standard deviation U, = 3. 

8 0.15 

:: 0.09 

3 0.08 

2 0.03 
.r( M .r( 

2 
I2 0.00 

Exact p.d.f. 

approximated p.d.f .  

approximated p.d.f .  

h " " " " '  
. * * * . . . . *  Lower bound of 

--- Upper bound of 

I 

20 30 32 34 36 30 40 42 44 40 40 50 
Stress. Strength 

3. NUMERICAL EXAMPLES Figure 1. Approximate & Exact pdf Curves 

Two examples are computed and the results compared with 
exact unreliabilities to illustrate the low computation time and 
high accuracy of thefi-LSM. The examples involve 3 distribu- 
tions (s-normal, exponential, Weibull) to investigate the per- 
formance of thefi-LSM vs distributions of stress & strength. 
One can estimate the interval probabilities by sampling and then 
statistically estimating the probabilities. However, for objec- 
tive comparison in these examples, instead of the sampling 
method, the exact interval probabilities are used as the estimated 
interval probabilities, to avoid sampling errors when estimating 
the interval probabilities. Furthermore, uncertainties involved 
in the estimated interval probabilities are considered by letting 
h = 2 %  in (5). All computation are executed on a CONVEX 

TABLE 1 
Comparison of Results 

Method N 103L+ 103U+ U+/L+ 103d Error (%) 

[71 6 4.96 5.13 1.03 5.05 -2.99 
[61 6 2.43 9.14 3.77 5.78 -18 
[OI 6 4.81 5.28 1.10 5.04 -2.9 
[71 8 4.84 5.05 1.04 4.94 -0.88 
[61 8 2.65 8.86 3.35 5.76 -18 
101 8 4.72 5.16 1.09 4.94 -0.86 
171 10 4.81 5.05 1.05 4.93 -0.60 
[61 10 3.23 7.19 2.22 5.21 -6.30 
[OI 10 4.72 5.14 1.09 4.93 -0.58 
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3.2 Example 2 (Adapted from [l]) ACKNOWLEDGMENT 
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I .  Component strength is s-normally distributed with pLc 
= 100 MPa and o, = 10 MPa. 

2. Component stress is exponentially distributed with mean 
= 50 MPa. 4 

@exact = 0.13806. Let the interference region be [p, - 
5uC, ps + 5o,J = [50, 3001 MPa. 

Table 2 compares the results of 3 methods and figure 2 
depicts the exact and approximate pdf's of stress & strength. 
The fz-LSM again outperforms the others, and the relative er- 
ror of the point estimate is only 1.5 % when N=8. The method 
takes only 0.15 sec when N = 10 or 100. By contrast, the 
method in [7] requires 0.3 and 78 sec to compute the unreliability 
when N = 10 and 100 subintervals, respectively. 

APPENDIX 

A.l  Assumption 0 

If a is neither all-positive nor all-negative, one can decom- 
pose it into two positive fi-numbers: 

A = a, e ~ 2 ,  

M, = (mM,, aw, PM,)LR > 0, j=1 ,2 .  

To make sure that A?, & M2 are positive, let 

U a M ,  = fiM2 = ? h o ! M ,  (U 0.040 

B 
2 O M ,  U M 2  = %Pil/l, 

-Exact p.d.f .  0.032 

0.024 approximated p.d.f. 

R 0.016 approximated p.d.f. 

B A.2 Definition 1 [8] 
al 0.008 

E 
n 0.000 

.. . Lower bound of 

Upper bound of mM2 = max('/zcuM - mM, YipM) .  w 

+ 
.#i 3 

P 

Ah-number k is of LR-type iff there exist reference func- 

Stress, Strength 

Figure 2. Approximate & Exact pdf Curves 

TABLE 2 
Comparison of Results 

Method N 103L@ 103U, U'/L@ ' 0  w6 Error (%) 

mM is a real number; 

= (mMj a M ,  PMM)LR. 

A (A  = L, R )  which maps @ +  - [0,1] and is decreasing, 
6 1.25 1.32 1.05 1.29 6.8 

5.2 must satisfy: [71 
[61 6 1.51 1.11 0.73 1.31 
rol 6 1.23 1.34 1.09 1.29 6.8 
[71 8 1.36 1.44 1.06 1.40 -1.5 A(0) = 1, A(1) = 0, 
[61 8 1.40, 1.07 0.77 1.23 11 

8 1.34 1.46 1.08 1.40 -1.5 
-o.04 A(x) < 1 for all x > 0, r01 

171 10 1.34 1.42 1.06 1.38 
_ 1  

[61 10 1.48 1.11 0.75 1.30 5.8 
[Ol 10 1.33 1 4 4  1.08 1.38 O.O1 A ( X )  > o for all x < 1. 

In this paper, a TFN is used as the reference function: 

L ( Z )  = ~ ( z )  = max(1 - 121, 0). 

A.3 Definition 

Now let the interference interval be further enlarged from 
[50, 3001 MPa to [0.001, 4501 MPa to investigate the effect 
of truncation of the interference interval on the accuracy of the 
fi-LSM. For any value of h in (5), the relative error obtained 
is less than 0.1% when the N > 34. Consequently, the error 
resulting from the approximation of the pdf curves approaches 
zero if N is large enough. 

(A-1) 

191 

Afi-number i@ is [positive, negative] iff p f i ( x )  = 0, for 
all [x < 0, x > 01. 
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A.4 Definition 3 

Let, 

1. A x )  = ( m f ( x ) ,  a f ( x ) ,  @ ( x ) ) L ~  be a&-number for 
all x E [a, b]. 

2 .  mf(x), a+), &(x) are positive integrable functions 
on [a, b]. 4 

From [lo]: 

A S  Definition 4 [ll] 

For &-number a in an infinite universal set X = [a,b], 

(-4-3) 
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