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A Sliding-Mode Approach to Fuzzy Control Design 
J. C. Wu and T. S. Liu, Member, IEEE 

Abstract- This study develops a method for fuzzy control 
design with sliding modes in which robustness is inherent. Fuzzy 
control is formulated to become a class of variable structure 
system (VSS) control. Sliding modes are used to determine best 
values for parameters in fuzzy control rules, thereby robustness in 
fuzzy control can be improved. A switching manifold is prescribed 
and the phase trajectory is demanded to satisfy both the reaching 
condition and the sliding condition for sliding modes. Both 
computer simulations and experiments are carried out for an 
apparatus which can to some extent represent cornering motion 
of a motorcycle on which a rider leans to maintain stability. 
Experimental results demonstrate that the proposed method 
outperforms both proportional integral derivative (PID) control 
and neural-network-based fuzzy control. 

I. INTRODUCTION 

UZZY control is a direct method for controlling a system F without the need of a mathematical model, in contrast 
to the classical control which  is^ an indirect method with a 
mathematical model. Fuzzy control has been implemented 
in many industrial applications. There are, however, few 
systematic procedures available for analysis and design of 
fuzzy control. In this study, a fuzzy control design with sliding 
mode is proposed to improve control system performance. The 
sliding mode is used to determine parameters in fuzzy control 
rules, in which the robustness is inherent in variable structure 
systems (VSS’s) with sliding modes. With the aid of sliding 
modes, it provides an effective design method of fuzzy control 
to ensure robustness. To validate the proposed method, an 
experimental apparatus is designed and conducted in which an 
inverted pendulum is hinged to a rotating disk. Both computer 
simulations and experiments are carried out. This apparatus is 
designed in such a way that it can, to some extent, represent 
the cornering motion of a motorcycle on which a rider leans 
to maintain stability. 

Fuzzy control research based on the fuzzy set theory [29] 
was initiated by Mamdani 1191. Braae and Rutherford [2] 
proposed both an algebraic model and a linguistic model 
for fuzzy control. The algebraic model cannot deal directly 
with the rules of a fuzzy controller. This limitation of the 
algebraic model led to the linguistic model that provided a 
linguistic structure for dealing with fuzzy control. Tang and 
Mulholland [27] compared fuzzy control with proportional 
integral derivative (PID) control. Langari [ 151 proposed an 
analytical formulation of fuzzy control which is essentially 
nonlinear. Kawaji et al. [ 141 proposed to design fuzzy control 
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employing the knowledge of a proportional derivative (PD) 
control, in which the fuzzy control is treated as PD control 
with gain switching. Lin and Kung [17] proposed a fuzzy- 
sliding mode controller (FSC) that improves VSS control with 
the aid of fuzzy control. The FSC is based on the VSS control 
theory and entails the advantages of VSS control and fuzzy 
control. In contrast to Lin and Kung who improved VSS 
control with the aid of fuzzy control, the current study aims 
to determine the parameters in fuzzy control rules based on 
sliding modes to ensure robustness. Kawaji and Matsunaga 
1131 proposed a method of generating fuzzy rules for servo- 
motors based on the VSS control. They determine linguistic 
values in fuzzy control rules and choose the best linguistic 
value based on both experience and trial and error. By contrast, 
in this study the switching manifold is treated as a reference 
model, and parameters in fuzzy control rules are determined to 
satisfy both reaching and sliding conditions using sliding-mode 
theory. 

In this study, fuzzy control is designed with sliding modes 
that are basic motions in a VSS. The VSS with sliding 
modes was proposed and elaborated upon by Emelyanov 
[4] and Itkis [12]. The VSS control is generally modeled 
in the phase space. It employs switching and discontinuous 
control actions to drive a phase trajectory toward a prescribed 
hyperplane and to force the phase trajectory to slide on 
the hyperplane. Robustness is an important feature of VSS 
control. A detailed survey can be found in [\11]. For discrete- 
time VSS control, only quasi-sliding modes are achieved 
in practice due to the limitation of sampling rates [20]. 
Sira-Ramirez [25] investigated stability conditions and the 
convergence for discrete-time sliding-mode control systems. 
Furuta [7] presented a discrete sliding-mode control based 
on discrete Lyapunov functions. He also presented discrete- 
type VSS control [8] and its application to self-tuning control. 
Pieper and Goheen [23] achieved quasi-sliding modes in a 
discrete input-output model with nonminimum phase. Padeh 
and Tomizuka 1221 proposed a discrete-time VSS control for 
a direct-drive robot. 

In this study, Section I1 describes definitions and assump- 
tions and then formulates fuzzy control. In Section 111, sliding- 
mode theory is described. Fuzzy control rules are enacted with 
the aid of sliding modes in Section IV. Section V describes a 
case study to validate the proposed method. 

11. FUZZY CONTROL 

A. DeJinitions and Assumptions 

are described in the following. 
Several assumptions that facilitate formulation in this study 
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Fig. 1. Membership functions of input variables 

Assumption 1: Let X be a universe. P and N are fuzzy 
subsets whose membership functions are continuous but not 
differentiable mappings ,U: X -+ [0, 11. Define p.p(z) and 
P f i ( 4  as 

P f i ( 4  = 1 - P p ( 4  (2) 

where xu and 21 denote the upper and lower bounds in the 
universe, respectively. P and N are shown in Fig. 1, in which 
they form fuzzy partitions of a closed, bounded region. Both 
P and N are normal, i.e., sup, p p ( z )  = sup, p#(z) = 1, 
IL' E [zl, z,]. Moreover, for each z E [ZL, z,] 

(3) CLp(4 + P.rv(.) = 1. 

Assumption 2: Let A = {A,} and B = {Bl )  be collections 
of fuzzy subsets over E and EC, respectively. E and EC 
denote the bounded universe for scaled error e and scaled 
error change ec. This study assumes that each of 2 and B 
contains only two fuzzy subsets as described in Assumption 
1. According to (3) ,  for any e E E and ec E EG 

2 2 

PCLA,k) = PLBl(ec) = 1. (4) 
3=1 1=1 

Assumption 3: Let U be a bounded universe for scaled 
control action U. Fuzzy rules R, defined on E x EC x U ,  
are expressed as the union (U) of four individual rules 

R = U R,,l. ( 5 )  
3 , l  

Fuzzy rules [26] containing two input variables can be written 
as a simple form 

R,,z:IfeisA, andecisB1 ,thenu,,t =pi +p",+piec 

e E E,  e c E  EC, u,,~ E U, i =  1 > ,  . . .  4 (6) 

where p t ,  p: , and p i  denote parameters of a linear dependence 
between nonfuzzy values of input variables and control action. 
The fuzzy controller contains four rules, since only two fuzzy 
subsets, P and N ,  are defined for each of E and EC as 
described in Assumption 2. 

B. Formulation 

Fuzzy sets provide a useful foundation to handle human 
knowledge pertaining to a real world problem and contribute 
to the notation of fuzzy control. The formulation for fuzzy 
control is described in the following: Given crisp input values 
eo and eco, assume that input values can be treated as fuzzy 
singletons Eo and Eo, i.e., 

1, if e = eo 
0, otherwise /la,(e) = (7) 

and similar condition holds for EO. Denote f,, 1 as a mapping 
from E x EC to U ,  U,,[ = f,,l(e, ec) as described in (6). 
Since Eo and EO are fuzzy singletons, ba_sed on the extension 
principle [3 ]  one can define fuzzy sets C, in U as 

1 

C, are also fuzzy singletons, as shown in (8). From ( 5 )  and 
(6), fuzzy rules R can be written as 

R = @ [FAJ ( e )  0 P E L  (e.) @ Pet (.)I (9) 
,,1 

where @ denotes the union operator and 0 the algebraic 
product operator. In this study, the algebraic product instead of 
the minimum operator is employed and results in interactivity 
among elements in (9). The fuzzy set of control action U, 
in terms of input values eo, eco, and fuzzy rules R, can be 
written as 

PZL(U) = [P.;, (e> @ P&) (eel1 O R 

= @ { P i ,  (eo) 0 P& (eco) 0 PE, ( U ) >  (10) 
,,I 

where o denotes a composition operator. Let w3, z = p i  (eo)@ 
p ~ ~ ( e c 0 )  denote rule strength of (6). The center of gravity 
method is employed for defuzzification, and the crisp value 
U ,  can be written as 

,>1 

Since cj, wj, 1 = 1 from (4), (1 1) becomes 

Since both w,, 1 and U,, 1 in (12) are continuous functions of 
eo and eco, U ,  is a continuous and nonlinear function of eo 
and eco, i.e., fuzzy control is essentially a class of nonlinear 
control. 

To gain insight into the relationship between fuzzy control 
and VSS control, the phase plane of E and EC can be divided 
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This study assumes XP = -2 and x f i  = 2. Equation (12) 
can be written as 
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(1 3 )  

where H.O.T. denotes higher-order terms and D,, E,, and 
F,, and m = 1, . . . , 9 denotes parameters that are functions 
of p; ,  z = I , .  . . , 4,  j = 0, I, 2 .  Specifically 
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Fig. 2. 
Determination of control actions based on partition planes. 

(a) Nine partition planes of error (e) and error change (ec). (b) 

The 12 parameters p i  can be determined based on conditions 
in sliding modes. Each of f,, m = 1, . . .  , 9 is a continuous 
and differentiable function in terms of eo and eco. U,, however, 
is continuous but not differentiable on lines e = xp, e = x f i ,  
ec = x p ,  and ec = x f i .  Control actions uo in these nine 
regions are shown in Fig. 2(b), in which FL and F N L  denote 
linear and nonlinear functions, respectively. Control actions 
due to Regions I, 111, VII, and IX are linear functions since 
u J , ~  in (6) are linear functions, and only one rule fires in 
each of these four regions. Hence, fuzzy control is similar to 
PD control in these four regions. Fuzzy control in essence 
resembles VSS control since control actions U ,  change with 
divided regions on the phase plane as shown in (13). Therefore, 
fuzzy control can be treated as a class of VSS control. Besides, 
the lines e = xp, e = x f i ,  ec = x p ,  and ec = XN that divide 
the phase plane can be regarded as switching lines. 
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There are, however, two differences between fuzzy control 
and VSS control. First, a VSS control is generally devised with 
a sliding mode, whereas fuzzy control is not. Second, control 
actions of VSS control often discontinuously change whenever 
the trajectory crosses switching lines, on which sliding modes 
occur. By contrast, the variation of control action U ,  in (13) 
for fuzzy control is continuous, and no sliding mode occurs 
on four switching lines. 

To implement conventional fuzzy rules, an input space has 
to be divided into many fuzzy subsets, and the consequences 
of fuzzy conditional propositions are also fuzzy subsets. This 
study employs fuzzy rules proposed by Takagi and Sugeno 
[26] to reduce the number of fuzzy subsets and rules. The 
consequences of rules represent linear input-output relations 
of a system. By adjusting crisp values p i  in (6), via sliding 
modes in the current study, fuzzy rules can effectively correlate 
fuzzy subsets so that a multivariable and complex system is 
tractable. Although in this study each input variable contains 
merely two fuzzy subsets, the control inputs are nonlinear 
functions f ( e ,  ec) as shown in (13). The consequences of 
conventional fuzzy rules are fuzzy subsets that are specified. 
The center positions of these fuzzy subsets act like single & in 
(6). In contrast to consequences in conventional fuzzy rules, 
crisp u3,1 defined in (6) depends on p: and p i  in addition 
to p i .  Besides, unlike conventional fuzzy rules, ug,l varies 
with both e and ec. This is equivalent to the division of input 
spaces in the conventional method. Hence, this approach is 
comparable to conventional fuzzy rules, in which seven or 
more subsets are often employed on each universe. The present 
method can indeed reduce the need of so many fuzzy sets and 
rules. Nevertheless, the limitation of this approach is that the 
consequences as expressed in (6) are not fuzzy, and thus a great 
deal of theories in fuzzy logic cannot be directly applied. 

111. SLIDING MODE THEORY 

A VSS can be treated as a combination of subsystems, 
each with a fixed structure and each operating in a specified 
region of phase space. VSS control is a class of nonlinear 
control whose control actions are discontinuous. To implement 
VSS control, switching functions have to be selected. The 
dynamic behavior of the system is dominated by the switching 
functions. Due to discontinuous control actions, sliding modes 
occur whenever the trajectory on the phase plane crosses 
switching manifolds. When the system motion is constrained 
on the switching manifolds, the motion is said to be in the slid- 
ing mode. Consider an nth-order control system represented 
by the state equation 

X = A(x) + B(x)u 

where x denotes state vector and U input vector. Generally, 
the transient dynamics of VSS consists of two conditions: a 
reaching condition and a sliding condition. Under the reaching 
condition, the desired response aims to reach the switching 
manifold in finite time. The switching manifold S is written 
as 

where s denotes a switching function. Parameters of the 
switching manifold dominate the dynamic behavior of the 
system during sliding mode control. The Lyapunov function 
approach is one of methods for specifying reaching condition. 
To avoid the chattering that is present in VSS control, one 
can smooth out the control discontinuity by defining a bound- 
ary layer of thickness Cp. Accordingly, denote the Lyapunov 
function candidate 

V(x) = $(s - ay. (15) 

The reaching condition is obtained by differentiating (15) with 
respect to time, i.e., 

V ( x )  = (s - @ ) ( S  - 6) < 0 when (s - @) # 0. (16) 

The control law for the reaching condition is written as 

. = { U '  
when s(x) > 0 

U- when s(x) < 0 

where U+ and U- denote different control actions. This control 
law, which is discontinuous on s = 0, is given according 
to prescribed switching function s such that the switching 
manifold can be reached in finite time. Hence, the VSS control 
entails different control actions on either side of the given 
switching manifold. 

Under a sliding condition, the trajectory asymptotically 
goes to the origin of the phase plane. The dynamics can be 
formulated as S(x) = 0; that is a necessary but not sufficient 
condition for the state trajectory to remain on the switching 
manifold. Solution of i(x) = 0 gives the equivalent control 
ueq. The feature of VSS control is that the sliding mode occurs 
on the switching manifold, and the system remains insensitive 
to external disturbances and plant uncertainty. The sliding- 
mode theory entails switching functions that are represented 
by lines on the phase plane. The phase plane facilitates the 
qualitative analysis. VSS control is generally devised with 
sliding-mode theory. It can also be devised without a sliding 
mode, but such a system would not possess the associated 
merits. 

For discrete-time system, only quasi-sliding modes can be 
accomplished. Replacing derivative terms in (16) by forward 
difference terms yields 

[ ~ ( k  + 1) - @ ( k  + 1) - ~ ( k )  + @ ( k ) ] [ s ( k )  - @ ( k ) ]  < 0. (17) 

This condition is a necessary but not sufficient condition for 
the existence of quasi-sliding modes. The inequality equation 
~ 4 1  

Is(k + 1) - @ ( k  + 1)1 < Is(k) - @ ( k ) (  (18) 

is a sufficient condition for quasi-sliding modes that guarantees 
the convergence of state trajectories. Equation (18) can be 
decomposed into two inequality equations, i.e., 

[s (k  + 1) - @ ( k  + 1) - s ( k )  + @ ( k ) ]  

[s (k  + 1) - @ ( k  + 1) + s ( k )  - @ ( k ) ]  

. Sign [ s ( k )  - @ ( k ) ]  < 0 

. Sign [ s (k )  - @ ( k ) ]  > 0. 

(19) 

(20) s = {XI s(x) = O} 
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It is noted that (19) is equivalent to (17). In addition, (18) is 
equivalent to [7] 

[s (k  + 1) - @ ( k  + 1)12 < [ s ( k )  - @ @ ) I 2 .  

IV. SLIDING MODES FOR FUZZY RULES 

This study employs a linguistic system [2] to design fuzzy 
control, for which sliding modes are used to determine param- 
eters in control rules. Consider a linguistic system with the 
representation in discrete time 

x”(k + 1) = A/’[x”(k), U”] (21) 

where k denotes the time step, x”(k) the linguistic state 
vector, U” a linguistic input, and A”(.) a linguistic map 
whose parameters are linguistic values. Linguistic variables 
rely on the user’s linguistic values such as “positive” and 
“negative,” and are described in terms of fuzzy subsets as 
shown in Assumption 2 of Section 11-A. The linguistic system 
enables modeling fuzzy control as a nonlinear system. Assume 
x”(k + 1) contains two terms and U” only one term, i.e., a 
second-order system and single input (21) can be written as 

x:’(k + 1) =xP(k) 
x/2/(k + 1) = A”[x?(k), z $ ( k ) ,  ~ ” ( k ) ] .  (22) 

Let xd be the setpoint and linguistic error e”(k )  = xy(k + 
1) - Z d ,  then (22) becomes 

ec”(k) =xy(k + 1) - xy(k) 
xy(k + 2 )  = A”[e/’(k), ec”(k),  u”(k)] (23) 

Fig. 3. Switching function s and phase point 4 on a phase plane. 

(14). In addition, control actions in these four regions are 
linear functions that facilitate the determination of parameters. 
Control actions in the four regions can be written as 

U = o;wc (26) 

where 0; = [D, F,], T = 1, 3, 7 ,  9, and w,’ = 
[1 ec]. Due to (14), O,, consists of elements p i .  The 
switching function is defined as s = Xe + ec shown in Fig. 3 
where x is a positive constant. It is seen that the switching 
function is located in the second and fourth quadrants. This 
function can be treated as a phase trajectory of Pd(e, ec). 
Furthermore, for ease of sensor feedback, e and ec instead of 
s are employed. Under the reaching condition, from (23) the 
manifold s ( k  + 1) = 0 can be treated as a reference model 

E, 
e 

where ec” denotes linguistic error change. The linguistic ?(k  + 2) = XR;(k) + xd (27) 

where XR = 1/(x + 1). Since is a positive constant, XR 
is less than one. Hence, the reference model is stable. From 
(25)-(27) 

system is investigated on the phase plane to combine with 
sliding mode. Treating A”( . )  as a rule set [lo], (23) thus 
becomes 

xy‘k + 2 )  = A” o [e”(k) x ec”(k) x u”(k)] 

where o denotes the composition operator and x the Cartesian 
product. The control action of a fuzzy controller is given by 

U” = Fg(e ,  ec) 

z ( k  + 2 )  = A”(e/’, ec”, O:,wc) - - xd (28) 

where z = x” - 9. For the reaching condition, it is desired 
to determine O,, such that z + 0 as k + 00. The VSS 
control with sliding mode can hence be considered as a 
model-reaching control, where the model reached in finite 

approach is implemented to specify the control action to obtain 

(24) 

where Fg denotes a linguistic map. Equation (23), combined time represents the sliding equation, The Lyapunov function 
with (24), becomes 

2 - i  0 with the time step k as small as possible. Accordingly, 
from (25) and (26), rewrite (19) and (20) as (25) d l ( k  + 2) = A”[e’/, ec”, Fg(e ,  ec)] .  

The design procedure is to first specify the response 
Pd(e, ec) on the phase plane and then design a fuzzy controller 
(24) to achieve this response. To carry out fuzzy control 
design, the control action is formulated, such as (13) on 
the partition plane. Finally, the values of 12 parameters 
p ; ,  i = 1, . . .  , 4, j = 0, 1, 2 are determined such that 
both desired reaching and sliding conditions can be satisfied 
to ensure robustness. To determine these values, Regions 
I, 111, VII, and IX are considered, since D,, E,, and F,, 
T = 1, 3,  7 ,  9 are equal to 12 parameters p i  as shown in 

[A”(e”, ec”, o:wc) - xd - e ( k )  - XRec(k) - 

[A”(e”, ec”, oLw,) - xd + X&e(k) + XRec(k) - a.21 
. Sign [ s ( k )  - @ ( k ) ]  < 0 

. Sign [ s ( k )  - @(k)] > O 

(29) 

(30) 

where Xk = ( x - l ) / ( x + l ) ,  @I = [@(k+l) -@(k)] / (x+l ) ,  
and @2 = [@(k + 1) + @ ( k ) ] / ( X  + 1). Inequalities (29) and 
(30) are used to determine O,,, T = 3 when s ( k )  - @ ( k )  > 0, 
whereas O,,, T = 7 when s ( k )  - @ ( k )  < 0. 
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Under the sliding condition, s (k  + 1) - s ( k )  = 0 [7] is 
required for the phase trajectory to remain on the switching 
manifold s ( k  + 1) = 0. Furthermore, using (23), s (k  + 1) - 
s ( k )  = 0 can be rewritten to become a reference model 

(3 1) 

Since both e and ec are scaled by gains, s = 0 represents a 
line passing the origin and Regions I, V, and IX as shown in 
Fig. 3. Moreover, e,,, T = 1, and 9 can be determined by 
(25), (26), and (31). This is similar to the procedure leading 
to the equivalent control ueq as described in Section 111. 
Nevertheless, from the above method one can find solutions 
of O,,, T = 1, 3, 7, and 9 to satisfy both the reaching and 
sliding conditions. To further choose the best value of e,,, 
the slope X ( k )  of phase point $(k) at time step k is employed 
where X(k)  is given by 

? ( k  + 2) = q k )  + X&c(k) + Zd. 

Since gradient V s ( k )  = [ X ( k )  11 and phase point & k )  = 
[ e ( k )  ec(k)lT, (32) can be written as (Vs, 4) = 0 where 
(., .) denotes the inner product. Accordingly, 6 represents 
the null space of Vs. The function s = s ( k )  at time step 
k represents a line parallel to the line s = 0, whereas - V s ( k )  
denotes the flow direction of the phase point as shown in 
Fig. 3. X(k)  is negative in the first and third quadrants but 
positive in the second and fourth quadrants. It is desired that 
X ( k )  is approaching x with not only k but also the overshoot 
as small as possible. This reasoning is similar to that in 
characterizing a transient response due to unit step input. 

V. CASE STUDY 

A. System Model 

A rider-motorcycle integrated system can be treated as 
a man-machine system. Although a motorcycle is statically 
unstable in nature, appropriate steering by the rider can stabi- 
lize the motorcycle during riding. To maintain stability, with 
respect to tire bottoms on the ground, the moment arising 
from the gravity force must be equal to, but opposite to, 
the direction of the moment due to the centrifugal force 
during cornering. Forouhar [5] proposed a feedback control 
scheme based on robust optimal control theory to improve the 
dynamic behavior of motorcycles. Liu and Wu [ 181 employed 
the fuzzy control method to investigate the performance of 
rider-motorcycle systems. In this study, an inverted pendulum 
hinged to a rotating disk as shown in Fig. 4 is used to represent 
cornering motion of a motorcycle on which a rider leans to 
maintain stability. This apparatus is designed in such a way 
that it can, to some extent, represent motion control involving 
the leaning angle of the rider’s body (represented by the 
inverted pendulum) and the banking speed of the motorcycle 
(represented by the disk). In a manner similar to the balance 
during motorcycle cornering, the inverted pendulum is not 
stable at any tilt angle unless both moments caused by the 
pendulum weight and the centrifugal force counteract each 
other. The inverted pendulum representing a rider’s body in 

! \\U 
Disk Mass _8.. ‘=‘*-\A 
M=6.30ko 

Servo 
Motor 

View 

Mass 
m=O.Olkg 

B 

Front View 

Fig. 4. Schematic diagram of an inverted pendulum hinged to a rotating disk. 

leaning morion is hinged to the rim of the rotating disk. 
The centrifugal force resulting from the rotating motion of 
the disk enables the inverted pendulum to rotate about the 
tangential direction of the disk. Rotating speeds of the disk 
that correspond to riding speeds of the motorcycle dominate 
the leaning motion of the inverted pendulum that corresponds 
to the rider’s leaning motion. This study regulates the tilting 
inverted pendulum to target angles using fuzzy control with 
sliding mode, in which target angles are prescribed to change 
during excursion and control input is the rotating speed of the 
disk. It is desired to vary rotating speeds, so that the tilt angle 
can be regulated by the centrifugal force that arises from disk 
rotation. 

The Hamiltonian formulation constructs the system model 
in terms of generalized coordinates and generalized momenta 
and thus results in a set of first-order equations of motion. 
Furthermore, solution trajectories for equations of motion 
derived by the Hamiltonian formulation form a phase space 
which lends itself to the description of the qualitative behavior 
of the system. To derive Hamilton’s equations, generalized 
coordinates and generalized momenta are defined as 

r -  

P = k;]. (33) 
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0.02 
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-0.02 
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Fig. 5 .  Phase planes of 8 b  and PO,  without control. 

Hamilton's equations [9] are accordingly written as 

(34) 

where U denotes the generalized force, i.e., the torques of 
motor, COb and CO are damping coefficients of the inverted 
pendulum and the disk to account for viscous damping at 
joints, and 

~b = mi2 
I ,  = Mr2 + m ( ~  - 1 . sin 8b)' 

IC = ml(r - $ 1  . sin O b )  cos 0 b .  

Neglecting generalized force and damping, i.e., U = 0 and 
cob = CO = 0, (34) gives equilibrium points: p = 0, o b  = 0, 
&7r, f27r, . . -, whereas Q is arbitrary. If damping exists, as 
depicted in Fig. 5, equilibrium points (T ,  O), (3n, 0), etc., 
become stable nodes which account for the pendulum in the 
vertically downward direction. 

B. Simulation Results 

In this study, initial conditions are prescribed as: the angle of 
inverted pendulum 0 b  = 36', the angular velocity of inverted 
pendulum 0 b  = 0, and the angular velocity of motor w = 
0. The inverted pendulum is initially supported by a vertical 
strut such that 0 b  cannot be larger than 36". Two cases are 
investigated in which the target angle change occurs at the 
fifth second. The target angle of the inverted pendulum in 
Case I is 20" from the start to the fifth second and 10" from 
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h -Experiment 
M 
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Time (sec) 
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Fig. 6. 
the inverted pendulum and (b) angular velocity of the motor in Case I. 

Simulation and experimental results of (a) angular displacement for 

the fifth second to the end. The target angle of the inverted 
pendulum in Case I1 is 10' in _the former period-md 20" in the 
latter period. Since positive ( P )  and negative ( N )  are denoted 
as fuzzy subsets for input variables as depicted in Fig. 1, four 
fuzzy rules can be written, as in the form of (6) 

where error e ( k )  denotes the current angle of the inverted 
pendulum minus the target angle and error change ec(k)  the 
current error minus the error at the previous sampling time. In 
the above four rules, 12 parameters p i  in the consequence are 
determined by sliding-mode theory as described in Section IV. 

Dashed curves in Figs. 6 and 7 show simulation results for 
Cases I and 11, respectively. It is seen that to track the larger 
target angle 20", it requires a larger motor angular velocity 
w.  This applies to motorcycle cornering in the sense that 
only in a larger body lean of the rider can faster cornering 
motion be accomplished. The same control rules but different 
gains are used for both cases. The phase trajectories shown 
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Fig. 7. 
the inverted pendulum and (b) angular velocity of the motor in Case II. 

Simulation and experimental results of (a) angular displacement for 

in Fig. 8 initiate from 8 b  = 36" and ec = Oo, and x that 
denotes the slope of switching lines is the same in both cases. 
No chattering phenomenon occurs on switching lines since 
boundary layers are employed in (18). As shown in Fig. 8, 
the phase trajectories approach two switching lines but do not 
stay on them. This is anticipated since the switching lines are 
the prescribed reference lines and the control input for fuzzy 
control is continuous, as shown in Section 11; thus the sliding 
condition cannot be fulfilled perfectly. Besides, discrete-time 
VSS control can only achieve quasi-sliding modes according 
to [20]. 

C. Experimental Results 

The schematic diagram of the experimental setup is shown 
in Fig. 9. A shaft encoder at the hinge of the inverted pen- 
dulum measures the tilt angle. An interface card transmits the 
position count to the PC to carry out the fuzzy control. The 
sampling time of a PC command is 1 ms. A motor driver 
receives control signals via the interface card and enables 
instantaneous rotation motion of the AC servo motor. The 
initial angle of pendulum 0 b  is 36" and the rotational velocity 
of the motor w = 0. 

Solid curves in Figs. 6 and 7 depict experimental results for 
variations of O b  in two cases. Data is collected at a sample 
rate of 50 Hz. Experimental curves lag behind simulation 
curves, since in the experimental setup there exist mechanical 
and electrical time constants that are not accounted for in 
simulations. In contrast to simulation results, curve wiggle 
is present due to gear collision at backlash in the gear box 
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I I I 

Switching 

50 

-100 L 
0 10 20 30 40 

(b) 

Fig. 8. Simulation results of phase trajectories for (a) Case I and (b) Case I1 

for the servo motor. The collision occurs whenever the motor 
undergoes large acceleration or deceleration. The collision 
hence belongs to unknown nonlinearity. Since motor angular 
velocities w increase with target angles, the degree of collision 
increases with target angles. Furthermore, since variations of 
w increase with target angles as shown in Figs. 6(b) and 7(b), 
the wiggle of the O b  curve also increases with target angles 
as shown in Figs. 6(a) and 7(a). Fig. 10 shows Bode plots of 
o b  versus motor angular velocity w in both cases. The phase 
lag in Case I1 is larger than that in Case I. It is noted that 
compensating for larger phase lag requires more control effort. 
From the viewpoint of a rider-motorcycle system undergoing 
rider's posture change, Fig. 10 demonstrates that it takes more 
control effort for a rider to increase than to decrease the leaning 
angle. 
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Fig. 11 compares the experimental results between the pro- 
posed method and PID control for target angles 20' and 
10". Three gains for the PID controller are determined by 
Ziegler-Nichols tuning [6]. Dealing with the current system in 
the presence of nonlinearity, the proposed method outperforms 
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Fig. 11 .  
posed method and PID control. 

Experimental results of the angular displacements using the pro- 

PID control that yields significant angular variation. This 
is attributed to fuzzy control in essence exerting different 
control input among different phase plane regions as shown 
in (1 3). Control input for different regions is adjusted by the 
parameters of rules in this work. 

In the literature, there exist other fuzzy control meth- 
ods available, e.g., neural-network-based fuzzy control and 
adaptive fuzzy control. Fig. 12 compares experimental re- 
sults between the proposed method and neural-network-based 
fuzzy control 1161. In neural-network-based fuzzy control, a 
backpropagation algorithm is employed to learn membership 
functions and parameters in fuzzy rules. The backpropagation 
network consists of two nodes in the input layer, three hidden 
layers with ten nodes in each, and one node in the output 
layer. Input signals contain error e and error change ec, 
and the output signal is the motor angular velocity w. It is 
shown in Fig. 12 that the proposed method is comparable to 
neural-network-based fuzzy control. Due to the backpropaga- 
tion algorithm, however, neural-network-based fuzzy control 
spends about 250 times the CPU time for the proposed method, 
as depicted in Table I. Three disadvantages of the algorithm 
lead to long learning time. First, initial weighting values have 
to be randomly prescribed which result in slow convergence. 
Second, a set of sufficient input-output data has to be available 
for learning. Third, the algorithm often leads to unsatisfactory 
local minima of cost functions. Taking advantage of adaptive 
control, adaptive fuzzy control [ 11, [28] incorporates a training 
algorithm which adjusts the parameters of fuzzy control based 
on input-output data. Its parameter adaption, however, only 
works well in dealing with uncertainties in terms of constant 
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method and neural-network-based fuzzy control. 

Experimental results of angular displacements using the proposed 

TABLE I 
CPU TIME COMPERSSION 

The Present Method Neural-Network-Based 
Fuzzy Control I 

or slowly varying parameters versus VSS in nonlinearity and 
uncertainties in terms of quickly varying parameters. Fur- 
thermore, indirect adaptive fuzzy control [21] has to identify 
models using input-output data. 

VI. CONCLUSIONS 

This study proposes a method for fuzzy control design 
with sliding modes. Fuzzy control has been formulated to 
become a class of VSS control. Sliding modes facilitate 
determining the best values for parameters in fuzzy control 
rules. The Lyapunov function and the boundary layer have 
been employed to satisfy the reaching condition and to avoid 
chattering, respectively. In addition to computer simulations, 
experiments have been conducted to validate the proposed 
method. In comparison, the present method outperforms not 
only PID control but also neural-network-based fuzzy control. 
The success of the present method lies in the fact that 
fuzzy control inherently resembles VSS control, since both 
control actions vary with divided regions on phase planes. 

It is difficult, however, to carry out the present method 
for very high-order systems with multi-input, for which an 
effective scheme would be required to enable state trajectories 
approaching sliding modes. 
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