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In order to reform statistical practices, Wilkinson and the 
American Psychological Association Task Force on Statisti-
cal Inference (1999), the Publication Manual of the Ameri-
can Psychological Association (2001), and the American 
Educational Research Association Task Force on Reporting 
of Research Methods (2006) recommended the reporting 
of effect sizes in all empirical social science research. Ac-
cordingly, numerous practical guidelines and suggestions 
for selecting, calculating, and interpreting effect size in-
dices for various types of statistical analyses have been 
provided in the literature, such as Alhija and Levy (2009), 
Breaugh (2003), Durlak (2009), Ferguson (2009), Grissom 
and Kim (2005), Huberty (2002), Kline (2004), Richardson 
(1996), Rosenthal, Rosnow, and Rubin (2000), Rosnow and 
Rosenthal (2003), and Vacha-Haase and Thompson (2004). 
In particular, Ferguson suggested that effect sizes can be 
categorized into four general classes: (1) group difference, 
(2) strength of association, (3) corrected estimates, and 
(4) risk estimates. Notably, the Pearson product–moment 
correlation coefficient, or simple correlation coefficient r, 
is the most commonly used strength-of-association mea-
sure in applied research across virtually all disciplines of 
social sciences. The correlation summarizes the magnitude 
and direction of linear relationship between two variables. 
It is generally known that a value of r close to zero suggests 
that the linear association is weak; however, high correla-
tion does not imply causality.

Although the fundamental results and associated us-
ages of r are described in most introductory textbooks of 
statistics and quantitative methods, it is not well under-
stood that the underlying probability distribution func-
tion of r is complicated in form, under the classical as-
sumption that the two variables follow a bivariate normal 
distribution. The complexity incurs continuous investiga-
tions to give various expressions, approximations, and 

computing algorithms for examining statistical features 
of the sample correlation coefficient. For theoretical de-
velopments in statistical literature, Johnson, Kotz, and 
Balakrishnan (1995, chap. 32) and Stuart and Ord (1994, 
chap. 16) contain comprehensive discussions and techni-
cal details. On the other hand, Bobko (2001) and Cohen, 
Cohen, West, and Aiken (2003) emphasize operational 
guidelines and practical implications in the behavioral 
and social sciences.

The purposes of this article are to explicate the intrinsic 
issues surrounding point estimators of strength of asso-
ciation and to support the use of Pearson’s r as an effect 
size measure in the light of new empirical results based 
on direct integration and computing techniques. Despite 
its computational ease and widespread usage, r is not an 
unbiased estimator of population simple correlation coef-
ficient , except for the special situations of   1, 0, 
and 1. It appears that standard textbooks rarely mention 
this undesirable nature of r, whereas the embedded un-
biasedness associated with a sample mean or a sample 
variance is always emphasized. Notably, Olkin and Pratt 
(1958) derived the unique minimum variance unbiased 
estimator of , but unfortunately, the computational com-
plexity of the resulting expression is overwhelming, par-
ticularly in the absence of appropriate computer software. 
This has restricted acceptance of their unbiased formula 
and may contribute to the continual application of the sam-
ple correlation coefficient at the expense of its potentially 
detrimental consequences. Nonetheless, unbiasedness is 
certainly not the only criterion of theoretical importance. 
Another consideration related to the statistical proper-
ties of a point estimator deals with the concept of mean 
squared error (MSE). There is no study to our knowledge 
that investigates the MSE of r through intensive numerical 
integration, although some limited simulated results of r’s 
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The exact density function of r was originally obtained by 
Fisher (1915), following a geometrical argument. For ease 
of exposition, the fundamental results associated with r 
are presented in the Appendix. Accordingly, the probabil-
ity density function of r given in Equation A1 is extremely 
complex and does not admit a simplified expression, except 
in some special cases, and considerable attention has been 
devoted to the construction of useful approximations. For 
most practical purposes, inferences about population corre-
lation coefficient  are based on the famous Fisher’s (1921) 
Z transformation, which has an approximately normal dis-
tribution irrespective of  and N:
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Alternatively, exact inferential procedures are available, 
and interested readers are referred to a recent article by 
Shieh (2006). Here, we focus on the point estimation 
problem of  under the ultimate notion of choosing a pro-
found correlational effect size measure for the strength of 
association between the two variables X and Y. It can be 
seen from Equation A3 that r is a biased estimator of , 
and the mean and variance of r can be approximated by
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It follows that E[r]   or E[r]   if   0 or   0. 
Hence, on the average, r will underestimate  for positive 

, and it tends to overestimate  when  is less than 0. In 
contrast, Olkin and Pratt (1958) have derived the unique 
minimum variance unbiased estimator (MVUE) U of  
as given in Equation A2. Although the unbiasedness view-
point is of theoretical meaning, the computation of U is 
considerably cumbersome for practical use. Thus, they 
suggested the approximation
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For comparative purposes, three additional different ap-
proximations can be obtained from the expansion of U:
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mean and standard deviation were presented in Zimmer-
man, Zumbo, and Williams (2003). Therefore, it is vital to 
provide a unified and rigorous justification for the MSE 
performance of the sample correlation coefficient, along 
with other prominent estimators of . In this research, 
the statistical properties of r and competing formulas are 
examined both numerically and graphically to provide a 
clear understanding of their advantages and disadvantages 
in evaluating the extent of the linear relationship between 
two variables.

As is well known, the squared simple correlation coef-
ficient r2 can be viewed as a special case of the squared 
multiple correlation coefficient or coefficient of deter-
mination R2 in the context of multiple linear regression 
models. In this case, R2 denotes the percentage of the 
total variation of the criterion that is accounted for by the 
relationship with the predictors. The problem of estimat-
ing the squared multiple correlation coefficient has been 
studied by Raju, Bilgic, Edwards, and Fleer (1997, 1999), 
Shieh (2008), and Yin and Fan (2001). Thus, the square 
of simple correlation coefficient r2 not only has a distinct 
interpretation as a percentage measure of variance that 
is accounted for, but also possesses completely different 
properties. In contrast to the extensive results related to 
R2, the investigation of r2 has received little attention, 
although a notable exception is Wang and Thompson 
(2007). However, their results are confined to simulated 
mean biases of some corrected formulas of r2. Instead, 
detailed numerical study is conducted here to assess the 
exact bias and MSE of r2 and several well-known estima-
tors. The present exposition helps to clarify the unique 
and contrasting behavior of r and r2 and to choose an 
appropriate effect size measure within the framework of 
correlation analysis.

Estimation of the Simple Correlation Coefficient
Let (X1, Y1), . . . , (XN, YN) be independent and identically 

distributed with bivariate normal distribution with means 
X, Y, variances 2

X, 2
Y, and correlation  (| |  1). The 

sample correlation coefficient r is the sample covariance 
divided by the product of sample standard deviations
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cies of competing estimators are generally not feasible. 
Thus, a special-purpose computer program has been 
developed for this study to perform numerical integra-
tion with respect to the probability density distribution 
of r. The exact properties for the estimators of r, OP1, 

OPA, OP2, OP5, and M are examined. The computed 
exact biases for   .00 to .95, with an increment of 
.05, and .99 are presented in Tables 1–3 for N  20, 50, 
and 100, respectively. In addition, the corresponding 
root-mean squared errors (RMSE  MSE1/2) are sum-
marized in Tables 4–6 for N  20, 50, and 100, respec-
tively. Due to the distinct distributional property of r, 
the corresponding results for negative simple correla-
tion coefficient are not reported here, because the bias 
associated with  (   0) has a sign opposite to that 
of —that is, Bias( , )  Bias( , ). However, 
the MSE and RMSE are identical for both cases of  
and , MSE( , )  MSE( , ) and RMSE( , )  
RMSE( , ), where   0. For a concise visualization 
of these results, the exact bias and the RMSE results of 
r are plotted in Figures 1 and 2, respectively. Overall, 
the bias and RMSE performance of these estimators im-
prove with increased sample size.

It can be readily seen from Tables 1–3 that both Pear-
son’s r and marginal MLE M underestimate  except 
when   0. However, r performs consistently better 
than M because Bias( M, )  Bias(r, )  0 for   0. 
As was expected, the other four estimators ( OP1, OPA, 

OP2, OP5) are nearly unbiased. Since its bias is almost 
negligible, the five-term approximation OP5 is basically 
equivalent to the MVUE U. Nonetheless, an appealing 
feature of the approximate formula OPA is that it enjoys 
both overall accuracy and computational ease.

The computed RMSE results listed in Tables 4–6 re-
veal complex and unfamiliar relations among the com-
peting formulas. First, the exact MSE performance of 
the practically unbiased estimator OP5 and nearly unbi-
ased formula OPA cross each other, showing that each 
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Moreover, it is noteworthy from the prescribed bivariate 
normal distribution of X and Y that the maximum likeli-
hood estimators (MLEs) of X, Y, 2

X, 2
Y, and  are X

–
, 

Y
–

, {(N  1)/N}S 2
X, {(N  1)/N}S 2

Y, and r, respectively. 
Thus, Pearson’s r is the joint MLE of . However, this is 
different from the marginal MLE M based on the prob-
ability density function f (r) given in Equation A1. In this 
case, there is no explicit closed form expression for M, 
although it was shown in Fisher (1915) that
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Note that r and M are asymptotically equivalent and yield 
similar estimation performance in finite samples.

In addition to the unbiasedness consideration, MSE is 
another useful performance criterion obtained by incor-
porating the bias (accuracy) and variability (precision) of 
an estimator. Specifically, the MSE of an estimator  of  
is the function

 MSE( , )  E[(   )2]  {Bias( , )}2  Var[ ], 

where Bias( , )  E[ ]  . It is possible for a biased 
estimator  that a trade-off occurs between bias Bias( , ) 
and variance Var[ ] in such a way that a larger decrease 
in variance can be obtained for a small increase in bias, 
resulting in an improvement in MSE( , ). This phenom-
enon is demonstrated in the following numerical investi-
gation of Pearson’s r and M.

Due to the complexity of the estimation problem, 
analytical justif ications of the theoretical discrepan-

Table 1 
Bias for Estimators of  With N  20

 r  OP1  OPA  OP2  OP5  M

.00 .000000 .000000 .000000 .000000 .000000 .000000

.05 .001295 .000138 .000007 .000025 .000001 .002386

.10 .002573 .000272 .000015 .000049 .000001 .004742

.15 .003816 .000400 .000027 .000071 .000002 .007038

.20 .005006 .000518 .000043 .000091 .000002 .009243

.25 .006126 .000623 .000065 .000108 .000003 .011326

.30 .007156 .000711 .000095 .000121 .000003 .013254

.35 .008080 .000781 .000131 .000130 .000003 .014994

.40 .008876 .000830 .000176 .000134 .000003 .016511

.45 .009526 .000855 .000228 .000134 .000002 .017768

.50 .010007 .000856 .000287 .000128 .000002 .018725

.55 .010300 .000832 .000351 .000119 .000002 .019341

.60 .010379 .000783 .000417 .000105 .000001 .019569

.65 .010222 .000709 .000480 .000089 .000001 .019361

.70 .009801 .000614 .000535 .000070 .000001 .018660

.75 .009090 .000500 .000574 .000051 .000000 .017407

.80 .008058 .000375 .000586 .000033 .000000 .015531

.85 .006671 .000247 .000557 .000018 .000000 .012955

.90 .004894 .000128 .000468 .000007 .000000 .009584

.95 .002686 .000038 .000293 .000001 .000000 .005311

.99  .000578  .000002  .000070  .000000  .000000  .001151
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Second, it is important to note that the interrelation-
ships between r, M, and OPA are as follows:

 MSE( M, )  MSE(r, )  MSE( OPA, )

  for   .50 when N  20, 50, and 100,

 MSE( M, )  MSE(r, )  MSE( OPA, )

  for   .55 when N  20,

 MSE(r, )  MSE( M, )  MSE( OPA, )

  for   .55 when N  50,

 MSE(r, )  MSE( OPA, )  MSE( M, )

  for   .55 when N  100,

 MSE(r, )  MSE( OPA, )  MSE( M, )

estimator is better only for certain combined configura-
tions of  and N. Specifically, when N  20, the order 
of MSE is

 MSE( OPA, )  MSE( OP5, ) for   .80 

and

 MSE( OPA, )  MSE( OP5, ) for   .80. 

On the other hand, when N  50 and 100, the resulting 
behavior is

 MSE( OPA, )  MSE( OP5, ) for   .15 and   .80

and

 MSE( OPA, )  MSE( OP5, ) for .15    .80.

Table 2 
Bias for Estimators of  With N  50

 r  OP1  OPA  OP2  OP5  M

.00 .000000 .000000 .000000 .000000 .000000 .000000

.05 .000506 .000022 .000001 .000002 .000000 .000980

.10 .001005 .000044 .000002 .000003 .000000 .001945

.15 .001490 .000064 .000002 .000005 .000000 .002883

.20 .001953 .000083 .000002 .000006 .000000 .003780

.25 .002386 .000099 .000000 .000007 .000000 .004621

.30 .002782 .000113 .000003 .000008 .000000 .005393

.35 .003135 .000123 .000008 .000009 .000000 .006082

.40 .003435 .000129 .000014 .000009 .000000 .006672

.45 .003676 .000132 .000022 .000009 .000000 .007150

.50 .003850 .000131 .000031 .000008 .000000 .007498

.55 .003948 .000126 .000041 .000007 .000000 .007702

.60 .003962 .000116 .000051 .000006 .000000 .007744

.65 .003884 .000104 .000061 .000005 .000000 .007607

.70 .003705 .000088 .000069 .000004 .000000 .007274

.75 .003417 .000070 .000075 .000003 .000000 .006725

.80 .003011 .000052 .000077 .000002 .000000 .005940

.85 .002475 .000033 .000073 .000001 .000000 .004899

.90 .001802 .000017 .000061 .000000 .000000 .003578

.95 .000981 .000005 .000038 .000000 .000000 .001954

.99  .000209  .000000  .000009  .000000  .000000  .000418

Table 3 
Bias for Estimators of  With N  100

 r  OP1  OPA  OP2  OP5  M

.00 .000000 .000000 .000000 .000000 .000000 .000000

.05 .000251 .000006 .000000 .000000 .000000 .000496

.10 .000499 .000011 .000001 .000000 .000000 .000984

.15 .000739 .000016 .000001 .000001 .000000 .001456

.20 .000968 .000021 .000001 .000001 .000000 .001906

.25 .001182 .000025 .000001 .000001 .000000 .002327

.30 .001378 .000028 .000000 .000001 .000000 .002713

.35 .001551 .000031 .000001 .000001 .000000 .003056

.40 .001699 .000032 .000003 .000001 .000000 .003348

.45 .001816 .000033 .000005 .000001 .000000 .003582

.50 .001900 .000032 .000007 .000001 .000000 .003750

.55 .001946 .000031 .000009 .000001 .000000 .003844

.60 .001950 .000028 .000012 .000001 .000000 .003856

.65 .001909 .000025 .000014 .000001 .000000 .003779

.70 .001818 .000021 .000016 .000000 .000000 .003604

.75 .001674 .000017 .000018 .000000 .000000 .003322

.80 .001472 .000012 .000018 .000000 .000000 .002925

.85 .001208 .000008 .000017 .000000 .000000 .002404

.90 .000878 .000004 .000014 .000000 .000000 .001749

.95 .000476 .000001 .000009 .000000 .000000 .000951

.99  .000102  .000000  .000002  .000000  .000000  .000203



910    SHIEH

Correlation 

B
ia

s

–1.0 –.8 –.6 –.4 –.2 0 .2 .4 .6 .8 1.0

–.010

–.005

0

.005

.010
N = 20
N = 50
N = 100

Figure 1. The bias of r.
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Figure 2. The root-mean squared error (RMSE) of r.
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Hence, despite the disadvantageous bias in the perfor-
mance of r and M, it is conceivable that they are not 
dominated by the unbiased or nearly unbiased estimators 
in terms of MSE. In view of the close behavior and com-
putational requirement between r and M, it is worthwhile 
to consider r, which yields similar results with less com-
putation. Moreover, the prescribed results suggest that 
MSE(r, )  MSE( OPA, ) for   .60, and MSE(r, )  
MSE( OPA, ) for   .60. It appears that no absolutely 
dominant answer is obtained with the exact MSE results, 
although more information is gathered about Pearson’s r 
with respect to the other prominent estimators. The ulti-
mate implication is that the sample correlation coefficient 
proves to be computationally and theoretically useful in 
estimating the strength of association for | |  .60.

  for   .60 when N  20,

 MSE( OPA, )  MSE(r, )  MSE( M, )

  for   .60 when N  50 and 100,

and

 MSE( OPA, )  MSE(r, )  MSE( M, )

  for   .60 when N  20, 50, and 100.

The corresponding situations among r, M, and OP5 are 
identical to those of r, M, and OPA just described, with 
the only exception in the case of

 MSE( OP5, )  MSE(r, )  MSE( M, )

  for   .60 when N  20. 

Table 4 
Root-Mean Squared Error for Estimators of  With N  20

 r  OP1  OPA  OP2  OP5  M

.00 .229416 .234879 .235562 .235414 .235529 .224268

.05 .228920 .234337 .235015 .234865 .234978 .223820

.10 .227431 .232711 .233373 .233219 .233327 .222474

.15 .224944 .229997 .230632 .230473 .230570 .220223

.20 .221449 .226188 .226787 .226620 .226705 .217053

.25 .216933 .221277 .221830 .221653 .221723 .212948

.30 .211379 .215250 .215749 .215564 .215616 .207883

.35 .204764 .208096 .208531 .208338 .208372 .201828

.40 .197064 .199795 .200161 .199963 .199978 .194748

.45 .188245 .190329 .190619 .190421 .190418 .186597

.50 .178271 .179675 .179884 .179691 .179672 .177324

.55 .167097 .167805 .167932 .167751 .167720 .166866

.60 .154672 .154690 .154735 .154575 .154534 .155147

.65 .140935 .140296 .140262 .140132 .140087 .142078

.70 .125816 .124584 .124478 .124389 .124344 .127555

.75 .109230 .107513 .107346 .107307 .107267 .111447

.80 .091078 .089034 .088825 .088842 .088810 .093598

.85 .071242 .069099 .068872 .068943 .068923 .073816

.90 .049578 .047651 .047443 .047552 .047543 .051855

.95 .025906 .024635 .024496 .024600 .024598 .027396

.99  .005373  .005059  .005024  .005057  .005057  .005741

Table 5 
Root-Mean Squared Error for Estimators of  With N  50

 r  OP1  OPA  OP2  OP5  M

.00 .142857 .144258 .144319 .144317 .144322 .141489

.05 .142520 .143907 .143967 .143966 .143971 .141167

.10 .141508 .142855 .142914 .142911 .142915 .140200

.15 .139820 .141100 .141156 .141152 .141156 .138584

.20 .137453 .138642 .138694 .138688 .138691 .136315

.25 .134402 .135477 .135525 .135516 .135519 .133388

.30 .130664 .131604 .131646 .131635 .131636 .129795

.35 .126231 .127019 .127055 .127041 .127042 .125527

.40 .121097 .121718 .121747 .121731 .121731 .120572

.45 .115253 .115697 .115718 .115700 .115700 .114917

.50 .108688 .108950 .108964 .108945 .108944 .108547

.55 .101391 .101472 .101478 .101460 .101458 .101444

.60 .093349 .093256 .093255 .093238 .093236 .093586

.65 .084547 .084295 .084288 .084274 .084272 .084951

.70 .074969 .074582 .074569 .074559 .074557 .075513

.75 .064597 .064108 .064091 .064086 .064084 .065240

.80 .053409 .052865 .052845 .052846 .052845 .054099

.85 .041382 .040842 .040822 .040828 .040828 .042052

.90 .028491 .028031 .028014 .028023 .028023 .029054

.95 .014708 .014421 .014410 .014418 .014418 .015056

.99  .003017  .002949  .002947  .002949  .002949  .003099
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for certain values of  and N. In this case, the so-called 
adjusted R2 formula reduces to

 
ˆ .E

2 2 21 1
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Also, the MVUE 2
U derived by Olkin and Pratt (1958) 

is given in Equation A5. It should be noted from Equa-
tions A2 and A5 that 2

U is not a square function of U. 
Unfortunately, it appears that the desirable property of 
unbiasedness for 2

U is outweighed by its computational 
complexity, just as U in the estimation of . A useful al-
ternative suggested by Pratt is
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Furthermore, simplified approximations of 2
OP1, 

2
OP2, and 

2
OP5 can be obtained from the expansion of 2

U as shown at 
the bottom of the page.

To delineate the disparate performance by estimators 
of 2, the exact bias and MSE of r2, 2

E, 2
OP1, 

2
PA, 2

OP2, 

Estimation of the Squared  
Simple Correlation Coefficient

It is generally known that R2 is a positively biased es-
timator of 2 within the multiple regression framework. 
To correct such overestimation, several modified formu-
las have been suggested in the literature. Comprehensive 
discussions and comparisons can be found in the work of 
Raju et al. (1999), Shieh (2008), and Yin and Fan (2001). 
Since the squared simple correlation coefficient r2 can be 
viewed as a special case of the coefficient of determination 
R2 under causal consideration, it is of practical interest to 
extend the assessment to the exact performance of r2 as an 
index of the population coefficient of determination 2.

As an estimator of 2, the expected value of r2, denoted 
by E[r2], is provided in Equation A4. But without a special 
computing algorithm, it is difficult to conceive the result-
ing magnitude from the analytical expression, except that 
E[r2]  1/(N  1) when 2  0. Moreover, it is natural 
to assume that E[r2]  2 under the common conception 
that E[R2]  2. It is shown below that although r2 tends 
to overestimate 2, it may be unbiased or negatively biased 

Table 6 
Root-Mean Squared Error for Estimators of  With N  100

 r  OP1  OPA  OP2  OP5  M

.00 .100504 .101001 .101012 .101012 .101013 .100010

.05 .100260 .100752 .100762 .100763 .100763 .099773

.10 .099527 .100005 .100015 .100015 .100015 .099059

.15 .098305 .098758 .098768 .098768 .098768 .097866

.20 .096594 .097013 .097022 .097021 .097021 .096191

.25 .094390 .094767 .094775 .094774 .094774 .094032

.30 .091694 .092021 .092028 .092026 .092026 .091389

.35 .088501 .088773 .088779 .088776 .088776 .088258

.40 .084810 .085021 .085026 .085023 .085023 .084633

.45 .080618 .080765 .080768 .080765 .080765 .080510

.50 .075921 .076002 .076004 .076001 .076001 .075884

.55 .070714 .070731 .070732 .070728 .070728 .070746

.60 .064993 .064949 .064949 .064946 .064946 .065091

.65 .058754 .058655 .058653 .058651 .058651 .058910

.70 .051990 .051845 .051843 .051841 .051841 .052193

.75 .044695 .044517 .044514 .044513 .044513 .044930

.80 .036862 .036669 .036665 .036665 .036665 .037111

.85 .028485 .028296 .028293 .028294 .028294 .028722

.90 .019555 .019396 .019393 .019395 .019395 .019751

.95 .010063 .009965 .009963 .009965 .009965 .010183

.99  .002059  .002036  .002036  .002036  .002036  .002086
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racy increasing in the order of 2
OP1, 

2
PA, 2

OP2, and 2
OP5. 

Accordingly, it has been reported in Shieh (2008) and Yin 
and Fan (2001) that 2

E is not the most effective estimator 
in estimating 2. They recommended 2

PA for its remarkable 
simplicity and performance in estimating 2.

Next, we focus on the RMSE results presented in 
Tables 10–12 for N  20, 50, and 100, respectively. 
For the two nearly unbiased estimators 2

PA and 2
OP5, it 

can be readily seen that when N  20, MSE( 2
PA, 2)  

MSE( 2
OP5, 2) for   .70, and MSE( 2

PA, 2)  
MSE( 2

OP5, 2) for   .70. In the two instances of N  50 
and 100, MSE( 2

PA, 2)  MSE( 2
OP5, 2) for   .65, and 

MSE( 2
PA, 2)  MSE( 2

OP5, 2) for   .65. Hence, there 
is no dominant situation in their RMSEs.

and 2
OP5 are computed. With the same settings of  and N 

in the previous examination for simple correlation coef-
ficient, the exact biases are presented in Tables 7–9, and 
RMSEs are summarized in Tables 10–12.

Regarding the accuracy results in Tables 7–9, the biases 
are smaller for large N with fixed value of . Specifically, the 
squared simple correlation coefficient has Bias(r2, 2)  0 
for 0    .70 and Bias(r2, 2)  0 for   .75. Therefore, 
r2 can be overestimated, underestimated, or unbiased. The 
exact population 2*  (.70, .75) so that Bias(r2, 2*)  0 
can be numerically determined for different sample size N. 
Also, the adjusted formula 2

E is unbiased when   0 and 
is overadjusted because Bias( 2

E, 2)  0 when   0. The 
other four estimators are almost unbiased, with the accu-

Table 8 
Bias for Estimators of 2 With N  50

 r2  2
E  2

OP1  2
PA  2

OP2  2
OP5

.00 .020408 .000000 .003201 .000543 .000362 .000002

.05 .020261 .000098 .003179 .000533 .000359 .000002

.10 .019823 .000389 .003113 .000504 .000350 .000002

.15 .019103 .000864 .003005 .000457 .000334 .000002

.20 .018112 .001510 .002858 .000394 .000313 .000001

.25 .016871 .002309 .002676 .000317 .000288 .000001

.30 .015404 .003234 .002463 .000231 .000259 .000001

.35 .013740 .004255 .002225 .000139 .000227 .000001

.40 .011916 .005335 .001969 .000047 .000194 .000001

.45 .009975 .006432 .001702 .000042 .000161 .000001

.50 .007963 .007496 .001431 .000123 .000128 .000000

.55 .005938 .008470 .001166 .000189 .000098 .000000

.60 .003960 .009291 .000913 .000238 .000072 .000000

.65 .002099 .009888 .000682 .000266 .000049 .000000

.70 .000433 .010183 .000477 .000270 .000031 .000000

.75 .000953 .010088 .000307 .000249 .000017 .000000

.80 .001964 .009505 .000175 .000207 .000008 .000000

.85 .002496 .008329 .000082 .000148 .000003 .000000

.90 .002432 .006441 .000027 .000083 .000001 .000000

.95 .001647 .003712 .000004 .000026 .000000 .000000

.99  .000405  .000828  .000000  .000001  .000000  .000000

Table 7 
Bias for Estimators of 2 With N  20

 r2  2
E  2

OP1  2
PA  2

OP2  2
OP5

.00 .052632 .000000 .020050 .003212 .005230 .000257

.05 .052275 .000238 .019926 .003157 .005191 .000254

.10 .051210 .000945 .019557 .002996 .005073 .000246

.15 .049455 .002103 .018949 .002733 .004880 .000233

.20 .047037 .003683 .018117 .002379 .004618 .000215

.25 .043997 .005642 .017076 .001948 .004295 .000194

.30 .040387 .007925 .015851 .001456 .003919 .000171

.35 .036273 .010462 .014468 .000924 .003502 .000145

.40 .031733 .013171 .012959 .000375 .003057 .000120

.45 .026863 .015950 .011360 .000163 .002599 .000095

.50 .021773 .018684 .009713 .000664 .002141 .000072

.55 .016592 .021236 .008061 .001100 .001699 .000052

.60 .011469 .023450 .006451 .001440 .001288 .000035

.65 .006575 .025144 .004932 .001660 .000922 .000021

.70 .002108 .026109 .003552 .001739 .000611 .000012

.75 .001704 .026104 .002357 .001662 .000365 .000006

.80 .004597 .024853 .001390 .001430 .000187 .000002

.85 .006266 .022030 .000678 .001065 .000075 .000001

.90 .006351 .017260 .000234 .000620 .000019 .000000

.95 .004432 .010094 .000034 .000202 .000002 .000000

.99  .001115  .002283  .000000  .000010  .000000  .000000
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and

 MSE( 2
PA, 2)  MSE(r2, 2)  MSE( 2

E, 2)

  for   .85. 

The relative performance among r2, 2
E, and 2

OP5 is analo-
gous to the above by replacing 2

PA with 2
OP5. The only 

modification is

 MSE( 2
E, 2)  MSE(r2, 2)  MSE( 2

OP5, 2)

  for   .15 when N  20.

According to these findings, 2
E is advantageous in MSE 

for small   .30, r2 dominates for .30    .85, and 2
PA 

performs best for large   .85. This information may be 
useful in selecting an appropriate measure of the propor-

For ease of exposition, the following results are sum-
marized for r2, 2

E, and 2
PA for all three different sample 

sizes:

 MSE( 2
E, 2)  MSE( 2

PA, 2)  MSE(r2, 2)

  for   .15,

 MSE( 2
E, 2)  MSE(r2, 2)  MSE( 2

PA, 2)

  for   .20 and .25,

 MSE(r2, 2)  MSE( 2
E, 2)  MSE( 2

PA, 2)

  for .30    .65,

 MSE(r2, 2)  MSE( 2
PA, 2)  MSE( 2

E, 2)

  for .70    .85,

Table 10 
Root-Mean Squared Error for Estimators of 2 With N  20

 r2  2
E  2

OP1  2
PA  2

OP2  2
OP5

.00 .086711 .072739 .078993 .078710 .079300 .080321

.05 .088394 .075241 .081460 .081353 .081944 .083000

.10 .093190 .082189 .088333 .088684 .089278 .090428

.15 .100457 .092322 .098385 .099340 .099935 .101212

.20 .109401 .104326 .110295 .111889 .112478 .113886

.25 .119261 .117143 .122965 .125166 .125733 .127258

.30 .129373 .129978 .135544 .138287 .138809 .140420

.35 .139172 .142212 .147367 .150565 .151013 .152668

.40 .148164 .153333 .157880 .161434 .161778 .163428

.45 .155897 .162879 .166594 .170394 .170604 .172197

.50 .161934 .170406 .173050 .176978 .177027 .178513

.55 .165831 .175456 .176797 .180728 .180597 .181929

.60 .167120 .177544 .177374 .181179 .180859 .181999

.65 .165286 .176135 .174296 .177845 .177344 .178266

.70 .159751 .170621 .167046 .170214 .169560 .170254

.75 .149849 .160303 .155062 .157732 .156980 .157452

.80 .134792 .144353 .137724 .139802 .139033 .139312

.85 .113632 .121772 .114349 .115775 .115097 .115227

.90 .085197 .091326 .084172 .084953 .084480 .084519

.95 .047988 .051437 .046355 .046598 .046410 .046414

.99  .010581  .011338  .009997  .010008  .009997  .009997

Table 9 
Bias for Estimators of 2 With N  100

 r2  2
E  2

OP1  2
PA  2

OP2  2
OP5

.00 .010101 .000000 .000800 .000138 .000047 .000000

.05 .010027 .000049 .000794 .000135 .000046 .000000

.10 .009806 .000196 .000777 .000128 .000045 .000000

.15 .009442 .000436 .000749 .000115 .000043 .000000

.20 .008943 .000762 .000711 .000099 .000040 .000000

.25 .008318 .001163 .000664 .000079 .000037 .000000

.30 .007581 .001627 .000609 .000057 .000033 .000000

.35 .006746 .002139 .000548 .000034 .000028 .000000

.40 .005834 .002678 .000483 .000010 .000024 .000000

.45 .004865 .003223 .000416 .000012 .000020 .000000

.50 .003864 .003749 .000348 .000032 .000016 .000000

.55 .002860 .004228 .000281 .000048 .000012 .000000

.60 .001884 .004628 .000219 .000060 .000009 .000000

.65 .000970 .004913 .000162 .000066 .000006 .000000

.70 .000157 .005045 .000113 .000067 .000004 .000000

.75 .000514 .004983 .000072 .000061 .000002 .000000

.80 .000996 .004680 .000040 .000050 .000001 .000000

.85 .001242 .004086 .000019 .000035 .000000 .000000

.90 .001197 .003148 .000006 .000019 .000000 .000000

.95 .000804 .001807 .000001 .000006 .000000 .000000

.99  .000197  .000402  .000000  .000000  .000000  .000000
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graphical displays facilitate the presentation of different 
aspects of accuracy and precision in estimating popula-
tion correlation coefficient. Recognition of the different 
considerations of biasness and MSE helps to clarify the 
issue of evaluating strength of association and to choose 
appropriate effect size estimate in correlation analysis. 
The empirical results recommend the following proce-
dures for the estimation of the simple correlation coef-
ficient and squared simple correlation coefficient. First, 
the Olkin and Pratt (1958) approximate formula OPA is 
nearly unbiased for estimating  and is easier to apply 
than the unbiased estimator U. Under the MSE consid-
eration, OPA and Pearson’s r have important advantages 
for different ranges of underlying population correlation 
coefficient. Second, the formula 2

PA has desirable overall 

tion of explained variance when a researcher has some 
basic conceptual idea about .

Concluding Remarks
This article concerns the use of Pearson’s r as a corre-

lational effect size measure. Despite its routine and com-
mon application in empirical studies, the fundamental 
properties of the sample correlation coefficient are often 
not sufficiently emphasized in applied work. Perhaps the 
complexity of r’s distributional function contributes to the 
fact that its estimation behavior has received little atten-
tion in standard texts and related research. Contemporary 
computer capabilities can be used to conduct intensive 
computation for the exact bias and MSE of r, as well as 
other notable formulas. The numerical examinations and 

Table 11 
Root-Mean Squared Error for Estimators of 2 With N  50

 r2  2
E  2

OP1  2
PA  2

OP2  2
OP5

.00 .034648 .028583 .029659 .029637 .029714 .029750

.05 .036933 .031523 .032662 .032671 .032755 .032794

.10 .042967 .038916 .040218 .040296 .040396 .040444

.15 .051191 .048491 .050000 .050152 .050272 .050330

.20 .060371 .058809 .060518 .060739 .060875 .060943

.25 .069715 .069090 .070955 .071236 .071384 .071459

.30 .078706 .078858 .080811 .081141 .081294 .081373

.35 .086970 .087770 .089725 .090094 .090243 .090324

.40 .094203 .095542 .097403 .097799 .097937 .098016

.45 .100135 .101915 .103581 .103991 .104109 .104183

.50 .104508 .106639 .108006 .108419 .108509 .108576

.55 .107070 .109460 .110435 .110835 .110894 .110951

.60 .107559 .110118 .110620 .110996 .111021 .111067

.65 .105705 .108338 .108312 .108652 .108645 .108680

.70 .101223 .103831 .103258 .103550 .103516 .103540

.75 .093805 .096285 .095195 .095432 .095378 .095393

.80 .083124 .085363 .083854 .084030 .083969 .083977

.85 .068818 .070698 .068957 .069072 .069016 .069019

.90 .050495 .051888 .050215 .050274 .050237 .050237

.95 .027717 .028488 .027331 .027348 .027335 .027335

.99  .005964  .006130  .005837  .005838  .005837  .005837

Table 12 
Root-Mean Squared Error for Estimators of 2 With N  100

 r2  2
E  2

OP1  2
PA  2

OP2  2
OP5

.00 .017321 .014215 .014491 .014488 .014500 .014502

.05 .019759 .017199 .017521 .017525 .017540 .017543

.10 .025620 .023912 .024337 .024355 .024375 .024379

.15 .032907 .031848 .032388 .032420 .032445 .032450

.20 .040558 .039971 .040616 .040659 .040689 .040695

.25 .048053 .047825 .048551 .048604 .048637 .048644

.30 .055082 .055138 .055913 .055975 .056009 .056017

.35 .061418 .061706 .062492 .062560 .062594 .062602

.40 .066872 .067350 .068106 .068178 .068210 .068217

.45 .071269 .071901 .072584 .072658 .072686 .072692

.50 .074442 .075194 .075763 .075837 .075858 .075864

.55 .076223 .077063 .077481 .077552 .077567 .077572

.60 .076445 .077340 .077576 .077642 .077650 .077654

.65 .074934 .075852 .075886 .075945 .075946 .075949

.70 .071514 .072419 .072247 .072297 .072292 .072294

.75 .066000 .066858 .066493 .066532 .066524 .066525

.80 .058202 .058974 .058455 .058484 .058474 .058474

.85 .047919 .048564 .047962 .047981 .047972 .047972

.90 .034941 .035417 .034841 .034850 .034844 .034844

.95 .019046 .019308 .018913 .018916 .018914 .018914

.99  .004073  .004129  .004030  .004030  .004030  .004030
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ing psychologists. Canadian Journal of Experimental Psychology, 
57, 221-237.

Shieh, G. (2006). Exact interval estimation, power calculation and sam-
ple size determination in normal correlation analysis. Psychometrika, 
71, 529-540.

Shieh, G. (2008). Improved shrinkage estimation of squared multiple 
correlation coefficient and squared cross-validity coefficient. Orga-
nizational Research Methods, 11, 387-407.
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various effect sizes. Journal of Counseling Psychology, 51, 473-481.
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tion, 75, 109-125.
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Force on Statistical Inference (1999). Statistical methods in psy-
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gist, 54, 594-604.
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mental Education, 69, 203-224.
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performance and computational ease for estimating 2. 
However, r2 and 2

E, which are the simplified version of 
R2 and adjusted R2, demonstrate their own usefulness in 
terms of MSE for some subsets of population correlation 
coefficient. In view of the use of r across a wide variety 
of disciplines within the social sciences, the updated con-
sideration of its benefits and costs presented here should 
be essential to researchers for making sound statistical 
analysis.
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APPENDIX 
Fundamental Results of Sample Correlation Coefficient

Under the bivariate normal distribution assumption, the probability density function is conveniently expressed 
in terms of a hypergeometric function by Hotelling (1953):
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where 1  r  1, 1    1, B( , ) is the standard beta function with parameters  and , Fh(a, b; c; x) is 
the Gauss hypergeometric function defined as

 
F a b c x

a k b k c
a b c kh( , ; ; )

( ) ( ) ( )
( ) ( ) ( )

xx
k

k

k !
,

0  
and ( ) is the gamma function. Moreover, Olkin and Pratt (1958) have shown that the unique minimum variance 
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Also, it follows from Ghosh (1966) that the first and second moments of r are
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Specifically, the exact bias and MSE for an estimator   (r) of  are computed as
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where f (r) is given in Equation A1. Due to the complication, intensive numerical integration using Simp-
son’s rule with respect to the probability density distribution f (r) is conducted to compute the exact values of 
Bias( , ) and MSE( , ).

For the estimation of 2, Olkin and Pratt (1958) also derived the unique minimum variance unbiased estima-
tor 2

U of 2:
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Similarly, the exact bias and MSE for an estimator 2  2(r2) of 2 can be computed as
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where f (r) is given in Equation A1.
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