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Estimation of the simple correlation coefficient

GWOWEN SHIEH
National Chiao Tung University, Hsinchu, Taiwan

This article investigates some unfamiliar properties of the Pearson product-moment correlation coefficient
for the estimation of simple correlation coefficient. Although Pearson’s r is biased, except for limited situations,
and the minimum variance unbiased estimator has been proposed in the literature, researchers routinely employ
the sample correlation coefficient in their practical applications, because of its simplicity and popularity. In
order to support such practice, this study examines the mean squared errors of 7 and several prominent formulas.
The results reveal specific situations in which the sample correlation coefficient performs better than the unbi-
ased and nearly unbiased estimators, facilitating recommendation of r as an effect size index for the strength of
linear association between two variables. In addition, related issues of estimating the squared simple correlation

coefficient are also considered.

In order to reform statistical practices, Wilkinson and the
American Psychological Association Task Force on Statisti-
cal Inference (1999), the Publication Manual of the Ameri-
can Psychological Association (2001), and the American
Educational Research Association Task Force on Reporting
of Research Methods (2006) recommended the reporting
of effect sizes in all empirical social science research. Ac-
cordingly, numerous practical guidelines and suggestions
for selecting, calculating, and interpreting effect size in-
dices for various types of statistical analyses have been
provided in the literature, such as Alhija and Levy (2009),
Breaugh (2003), Durlak (2009), Ferguson (2009), Grissom
and Kim (2005), Huberty (2002), Kline (2004), Richardson
(1996), Rosenthal, Rosnow, and Rubin (2000), Rosnow and
Rosenthal (2003), and Vacha-Haase and Thompson (2004).
In particular, Ferguson suggested that effect sizes can be
categorized into four general classes: (1) group difference,
(2) strength of association, (3) corrected estimates, and
(4) risk estimates. Notably, the Pearson product-moment
correlation coefficient, or simple correlation coefficient r,
is the most commonly used strength-of-association mea-
sure in applied research across virtually all disciplines of
social sciences. The correlation summarizes the magnitude
and direction of linear relationship between two variables.
It is generally known that a value of 7 close to zero suggests
that the linear association is weak; however, high correla-
tion does not imply causality.

Although the fundamental results and associated us-
ages of r are described in most introductory textbooks of
statistics and quantitative methods, it is not well under-
stood that the underlying probability distribution func-
tion of r is complicated in form, under the classical as-
sumption that the two variables follow a bivariate normal
distribution. The complexity incurs continuous investiga-
tions to give various expressions, approximations, and

computing algorithms for examining statistical features
of the sample correlation coefficient. For theoretical de-
velopments in statistical literature, Johnson, Kotz, and
Balakrishnan (1995, chap. 32) and Stuart and Ord (1994,
chap. 16) contain comprehensive discussions and techni-
cal details. On the other hand, Bobko (2001) and Cohen,
Cohen, West, and Aiken (2003) emphasize operational
guidelines and practical implications in the behavioral
and social sciences.

The purposes of this article are to explicate the intrinsic
issues surrounding point estimators of strength of asso-
ciation and to support the use of Pearson’s r as an effect
size measure in the light of new empirical results based
on direct integration and computing techniques. Despite
its computational ease and widespread usage, r is not an
unbiased estimator of population simple correlation coef-
ficient p, except for the special situations of p = —1, 0,
and 1. It appears that standard textbooks rarely mention
this undesirable nature of r, whereas the embedded un-
biasedness associated with a sample mean or a sample
variance is always emphasized. Notably, Olkin and Pratt
(1958) derived the unique minimum variance unbiased
estimator of p, but unfortunately, the computational com-
plexity of the resulting expression is overwhelming, par-
ticularly in the absence of appropriate computer software.
This has restricted acceptance of their unbiased formula
and may contribute to the continual application of the sam-
ple correlation coefficient at the expense of its potentially
detrimental consequences. Nonetheless, unbiasedness is
certainly not the only criterion of theoretical importance.
Another consideration related to the statistical proper-
ties of a point estimator deals with the concept of mean
squared error (MSE). There is no study to our knowledge
that investigates the MSE of r through intensive numerical
integration, although some limited simulated results of 7’s
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mean and standard deviation were presented in Zimmer-
man, Zumbo, and Williams (2003). Therefore, it is vital to
provide a unified and rigorous justification for the MSE
performance of the sample correlation coefficient, along
with other prominent estimators of p. In this research,
the statistical properties of 7 and competing formulas are
examined both numerically and graphically to provide a
clear understanding of their advantages and disadvantages
in evaluating the extent of the linear relationship between
two variables.

As is well known, the squared simple correlation coef-
ficient 72 can be viewed as a special case of the squared
multiple correlation coefficient or coefficient of deter-
mination R? in the context of multiple linear regression
models. In this case, R? denotes the percentage of the
total variation of the criterion that is accounted for by the
relationship with the predictors. The problem of estimat-
ing the squared multiple correlation coefficient has been
studied by Raju, Bilgic, Edwards, and Fleer (1997, 1999),
Shieh (2008), and Yin and Fan (2001). Thus, the square
of simple correlation coefficient #2 not only has a distinct
interpretation as a percentage measure of variance that
is accounted for, but also possesses completely different
properties. In contrast to the extensive results related to
R2, the investigation of r2 has received little attention,
although a notable exception is Wang and Thompson
(2007). However, their results are confined to simulated
mean biases of some corrected formulas of 2. Instead,
detailed numerical study is conducted here to assess the
exact bias and MSE of r2 and several well-known estima-
tors. The present exposition helps to clarify the unique
and contrasting behavior of » and 72 and to choose an
appropriate effect size measure within the framework of
correlation analysis.

Estimation of the Simple Correlation Coefficient
Let(Xj, Y1), ..., (Xy, Yy) be independent and identically
distributed with bivariate normal distribution with means
Uy, Uy, variances 0%, o7, and correlation p (|p| < 1). The
sample correlation coefficient r is the sample covariance

divided by the product of sample standard deviations
S

T SXXgY ’
where
S = 206, = 1)1, )/ (¥ 1),
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with sample means
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N
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The exact density function of » was originally obtained by
Fisher (1915), following a geometrical argument. For ease
of exposition, the fundamental results associated with r
are presented in the Appendix. Accordingly, the probabil-
ity density function of » given in Equation A1l is extremely
complex and does not admit a simplified expression, except
in some special cases, and considerable attention has been
devoted to the construction of useful approximations. For
most practical purposes, inferences about population corre-
lation coefficient p are based on the famous Fisher’s (1921)
Z transformation, which has an approximately normal dis-
tribution irrespective of p and NV:

2=yl 7)< N w.02).
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Alternatively, exact inferential procedures are available,
and interested readers are referred to a recent article by
Shieh (2006). Here, we focus on the point estimation
problem of p under the ultimate notion of choosing a pro-
found correlational effect size measure for the strength of
association between the two variables X and Y. It can be
seen from Equation A3 that r is a biased estimator of p,
and the mean and variance of 7 can be approximated by

) o ()
_ m and Var[r]= ﬂ

It follows that E[r] < p or E[r] > pifp > 0 orp <O0.
Hence, on the average, » will underestimate p for positive
p, and it tends to overestimate p when p is less than 0. In
contrast, Olkin and Pratt (1958) have derived the unique
minimum variance unbiased estimator (MVUE) py of p
as given in Equation A2. Although the unbiasedness view-
point is of theoretical meaning, the computation of py; is
considerably cumbersome for practical use. Thus, they
suggested the approximation

R _ 2
Popa () = r{l + 72(1]\/ r 4)}.

For comparative purposes, three additional different ap-
proximations can be obtained from the expansion of py;:
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Table 1
Bias for Estimators of p With V= 20

P r Por1 Popa Pop2 Pops P

.00 .000000 .000000 .000000 .000000 .000000 .000000
.05 —.001295 —.000138 .000007  —.000025 —.000001 —.002386
.10 —.002573 —.000272 .000015 —.000049  —.000001 —.004742
15 —.003816  —.000400 .000027  —.000071 —.000002  —.007038
.20 —.005006  —.000518 .000043 —.000091 —.000002  —.009243
25 —.006126  —.000623 .000065 —.000108 —.000003 —.011326
.30 —.007156  —.000711 .000095 —.000121 —.000003 —.013254
35 —.008080  —.000781 .000131 —.000130  —.000003 —.014994
.40 —.008876  —.000830 .000176 ~ —.000134  —.000003 —.016511
45 —.009526  —.000855 .000228  —.000134  —.000002 —.017768
.50 —.010007  —.000856 .000287  —.000128 —.000002  —.018725
.55 —.010300 —.000832 .000351 —.000119  —.000002  —.019341
.60 —.010379  —.000783 .000417  —.000105 —.000001 —.019569
.65 —.010222  —.000709 .000480  —.000089  —.000001 —.019361
.70 —.009801 —.000614 .000535 —.000070  —.000001 —.018660
75 —.009090  —.000500 .000574  —.000051 —.000000 —.017407
.80 —.008058  —.000375 .000586  —.000033 —.000000 —.015531
.85 —.006671 —.000247 .000557  —.000018 —.000000 —.012955
.90 —.004894  —.000128 .000468  —.000007  —.000000  —.009584
95 —.002686  —.000038 .000293 —.000001 —.000000 —.005311
99  —.000578  —.000002 .000070 .000000 .000000  —.001151

and

[r34)I e

N-2
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Moreover, it is noteworthy from the prescribed bivariate
normal distribution of X and Y that the maximum likeli-
hood estimators (MLEs) of uy, iy, 0%, 0%, and p are X,
Y, {(N — 1)/N}S%, {(N — 1)/N}S2, and r, respectively.
Thus, Pearson’s r is the joint MLE of p. However, this is
different from the marginal MLE py based on the prob-
ability density function f(») given in Equation A1. In this
case, there is no explicit closed form expression for Py,
although it was shown in Fisher (1915) that

AL 1-7>

Py =r {1 + N }
Note that 7 and py; are asymptotically equivalent and yield
similar estimation performance in finite samples.

In addition to the unbiasedness consideration, MSE is
another useful performance criterion obtained by incor-
porating the bias (accuracy) and variability (precision) of
an estimator. Specifically, the MSE of an estimator p of p
is the function

MSE(p, p) = E[(p — p)*] = (Bias(p, p)}> + Var[p],

where Bias(p, p) = E[p] — p. It is possible for a biased
estimator p that a trade-off occurs between bias Bias(p, p)
and variance Var[p] in such a way that a larger decrease
in variance can be obtained for a small increase in bias,
resulting in an improvement in MSE(p, p). This phenom-
enon is demonstrated in the following numerical investi-
gation of Pearson’s r and py.

Due to the complexity of the estimation problem,
analytical justifications of the theoretical discrepan-

cies of competing estimators are generally not feasible.
Thus, a special-purpose computer program has been
developed for this study to perform numerical integra-
tion with respect to the probability density distribution
of r. The exact properties for the estimators of 7, pop1,
Pora»> Popr2> Pops, and Py are examined. The computed
exact biases for p = .00 to .95, with an increment of
.05, and .99 are presented in Tables 1-3 for N = 20, 50,
and 100, respectively. In addition, the corresponding
root-mean squared errors (RMSE = MSE'2) are sum-
marized in Tables 4—6 for N = 20, 50, and 100, respec-
tively. Due to the distinct distributional property of r,
the corresponding results for negative simple correla-
tion coefficient are not reported here, because the bias
associated with —p (p > 0) has a sign opposite to that
of p—that is, Bias(p, —p) = —Bias(p, p). However,
the MSE and RMSE are identical for both cases of —p
and p, MSE(p, —p) = MSE(p, p) and RMSE(p, —p) =
RMSE(p, p), where p > 0. For a concise visualization
of these results, the exact bias and the RMSE results of
r are plotted in Figures 1 and 2, respectively. Overall,
the bias and RMSE performance of these estimators im-
prove with increased sample size.

It can be readily seen from Tables 1-3 that both Pear-
son’s  and marginal MLE py; underestimate p except
when p = 0. However, r performs consistently better
than py; because Bias(py, p) < Bias(r, p) < 0 for p > 0.
As was expected, the other four estimators (Pop1, Popas
Pora> Pops) are nearly unbiased. Since its bias is almost
negligible, the five-term approximation pgps is basically
equivalent to the MVUE py;. Nonetheless, an appealing
feature of the approximate formula pop, is that it enjoys
both overall accuracy and computational ease.

The computed RMSE results listed in Tables 4—6 re-
veal complex and unfamiliar relations among the com-
peting formulas. First, the exact MSE performance of
the practically unbiased estimator pops and nearly unbi-
ased formula popa cross each other, showing that each
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Table 2
Bias for Estimators of p With V = 50

P r Pop1 Popa Pop2 Pops P

.00 .000000 .000000 .000000 .000000  .000000 .000000
.05 —.000506  —.000022  —.000001 —.000002 .000000  —.000980
.10 —.001005 —.000044  —.000002  —.000003 .000000  —.001945
15 —.001490  —.000064  —.000002  —.000005 .000000  —.002883
.20 —.001953 —.000083 —.000002  —.000006 .000000  —.003780
25 —.002386  —.000099 .000000  —.000007 .000000  —.004621
.30 —.002782  —.000113 .000003 —.000008 .000000  —.005393
35 —.003135 —.000123 .000008 —.000009 .000000  —.006082
40 —.003435 —.000129 .000014  —.000009 .000000  —.006672
45 —.003676  —.000132 .000022  —.000009 .000000  —.007150
.50 —.003850 —.000131 .000031 —.000008 .000000  —.007498
.55 —.003948 —.000126 .000041 —.000007 .000000  —.007702
.60 —.003962  —.000116 .000051 —.000006 .000000  —.007744
.65 —.003884  —.000104 .000061 —.000005 .000000  —.007607
.70 —.003705 —.000088 .000069  —.000004  .000000 —.007274
75 —.003417  —.000070 .000075 —.000003 .000000  —.006725
.80 —.003011 —.000052 .000077  —.000002 .000000  —.005940
.85 —.002475 —.000033 .000073 —.000001 .000000  —.004899
.90 —.001802  —.000017 .000061 .000000  .000000  —.003578
95 —.000981 —.000005 .000038 .000000  .000000 —.001954

99 —.000209 .000000 .000009 .000000  .000000  —.000418

estimator is better only for certain combined configura- Second, it is important to note that the interrelation-
tions of p and N. Specifically, when N = 20, the order ships between r, py;, and pop, are as follows:
of MSE is A «
MSE(py, p) < MSE(r, p) < MSE(popa, p)
MSE(popa, p) > MSE(pops, p) for p = .80 for p = .50 when N = 20, 50, and 100,
and MSE(pyi, p) < MSE(r, p) < MSE(popa, p)
MSE(popa, p) < MSE(pops, p) for p > .80. for p = .55 when N = 20,
On the other hand, when N = 50 and 100, the resulting MSE(r, p) < MSE(py, p) < MSE(popa, P)
behavior is for p = .55 when N = 50,
MSE(popa, p) = MSE(pops, p) for p < .15 and p = .80 MSE(r, p) < MSE(popa, p) < MSE(py, p)
and for p = .55 when N = 100,
MSE(popss p) > MSE(pops, p) for .15 < p < .80. MSE(r p) < MSE(pora. p) < MSE(pu. p)
Table 3
Bias for Estimators of p With NV = 100

P r Popi Popa Pop2 Pops Pm

.00 .000000 .000000 .000000 .000000 .000000 .000000

.05 —.000251 —.000006 .000000 .000000 .000000 —.000496

.10 —.000499 —.000011 —.000001 .000000 .000000 —.000984

15 —.000739 —.000016 —.000001 —.000001 .000000 —.001456

.20 —.000968 —.000021 —.000001 —.000001 .000000 —.001906

25 —.001182 —.000025 —.000001 —.000001 .000000 —.002327

30 —.001378 —.000028 .000000 —.000001 .000000 —.002713

35 —.001551 —.000031 .000001 —.000001 .000000 —.003056

40 —.001699 —.000032 .000003 —.000001 .000000 —.003348

45 —.001816 —.000033 .000005 —.000001 .000000 —.003582

.50 —.001900 —.000032 .000007 —.000001 .000000 —.003750

.55 —.001946 —.000031 .000009 —.000001 .000000 —.003844

.60 —.001950 —.000028 .000012 —.000001 .000000 —.003856

.65 —.001909 —.000025 .000014 —.000001 .000000 —.003779

.70 —.001818 —.000021 .000016 .000000 .000000 —.003604

75 —.001674 —.000017 .000018 .000000 .000000 —.003322

.80 —.001472 —.000012 .000018 .000000 .000000 —.002925

.85 —.001208 —.000008 .000017 .000000 .000000 —.002404

.90 —.000878 —.000004 .000014 .000000 .000000 —.001749

.95 —.000476 —.000001 .000009 .000000 .000000 —.000951

99  —.000102 .000000 .000002 .000000  .000000  —.000203
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Figure 2. The root-mean squared error (RMSE) of r.
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Table 4
Root-Mean Squared Error for Estimators of p With NV = 20

P r Popi Popa Pora Pops Pm

00 229416 234879 235562 235414 235529 224268
05 228920 234337 235015 234865 234978 223820
10 227431 232711 233373 233219 233327 222474
15 224944 229997 230632 230473 230570  .220223
20 221449 226188 226787 226620 226705 217053
25 216933 221277 221830 221653 221723 212948
30 211379 215250 215749 215564 215616  .207883
35 204764 208096 208531 208338  .208372  .201828
40 197064 199795 200161  .199963  .199978  .194748
45 188245 190329  .190619  .190421  .190418  .186597
50 178271 179675 179884 179691 179672  .177324
55 167097 167805  .167932  .167751  .167720  .166866
60 154672 154690 154735 154575 154534 155147
65 140935 140296  .140262  .140132  .140087  .142078
70 125816 124584 (124478 124389  .124344 127555
75 .109230  .107513  .107346  .107307  .107267  .111447
.80  .091078  .089034  .088825  .088842  .088810  .093598
85 071242 069099  .068872  .068943  .068923  .073816
90  .049578  .047651  .047443 047552  .047543  .051855
95 .025906  .024635  .024496  .024600  .024598  .027396
99 .005373  .005059  .005024  .005057  .005057  .005741

for p = .60 when N = 20,

MSE(popas p) < MSE(r, p) < MSE(pu, p)
for p = .60 when N = 50 and 100,

and

MSE(popas p) < MSE(r, p) < MSE(py, p)
for p > .60 when N = 20, 50, and 100.
The corresponding situations among r, Py, and Pops are
identical to those of , Py, and popa just described, with
the only exception in the case of
MSE(pops, p) < MSE(r, p) < MSE(pm. p)
for p = .60 when N = 20.

Hence, despite the disadvantageous bias in the perfor-
mance of 7 and py, it is conceivable that they are not
dominated by the unbiased or nearly unbiased estimators
in terms of MSE. In view of the close behavior and com-
putational requirement between r and py;, it is worthwhile
to consider r, which yields similar results with less com-
putation. Moreover, the prescribed results suggest that
MSE(r, p) < MSE(popa, p) for p = .60, and MSE(r, p) >
MSE(popa, p) for p > .60. It appears that no absolutely
dominant answer is obtained with the exact MSE results,
although more information is gathered about Pearson’s »
with respect to the other prominent estimators. The ulti-
mate implication is that the sample correlation coefficient
proves to be computationally and theoretically useful in
estimating the strength of association for |p| = .60.

Table 5
Root-Mean Squared Error for Estimators of p With NV = 50

P r Por1 Popa Pop2 Pops Pu

.00  .142857  .144258 144319  .144317  .144322  .141489
.05 142520  .143907  .143967  .143966  .143971 141167
10 1141508 142855 142914 142911 142915 .140200
15 139820 141100  .141156  .141152  .141156  .138584
20 137453 138642  .138694  .138688  .138691 136315
25 134402 135477  .135525 135516  .135519  .133388
30 130664 131604  .131646  .131635  .131636  .129795
35 1126231 127019 127055 127041 127042 125527
40 121097 121718 121747 121731 121731 120572
45 115253 115697 115718  .115700  .115700  .114917
50 108688  .108950  .108964  .108945  .108944  .108547
.55 1101391 101472 101478 101460  .101458  .101444
.60 .093349 093256  .093255  .093238  .093236  .093586
.65 .084547  .084295  .084288  .084274  .084272  .084951
70 074969  .074582  .074569  .074559  .074557  .075513
75 064597 064108  .064091 064086  .064084  .065240
.80 .053409  .052865  .052845  .052846  .052845  .054099
.85  .041382  .040842  .040822  .040828  .040828  .042052
90  .028491 .028031 .028014  .028023 028023  .029054
95  .014708  .014421 014410  .014418  .014418  .015056
99  .003017  .002949  .002947  .002949  .002949  .003099
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Table 6
Root-Mean Squared Error for Estimators of p With NV = 100

P r Por1 Pora Pop2 Pops P

.00  .100504  .101001 .101012 .101012  .101013 .100010
.05 .100260  .100752  .100762 .100763 .100763 .099773
10 .099527 .100005 .100015 .100015 .100015 .099059
15 .098305 .098758  .098768 .098768  .098768 .097866
20 .096594  .097013 .097022 .097021 .097021 .096191
25 .094390  .094767  .094775 094774 .094774  .094032
30 .091694  .092021 1092028 .092026  .092026  .091389
35 .088501 .088773 .088779  .088776  .088776  .088258
40 .084810  .085021 .085026  .085023 .085023 .084633
45 .080618 .080765 .080768 .080765 .080765 .080510
50 .075921 .076002  .076004  .076001 .076001 075884
.55 .070714  .070731 .070732 .070728  .070728 .070746
.60  .064993 064949  .064949  .064946  .064946  .065091
.65 .058754  .058655 .058653 .058651 .058651 .058910
70 051990  .051845 .051843 051841 .051841 .052193
75 .044695 044517  .044514  .044513 .044513 .044930
.80 .036862 036669  .036665 .036665 .036665 037111
.85 028485 028296  .028293 028294  .028294  .028722
90  .019555 .019396  .019393 .019395 .019395 .019751
95 .010063 .009965 .009963 .009965 .009965 .010183
.99  .002059  .002036  .002036  .002036  .002036  .002086

Estimation of the Squared
Simple Correlation Coefficient

It is generally known that R? is a positively biased es-
timator of p? within the multiple regression framework.
To correct such overestimation, several modified formu-
las have been suggested in the literature. Comprehensive
discussions and comparisons can be found in the work of
Raju et al. (1999), Shieh (2008), and Yin and Fan (2001).
Since the squared simple correlation coefficient 72 can be
viewed as a special case of the coefficient of determination
RZ under causal consideration, it is of practical interest to
extend the assessment to the exact performance of 72 as an
index of the population coefficient of determination p2.

As an estimator of p2, the expected value of r2, denoted
by E[r2], is provided in Equation A4. But without a special
computing algorithm, it is difficult to conceive the result-
ing magnitude from the analytical expression, except that
E[r?] = 1/(N — 1) when p2 = 0. Moreover, it is natural
to assume that E£[r2] > p2? under the common conception
that E[R?] > p2. It is shown below that although 72 tends
to overestimate p2, it may be unbiased or negatively biased

ﬁ(z)Pl(rz)=1_N_2

and

N=3(1-2) 1+M

for certain values of p and N. In this case, the so-called
adjusted R? formula reduces to

~2( 2 N-1 2

pelr)=1- 45 1-7)
Also, the MVUE p# derived by Olkin and Pratt (1958)
is given in Equation AS. It should be noted from Equa-
tions A2 and A5 that p is not a square function of py;.
Unfortunately, it appears that the desirable property of
unbiasedness for pg is outweighed by its computational
complexity, just as Py in the estimation of p. A useful al-
ternative suggested by Pratt is

2(1—r2)

;SgA(rz):l—u(l—rz) Y

N-2

Furthermore, simplified approximations of p3p,, p3p,, and
p3ps can be obtained from the expansion of pZ as shown at
the bottom of the page.

To delineate the disparate performance by estimators
of p2, the exact bias and MSE of 72, pZ, p3p1> P2a> Pdp2s

N )

2(1-2) 8(1—r2)2

+ :
N N(N +2)

1+

s ra+orr(Y) (- 2)
1+Z‘1 r(];’+k)2 . kr'
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Table 7
Bias for Estimators of p2 With V = 20

P r? ﬁé f)(szl ﬁl%A f’(z)Pz /3(2)1)5

.00 .052632 .000000  .020050 003212 .005230  .000257
.05 052275 —.000238  .019926 003157  .005191  .000254
.10 051210  —.000945  .019557 002996  .005073  .000246
15 049455  —.002103  .018949 002733 .004880  .000233
20 047037  —.003683  .018117 002379 .004618  .000215
25 043997  —.005642  .017076 001948  .004295  .000194
30 040387  —.007925  .015851 001456 .003919  .000171
35 036273  —.010462  .014468 000924  .003502  .000145
40 031733 —.013171  .012959 000375 .003057  .000120
45 026863  —.015950  .011360 —.000163  .002599  .000095
.50 021773 —.018684  .009713  —.000664  .002141  .000072
.55 016592 —.021236  .008061  —.001100  .001699  .000052
.60 011469  —.023450  .006451  —.001440 .001288  .000035
.65 006575  —.025144  .004932  —.001660  .000922  .000021
.70 002108  —.026109  .003552  —.001739  .000611  .000012
75 —.001704 —.026104  .002357 —.001662  .000365  .000006
80  —.004597 —.024853  .001390  —.001430  .000187  .000002
85  —.006266 —.022030  .000678  —.001065  .000075  .000001
90  —.006351 —.017260  .000234  —.000620  .000019  .000000
95  —.004432  —.010094  .000034  —.000202  .000002  .000000
99  —.001115 —.002283  .000000  —.000010  .000000  .000000

and p3ps are computed. With the same settings of p and N
in the previous examination for simple correlation coef-
ficient, the exact biases are presented in Tables 7-9, and
RMSEs are summarized in Tables 10—12.

Regarding the accuracy results in Tables 7-9, the biases
are smaller for large N with fixed value of p. Specifically, the
squared simple correlation coefficient has Bias(r2, p?) > 0
for 0 = p = .70 and Bias(r2, p2) < 0 for p = .75. Therefore,
r2 can be overestimated, underestimated, or unbiased. The
exact population p2* € (.70, .75) so that Bias(r2, p2*) = 0
can be numerically determined for different sample size N.
Also, the adjusted formula p2 is unbiased when p = 0 and
is overadjusted because Bias(pZ, p2) < 0 when p > 0. The
other four estimators are almost unbiased, with the accu-

racy increasing in the order of p2p,, Pas, P2py» and Pdps.
Accordingly, it has been reported in Shieh (2008) and Yin
and Fan (2001) that pZ is not the most effective estimator
in estimating p2. They recommended p3, for its remarkable
simplicity and performance in estimating p2.

Next, we focus on the RMSE results presented in
Tables 10-12 for N = 20, 50, and 100, respectively.
For the two nearly unbiased estimators p3, and p2ps, it
can be readily seen that when N = 20, MSE(p3,, p?) <
MSE(p2ps, p?) for p = .70, and MSE(p3,, p?) >
MSE(p3ps, p?) for p > .70. In the two instances of N = 50
and 100, MSE(p3,, p?) < MSE(p3ps, p?) for p = .65, and
MSE(p3,, p?) > MSE(p3ps, p?) for p > .65. Hence, there
is no dominant situation in their RMSEs.

Table 8
Bias for Estimators of p2 With V= 50

P r? f?é f)(szl ﬁl%A f’(z)Pz /3(2)1)5

.00 .020408 .000000  .003201 .000543  .000362  .000002
.05 .020261  —.000098  .003179 .000533  .000359  .000002
.10 .019823  —.000389  .003113 .000504  .000350  .000002
15 .019103  —.000864  .003005 .000457  .000334  .000002
.20 018112  —.001510  .002858 .000394  .000313  .000001
25 016871  —.002309  .002676 .000317  .000288  .000001
30 015404  —.003234  .002463 .000231  .000259  .000001
.35 013740  —.004255  .002225 .000139  .000227  .000001
40 011916 —.005335  .001969 .000047  .000194  .000001
45 009975  —.006432  .001702  —.000042  .000161  .000001
.50 007963  —.007496  .001431  —.000123  .000128  .000000
.55 .005938  —.008470  .001166 ~ —.000189  .000098  .000000
.60 003960  —.009291  .000913  —.000238  .000072  .000000
.65 002099  —.009888  .000682  —.000266  .000049  .000000
.70 .000433  —.010183  .000477  —.000270 ~ .000031  .000000
75 —.000953  —.010088  .000307  —.000249  .000017  .000000
.80 —.001964  —.009505  .000175  —.000207  .000008  .000000
.85 —.002496  —.008329  .000082  —.000148  .000003  .000000
90  —.002432  —.006441  .000027  —.000083  .000001  .000000
95  —.001647 —.003712  .000004  —.000026  .000000  .000000
.99 —.000405  —.000828  .000000  —.000001  .000000  .000000
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Table 9
Bias for Estimators of p2 With N = 100

p r pi Por1 Pia Pora Pors

.00 .010101 .000000  .000800 .000138 .000047  .000000
.05 .010027  —.000049  .000794 .000135  .000046  .000000
.10 .009806  —.000196  .000777 .000128 .000045  .000000
A5 009442 —.000436  .000749 .000115  .000043  .000000
.20 .008943  —.000762  .000711 .000099  .000040  .000000
25 .008318  —.001163  .000664 .000079  .000037  .000000
.30 .007581  —.001627  .000609 .000057  .000033  .000000
35 .006746  —.002139  .000548 .000034  .000028  .000000
40 .005834  —.002678  .000483 .000010  .000024  .000000
45 .004865  —.003223  .000416  —.000012  .000020  .000000
.50 .003864  —.003749  .000348  —.000032  .000016  .000000
.55 .002860  —.004228  .000281  —.000048  .000012  .000000
.60 .001884  —.004628  .000219  —.000060  .000009  .000000
.65 .000970  —.004913  .000162  —.000066 ~ .000006  .000000
.70 .000157  —.005045  .000113 ~ —.000067  .000004  .000000
75 —.000514  —.004983  .000072  —.000061  .000002  .000000
.80 —.000996  —.004680  .000040  —.000050  .000001  .000000
.85 —.001242  —.004086  .000019  —.000035  .000000  .000000
.90  —.001197  —.003148  .000006 ~ —.000019  .000000  .000000
.95 —.000804  —.001807  .000001  —.000006  .000000  .000000
.99 —.000197  —.000402  .000000 .000000  .000000  .000000

For ease of exposition, the following results are sum-
marized for 2, p2, and p3, for all three different sample

sizes:

MSE(p2, p?) < MSE(pi, p) < MSE(r2, p?)

forp = .15,

MSE(p3, p?) < MSE(r2, p?) < MSE(p, p?)

for p = .20 and .25,

MSE(r2, p?) < MSE(p}, p?) < MSE(piy. p?)

for .30 =p = .65,

MSE(, p?) < MSE(p. p?) < MSE(p}, p?)

for .70 = p = .85,

and
MSE(p3, p) < MSE(, p?) < MSE(p2, p°)
for p > .85.
The relative performance among 72, pZ, and p3p is analo-

gous to the above by replacing p3, with p2ps. The only
modification is

MSE(p3, p) < MSE(, p) < MSE(plps, p°)
for p = .15 when N = 20.
According to these findings, pZ is advantageous in MSE
for small p < .30, 2 dominates for .30 < p =< .85, and p3,

performs best for large p > .85. This information may be
useful in selecting an appropriate measure of the propor-

Table 10
Root-Mean Squared Error for Estimators of p2 With N = 20

p r Pt Poe1 Pi Pdra Pors

.00 .086711  .072739  .078993  .078710  .079300  .080321
.05 .088394  .075241  .081460  .081353  .081944  .083000
10 .093190  .082189  .088333  .083684  .089278  .090428
A5 1100457 092322 .098385  .099340  .099935  .101212
20 .109401  .104326  .110295  .111889  .112478  .113886
25 119261 117143 122965  .125166 ~ .125733  .127258
30 1129373 129978 135544 138287 .138809  .140420
350 139172 142212 147367 150565 151013 .152668
40 148164 153333 157880  .161434 161778  .163428
45 155897 162879  .166594  .170394  .170604  .172197
50 161934 170406 .173050  .176978  .177027  .178513
.55 165831 175456 176797  .180728  .180597  .181929
.60 167120 177544 177374 181179  .180859  .181999
.65 165286  .176135  .174296  .177845  .177344  .178266
70 159751 170621 .167046  .170214  .169560  .170254
75 149849 160303 .155062 157732 .156980  .157452
.80 134792 144353 137724 139802  .139033  .139312
.85 113632 121772 114349 115775 115097  .115227
90 .085197  .091326  .084172  .084953  .084480  .084519
95 .047988  .051437  .046355  .046598  .046410  .046414
.99 .010581  .011338  .009997  .010008  .009997  .009997
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Table 11
Root-Mean Squared Error for Estimators of p2 With V = 50

P r? f’é /3(2)1)1 ﬁl%A /3(2)1)2 f)(z)Ps

00 .034648  .028583  .029659  .029637  .029714  .029750
05 .036933  .031523  .032662  .032671  .032755  .032794
10 .042967 038916 .040218  .040296  .040396  .040444
15 051191 .048491  .050000  .050152  .050272  .050330
20 .060371  .058809  .060518  .060739  .060875  .060943
25 069715  .069090  .070955  .071236  .071384  .071459
30 .078706  .078858  .080811  .081141  .081294  .081373
35 .086970  .087770  .089725  .090094  .090243  .090324
40 .094203 095542  .097403  .097799  .097937  .098016
45 100135  .101915  .103581  .103991  .104109  .104183
50 .104508 106639  .108006  .108419  .108509  .108576
55 107070  .109460  .110435  .110835  .110894  .110951
60 .107559 110118 110620  .110996  .111021  .111067
65 105705  .108338  .108312  .108652  .108645  .108680
70 .101223  .103831  .103258  .103550  .103516  .103540
75 .093805  .096285  .095195  .095432  .095378  .095393
.80  .083124  .085363  .083854  .084030  .083969  .083977
85  .068818  .070698  .068957  .069072  .069016  .069019
90  .050495  .051888  .050215  .050274  .050237  .050237
95 027717  .0284838  .027331  .027348  .027335  .027335
99  .005964  .006130  .005837  .005838  .005837  .005837

tion of explained variance when a researcher has some
basic conceptual idea about p.

Concluding Remarks

This article concerns the use of Pearson’s r as a corre-
lational effect size measure. Despite its routine and com-
mon application in empirical studies, the fundamental
properties of the sample correlation coefficient are often
not sufficiently emphasized in applied work. Perhaps the
complexity of ’s distributional function contributes to the
fact that its estimation behavior has received little atten-
tion in standard texts and related research. Contemporary
computer capabilities can be used to conduct intensive
computation for the exact bias and MSE of r, as well as
other notable formulas. The numerical examinations and

graphical displays facilitate the presentation of different
aspects of accuracy and precision in estimating popula-
tion correlation coefficient. Recognition of the different
considerations of biasness and MSE helps to clarify the
issue of evaluating strength of association and to choose
appropriate effect size estimate in correlation analysis.
The empirical results recommend the following proce-
dures for the estimation of the simple correlation coef-
ficient and squared simple correlation coefficient. First,
the Olkin and Pratt (1958) approximate formula pgpy is
nearly unbiased for estimating p and is easier to apply
than the unbiased estimator py. Under the MSE consid-
eration, popa and Pearson’s r have important advantages
for different ranges of underlying population correlation
coefficient. Second, the formula p, has desirable overall

Table 12
Root-Mean Squared Error for Estimators of p2 With N = 100

p r pi Por1 P Pora Pps

.00 .017321  .014215  .014491  .014488  .014500  .014502
.05 019759 017199  .017521  .017525  .017540  .017543
A0 .025620 023912 .024337  .024355  .024375  .024379
A5 .032907 031848 .032388  .032420  .032445  .032450
200 .040558 039971  .040616  .040659  .040689  .040695
25 .048053  .047825  .048551  .048604  .048637  .043644
30 055082 055138 .055913  .055975  .056009  .056017
35 061418 061706  .062492  .062560  .062594  .062602
40 .066872 067350  .068106  .068178  .068210  .068217
45 071269 071901  .072584  .072658  .072686  .072692
S50 074442 075194 075763  .075837  .075858  .075864
S5 .076223 077063 .077481  .077552  .077567  .077572
.60 .076445 077340  .077576  .077642  .077650  .077654
.65 .074934 075852  .075886  .075945  .075946  .075949
70 071514 072419 .072247 072297  .072292  .072294
75 .066000  .066858  .066493  .066532  .066524  .066525
.80 .058202  .058974  .058455  .058484  .058474  .058474
.85 .047919  .048564  .047962  .047981  .047972  .047972
90 .034941  .035417  .034841  .034850  .034844  .034844
95 .019046  .019308  .018913  .018916  .018914  .018914
.99 .004073  .004129  .004030  .004030  .004030  .004030
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performance and computational ease for estimating p2.
However, 2 and p2, which are the simplified version of
R? and adjusted R2, demonstrate their own usefulness in
terms of MSE for some subsets of population correlation
coefficient. In view of the use of r across a wide variety
of disciplines within the social sciences, the updated con-
sideration of its benefits and costs presented here should
be essential to researchers for making sound statistical
analysis.
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APPENDIX
Fundamental Results of Sample Correlation Coefficient

Under the bivariate normal distribution assumption, the probability density function is conveniently expressed
in terms of a hypergeometric function by Hotelling (1953):

(N=1)/2 (N=4)/2
P (=)

By JegiN =L ”2"’], (A1)
NY2(N - 2)3(%,1\/ - %)(1 — pr)V32
where —1 =r=1, -1 <p <1, B(a, f) is the standard beta function with parameters « and 3, F},(a, b; ¢; x) is
the Gauss hypergeometric function defined as
S Tla+ Db+ K)(c) x*
F (a,b;c;x) = X
wabiex) ,EO T(@)T(h)(c+k) k!
and I'(-) is the gamma function. Moreover, Olkin and Pratt (1958) have shown that the unique minimum variance
unbiased estimator py; of p is of the form

. 1 1.N=-2. 2
po=r R (L1200 2) (A2)

Also, it follows from Ghosh (1966) that the first and second moments of » are

L

P AT L e
and
(=R ) o

Specifically, the exact bias and MSE for an estimator p = p(r) of p are computed as

1 1
Bias(p, p) = [ (p - p) f(r)dr and MSE(p,p)= [(p-p)’ f(r)dr,

-1 -1
where f(r) is given in Equation Al. Due to the complication, intensive numerical integration using Simp-
son’s rule with respect to the probability density distribution f(r) is conducted to compute the exact values of
Bias(p, p) and MSE(p, p).
Fozr the estimation of p2, Olkin and Pratt (1958) also derived the unique minimum variance unbiased estima-
tor pgy of p2:

3
v N-2
Similarly, the exact bias and MSE for an estimator p> = p?(r2) of p? can be computed as

2 (72):1_Ni—(l_rzth(l,l;%;l—rz). (A5)

Bias(p”,p”) = }(,32 ~p?) f(r)dr and MSE(p".p?) = j(f)z o} o
4 |

where f(r) is given in Equation Al.
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