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In view of the widespread recognition and increased 
use of moderated multiple regression (MMR) in behav-
ioral and related disciplines, various attempts have been 
devoted to address methodological and computational is-
sues in the detection of interaction effects. It is evident 
from the comprehensive review of Aguinis, Beaty, Boik, 
and Pierce (2005) that MMR studies focus mainly on null 
hypothesis significance testing for drawing conclusions 
about moderating effects. This dominance of hypothesis 
testing for making statistical inferences does not occur 
exclusively in MMR analysis. It more broadly reflects the 
longstanding and prevalent reliance of applied research on 
significance tests across many scientific fields. However, 
the dichotomous accept–reject decision of null hypoth-
esis significance testing ignores other useful information 
in its analysis. As an alternative, confidence intervals are 
more informative about location and precision of the sta-
tistic, and they are the best reporting strategy according 
to the recommendations of Wilkinson and the American 
Psychological Association Task Force on Statistical Infer-
ence (1999), as well as of the Publication Manual of the 
American Psychological Association (APA, 2001). Conse-
quently, the notion of interval estimation has been stressed 
repeatedly in the literature on education, psychology, and 
social sciences. For example, see Algina and Olejnik 
(2000), Kelly and Maxwell (2003), Smithson (2001), and 

Steiger and Fouladi (1997) for in-depth discussions on 
constructing confidence intervals for the squared multiple 
correlation coefficient, regression coefficient, and related 
parameters within the multiple regression framework.

The most common application of MMR is in the con-
text of simple interaction models with criterion variable Y, 
predictor variable X, moderator variable Z, their cross 
product term XZ, and an error term ε in the formulation 
of Y 5 βI 1 XβX 1 ZβZ 1 XZβXZ 1 ε. The moderator Z 
is essentially the second predictor variable hypothesized 
to moderate the X–Y relationship. In the present article, 
we consider the situation in which both the predictor X 
and the moderator Z are continuous variables since it is 
applicable to a wide range of problems encountered in ap-
plied research. Because of the nature of continuous mea-
surements, it is conceivable that not only are the values of 
the response variables for each participant available only 
after the observations are made, but the levels of predictor 
and moderator variables are also outcomes of the study. 
In order to take account of this stochastic feature of ex-
planatory variables, the appropriate strategy is to consider 
a random regression formation rather than a fixed or con-
ditional setting. Similar emphasis and related implications 
can be found in Dunlap, Xin, and Myers (2004), Gatso-
nis and Sampson (1989), Mendoza and Stafford (2001), 
Shieh (2006), and Shieh and Kung (2007). In practice, the 
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cifically constructed to relate manager’s self-assurance (Y ) 
with length of time in the position (X ), managerial abil-
ity (Z), and their interaction. Note that both explanatory 
variables (time in the position and managerial ability) are 
not typically fixed in advance and that they are available 
after collecting the data. Therefore, there is no problem 
in regarding them as random, provided that the managers 
are drawn randomly from the relevant population. Hence, 
the appropriate approach is random regression modeling. 
The purpose of the present investigation was to find out to 
what extent the relation between self-assurance and time 
in position varies with managerial ability. Essentially, it is 
constructive to assess the systematic magnitude alternation 
for the strength of the relationship between the manager’s 
self-assurance and length of time in the managerial position 
that results from a one-unit change in managerial ability.

In a continual effort to support analytical development 
and to improve the practical use of research findings in 
MMR, the present article contributes to the derivation and 
evaluation of sample size methodology in two important 
aspects. On one hand, it provides the necessary sample 
size so that the designated interval for the least squares 
estimator of moderating effects attains the specified cov-
erage probability. The following discussion shows that 
this problem is identical to the computation of the mini-
mum sample size so that the prescribed confidence inter-
val formula of moderating effects attains a desired level 
of confidence. On the other hand, the present study gives 
the sample size required to ensure, with a given tolerance 
probability, that a confidence interval of moderating ef-
fects with a desired confidence coefficient will be within 
a specified range. Notably, the sample size formulas of 
Guenther and Thomas (1965), Hahn and Meeker (1991), 
Kupper and Hafner (1989), and Nelson (1994) are con-
cerned exclusively with the length of confidence intervals. 
Since the actual values of the resulting confidence interval 
depend not only on the estimated width but also on the 
realized value of the location estimator, their procedures 
do not consider the stochastic nature of the point estimator 
for central tendency. Nonetheless, these previous studies 
focused on the interval estimation procedures in one- and 
two-sample problems; hence, they did not address the as-
sociated issues in an MMR application. Sample size tables 
are provided for a variety of situations to demonstrate the 
individual impact of deterministic factors and how they 
pertain to the two aforementioned precision considerations 
of confidence intervals. Furthermore, numerical examples 
and simulation results are presented to illustrate the useful-
ness and advantage of the proposed methods that account 
for the embedded randomness and distributional character-
istic of the moderator and predictor variables.

Interval Estimation Procedures  
of Moderated Effects

Consider the simple interaction model or MMR model 
within the fixed modeling framework

	 Yi 5 βI 1 XiβX 1 ZiβZ 1 XiZiβXZ 1 εi,	 (1)

where Yi is the value of the response variable Y; Xi and Zi 
are the known constants of the predictor X and modera-

inferential procedures of hypothesis testing and interval 
estimation are the same under both fixed and random for-
mulations. However, the distinction between the two mod-
eling approaches becomes crucial when power, coverage 
probability, and corresponding sample size calculations 
are to be made. See Cramer and Appelbaum (1978) and 
Sampson (1974) for clear and succinct presentations on 
the intrinsic appropriateness and theoretical properties of 
fixed and random models.

For the simple interaction model described above, in 
most illustrative and theoretical treatments of MMR, it is 
generally assumed that the two continuous predictor and 
moderator variables have a joint bivariate normal distri-
bution (see, e.g., O’Connor, 2006). Obviously, the prod-
uct of two normally distributed variables does not have a 
normal distribution. Moreover, there are also many situ-
ations in which the predictor and moderator variables are 
continuous but the assumption of normality is completely 
untenable. These results are concerned with fixed- or 
multinormal-regressors settings and are thus not appli-
cable to the great diversity of random frameworks. Re-
cently, Shieh (2007) considered using a unified approach 
to accommodate arbitrary distributional formulations of 
the stochastic explanatory variables and demonstrated 
power calculation as well as sample size determination for 
hypothesis tests of coefficient parameters within the ran-
dom regression framework. The general results of Shieh 
(2007) were utilized in Shieh (2009) to perform power and 
sample size computations in MMR to detect interaction 
effects between continuous predictor and moderator vari-
ables, regardless of whether they follow a jointly bivariate 
normal distribution. It is well known that there exists a 
direct connection between hypothesis testing and interval 
estimation, although the two procedures are philosophi-
cally different in the power and precision viewpoints. In 
particular, the necessary sample size required for signifi-
cance testing is a function of coefficient parameters. On 
the other hand, it will be shown later that the sample size 
needed for precise interval estimation is affected by the 
interval width and does not depend on the magnitude of 
coefficient parameters. Related discussions and examples 
can be found in Algina and Olejnik (2000) and in Kelly 
and Maxwell (2003). Not surprisingly, the sample size re-
quired to test a hypothesis regarding the specific value of 
a parameter with desired power can be markedly different 
from the sample size needed to obtain adequate precision 
of interval estimation in the same study. The planning of 
sample size should be included as an integral part in the 
design of MMR studies, and it is of both methodologi-
cal and practical importance to develop feasible methods 
for sample size determination considering precise interval 
estimation.

To elucidate the key concepts in the present article, con-
sider a study on the self-assurance of managers that exam-
ines how the impact of length of time in the position on 
self-assurance is moderated by managerial ability (Aiken 
& West, 1991, chap. 2). A sample of managers is randomly 
selected from the participating source corporation, and 
various measurements for each manager are recorded. The 
MMR model Y 5 βI 1 XβX 1 ZβZ 1 XZβXZ 1 ε is spe-



826    S    hieh

rate in achieving the desired reliability. In the following 
sections, two interval estimation approaches to sample 
size determination are developed.

Sample Size Methodology for Designated 
Interval Estimation of Moderating Effects

When the focus is on the inferential procedure of in-
terval estimation, it is prudent for one to ensure that the 
resulting estimate is in the neighborhood of the actual 
or possible parameter value with sufficiently high prob-
ability. In the context of MMR analysis, therefore, it is of 
interest to calculate the sample size required for a desig-
nated interval so that the least squares estimator of moder-
ating effects simultaneously satisfies the desired levels of 
precision and probability. Ultimately, the corresponding 
method for sample size determination requires consider-
ing the sampling distribution of the least squares estimator 
βXZ of βXZ. Analogous to the practical standpoint of Shieh 
(2009) for providing a generally useful and versatile solu-
tion without being specifically confined to any particular 
joint probability function g(Xi, Zi), the large-sample dis-
tribution of
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is presented in Equation A6 of Appendix A, where β is 
a constant and is not necessarily equivalent to βXZ. The 
asymptotic property of TXZ(β) will be later employed to 
implement varieties of probability calculations and sam-
ple size determinations.

With the specified quantities of population configura-
tions for a moderating effect βXZ, error variance σ2, joint 
distribution g(X, Z ) of (X, Z ), probability level 1 2 α, and 
the designated interval (βXZ 2 bL, βXZ 1 bU) with proper 
bounds bL . 0 and bU . 0, the smallest sample size N 
needed for the interval (βXZ 2 bL, βXZ 1 bU) of βXZ with 
coverage probability of at least 1 2 α can be computed 
from

	 P{βXZ 2 bL , βXZ , βXZ 1 bU} $ 1 2 α. 	 (6)

Alternatively, Equation 6 can be expressed as

	 P{βXZ 2 bU , βXZ , βXZ 1 bL} $ 1 2 α.	

Therefore, the sample size problem just described is equiv-
alent to finding the minimum sample size N needed for the 
designated confidence interval (βXZ 2 bU, βXZ 1 bL) of βXZ 
to attain the desired level of confidence 1 2 α. However, 
unlike the fixed predictor and moderator setting, the com-
putation of P{βXZ 2 bL , βXZ , βXZ 1 bU} in Equation 6 
is fairly complicated due to the arbitrary and stochastic 
characteristics of (X, Z). The theoretical properties of the 
proposed procedure are presented in Appendix B.

In order to enhance the application of precise interval 
estimation of the moderating effect, selected computations 
of sample size planning for precise interval estimation of 
moderating effects are performed. To improve analytical 
tractability in the derivation and primary focus in liter-
ature, the MMR model with bivariate normal predictor 

tor Z; εi is independent and identically distributed N(0, 
σ2) random errors for i 5 1, . . . , N; and βI, βX, βZ, and 
βXZ are unknown parameters. To examine the moderator 
effect, we are concerned with the distributional property 
associated with the least squares estimator βXZ of βXZ. Ac-
cording to the standard results (Rencher, 2000, Section 
8.6), a 100(1 2 α)% confidence interval of βXZ is

	 (βXZ 2 tN24,α1
{s2M}1/2, βXZ 1 tN24,α2

{s2M}1/2),	 (2)

where s2 is the usual unbiased estimator of σ2; M is the 
(3, 3) element of A21, A 5 S N

i51(Xi 2 X)(Xi 2 X)T; X 5 
S N

i51Xi/N, and Xi 5 (Xi, Zi, XiZi)T is the 3 3 1 row vector 
for values of predictor Xi, moderator Zi, and their cross 
product XiZi for  i 5 1, . . . , N. In addition, tN24,α1

 and 
tN24,α2

 are the 100(1 2 α1)th and 100(1 2 α2)th percen-
tiles of the t distribution with N 2 4 degrees of freedom, 
respectively, and α 5 α1 1 α2. See Rencher (2000, chap. 7 
and 8) for general treatments and further details on linear 
models and their analysis. The most common practice is 
to assume α1 5 α2 5 α/2, and this leads to the shortest 
100(1 2 α)% two-sided confidence interval for βXZ:

	 (βXZ 2 tN24,α/2{s2M}1/2, βXZ 1 tN24,α/2{s2M}1/2).	 (3)

Furthermore, the 100(1 2 α)% one-sided lower and upper 
confidence intervals can be readily obtained from Equa-
tion 2 by setting either α1 or α2, respectively, to zero, as 
follows:

	 (2`, βXZ 1 tN24,α{s2M}1/2)	

and

	 (βXZ 2 tN24,α{s2M}1/2, `).	 (4)

Here, we concentrate exclusively on the specific cir-
cumstance that both the predictor X and the moderator Z 
are continuous variables. Due to the nature of continu-
ous measurements encountered in practical research, the 
explanatory variables typically cannot be controlled and 
are available only after observation. Hence, in order to 
extend the concept and applicability to MMR, the con-
tinuous predictor and moderator variables {(Xi, Zi), i 5 
1,  .  .  .  , N} in Equation 1 are assumed to have a joint 
probability function g(Xi, Zi) with finite moments. More-
over, the form of g(Xi, Zi) does not depend on any of the 
unknown parameters (βI, βX, βZ, βXZ) or σ2. From the in-
vestigations of Shieh (2007, 2009), it is conceivable that 
the extended consideration of random features associated 
with the predictor X and the moderator Z complicates the 
fundamental statistical properties of the inferential pro-
cedures. As was noted above, however, the inferential 
procedures of hypothesis testing and interval estimation 
are the same under both fixed and random formulations. 
Hence, the two- and one-sided confidence limits given in 
Equations 3 and 4 are still valid under random predictor 
and moderator settings. The follow-up analyses can be 
performed without any alteration or extra effort. In view 
of the practical value of interval estimation, it is impor-
tant to determine the necessary sample size so that the 
resulting interval estimate is not only precise enough to 
identify meaningful findings but also sufficiently accu-
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hypothesis, but in that the determined value of the point 
estimate and the width of the interval also give ideas of the 
inherent location and precision of the estimation. How-
ever, the interval estimation procedures are intrinsically 
stochastic in nature. From a study-planning point of view, 
researchers may wish to obtain meaningful research find-
ings so that the resulting confidence interval will meet 
the prespecified assurance and precision requirements. 
The corresponding approach to determining the required 
sample size is presented next.

With the specified quantities of population configura-
tions for moderating effect βXZ, error variance σ2, joint 
distribution g(X, Z ) of (X, Z ), tolerance probability 1 2 γ, 
and the prescribed range (βXZ 2 wL, βXZ 1 wU) with 
proper bounds wL . 0 and wU . 0, the minimum sample 
size N required to ensure that the 100(1 2 α)% two-sided 
confidence interval given in Equation 3 is within the range 
of (βXZ 2 wL, βXZ 1 wU) with a tolerance probability of at 
least 1 2 γ can be determined by

	 P{βXZ 2 wL , βXZ 2 tN24,α/2 (s2M)1/2 and

	 βXZ 1 tN24,α/2(s2M)1/2 , βXZ 1 wU} $ 1 2 γ.	 (7)

This procedure is complex since it must consider 
the stochastic nature of the confidence limits βXZ  2 
tN24,α/2{ s2M}1/2 and βXZ 1 tN24,α/2{ s2M}1/2 within the 
unconditional framework that the predictor and modera-
tor are random variables. The corresponding analytical 
presentation is summarized in Appendix C.

As additional illustrations, we continue to exemplify 
the sample size procedures for the preceding MMR 
model with bivariate normal predictor and moderator 
variables. In this case, Table 3 presents the minimum 
sample sizes required to ensure that the 95% two-sided 
confidence interval ( βXZ  2 tN24,.025{ s2M}1/2, βXZ  1 
tN24,.025{ s2M}1/2) is within the range of (βXZ  2  w, 
βXZ 1 w) with a tolerance probability of at least .90 
and .95 for values of ρ ranging from 0 to .8 in incre-
ments of .2, and w 5 0.2, 0.225, and 0.25. In addition, 
Table 4 shows the corresponding sample sizes that en-
sure that the 95% one-sided confidence intervals (2`, 
βXZ 1 tN24,.05{ s2M}) and ( βXZ 2 tN24,.05{ s2M}, `) are 
within the ranges of (2`, βXZ 1 w) and (βXZ 2 w, `), 
respectively, with tolerance probabilities of at least .90 

and moderator variables is used as the base for numerical 
exposition. Specifically, the coefficient parameters and 
variance of the MMR model are set as βI 5 βX 5 βZ 5 
βXZ 5 1 and σ2 5 1, respectively. For the joint distribu-
tion of the predictor and moderator, the (X, Z ) variables 
are jointly normally distributed with mean (0, 0), variance 
(1, 1), and correlation ρ. The minimum sample sizes that 
are needed to control the designated two-sided intervals 
(βXZ 2 b, βXZ 1 b) of βXZ with coverage probability of at 
least .90 and .95 are presented in Table 1 for values of ρ 
ranging from 0 to .8 in increments of .2, and b 5 0.1, 
0.125, and 0.15. Similarly, the corresponding sample size 
calculations for the one-sided interval (2`, βXZ 1 b) and 
(βXZ 2 b, ̀ ) of βXZ are listed in Table 2. Note that the sam-
ple sizes presented in Table 2 are applicable for one-sided 
intervals (2`, βXZ 1 b) and (βXZ 2 b, `) of βXZ under 
the chosen model configurations. An inspection of both 
tables reveals the expected general relations: Sample sizes 
increase with an increasing level of confidence 1 2 α, and 
they increase with decreasing value of bound b when all 
other factors are fixed. Moreover, the sample size reported 
in Table 1 for a two-sided confidence interval is greater 
than the corresponding value of a one-sided confidence 
interval in Table 2 for fixed values of ρ, b, and 1 2 α.

Sample Size Methodology for Confidence 
Intervals of Moderating Effects With  
Specified Ranges and Tolerances

It is well known that confidence intervals are superior 
to hypothesis tests not only in that they reveal what param-
eter values would be rejected if they were used in a null 

Table 1 
Minimum Sample Sizes Required for the Prescribed Two-Sided 

Interval (βXZ 2 b, βXZ 1 b) of βXZ With Coverage Probability 
of at Least .90 and .95 for Bivariate Normal Predictor and 
Moderator Variables (σ2 5 1, µX 5 µZ 5 0, σ2

X 5 σ2
Z 5 1)

b

0.1 0.125 0.15

 ρ  .90  .95  .90  .95  .90  .95  

0 280 396 183 258 130 183
.2 270 382 177 249 126 177
.4 245 346 162 228 117 164
.6 213 300 142 199 104 145

 .8  181  254  123  171    92  127  

Table 2 
Minimum Sample Sizes Required for the Chosen One-Sided 

Interval (2`, βXZ 1 b) and (βXZ 2 b, `) of βXZ With Coverage 
Probability of at Least .90 and .95 for Bivariate Normal Predictor 

and Moderator Variables (σ2 5 1, µX 5 µZ 5 0, σ2
X 5 σ2

Z 5 1)

b

0.1 0.125 0.15

 ρ  .90  .95  .90  .95  .90  .95  

0 171 280 112 183 81 130
.2 166 270 109 177 79 126
.4 151 245 100 162 73 117
.6 132 213   89 142 66 104

 .8  112  181    77  123  58    92  

Table 3 
Minimum Sample Sizes Required to Ensure That the 95% 

Two-Sided Confidence Interval (βXZ 2 tN24,.025{̂σ2M}1/2, βXZ 1 
tN24,.025{̂σ2M}1/2) Is Within the Range of (βXZ 2 w, βXZ 1 w) 

With a Tolerance Probability of at Least .90 and .95 for 
Bivariate Normal Predictor and Moderator Variables  

(σ2 5 1, µX 5 µZ 5 0, σ2
X 5 σ2

Z 5 1)

w

0.2 0.225 0.25

 ρ  .90  .95  .90  .95  .90  .95  

0 343 405 274 325 226 268
.2 332 393 266 315 220 260
.4 303 359 245 290 203 241
.6 266 315 216 257 180 215

 .8  227  270  186  222  157  187  
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of their numerical study was to determine whether the re-
lationship between the self-assurance of managers (Y ) and 
the length of time in the position (X ) changes as a func-
tion of managerial ability (Z). To facilitate the following 
illustration in the context of MMR research, suppose that 
there are 60 pairs of observations for predictor variable X 
and moderator variable Z obtained from a pilot study. The 
values of (X, Z ) that are presented in Table 5 represent 
random samples generated from a bivariate normal popu-
lation with µX 5 µZ 5 0, σ2

X 5 σ2
Z 5 1, and correlation 

ρ 5 .4. In view of the continuous characteristics of mea-
surements X and Z, it is clear that the sample values in the 
subsequent study vary from one application to another. 
However, the observed configurations from the pilot study 
can be employed as an empirical approximation for the 
underlying joint distribution of X and Z. Moreover, it is 
shown next that the suggested approach and a simplified 
method utilize the empirical features that are associated 
with the predictor and moderator variables in distinctive 
ways and, thus, the two formulas lead to substantially dif-
ferent results in sample size calculations and in accuracy 
in achieving satisfactory levels of precision for interval 
estimation.

We follow the analysis results in Aiken and West (1991, 
p. 10) that the parameter estimates of the MMR model are 
chosen as βI 5 2.54, βX 5 1.14, βZ 5 3.58, βXZ 5 2.58, 
and σ2 5 1. On the basis of the 60 observed configura-
tions of pilot data in Table 5 with Xi 5 (Xi, Zi, XiZi)T and 
the empirical probability 1/60 for i 5 1, . . . , 60, the esti-
mated moment matrices for the quantities in Equation A4 
can be obtained by

	 ˆm 5 S60
i51Xi/60,  ˆS 5 S60

i51(Xi 2 ̂m)(Xi 2 ̂m)T/60,	

and

	Ψ̂ 5 S60
i51[(Xi 2 ̂m)(Xi 2 ̂m)T ⊗ (Xi 2 ̂m)(Xi 2 ̂m)T]/60.	

Thus, the approximate normal distribution of W* in Equa-
tion A5 has the estimated mean mW* 5 1.2348 and esti-
mated variance s2

W* 5 22.6511. In planning a research 
study according to the present information, the minimum 
sample sizes needed to control the designated two-sided 
interval (βXZ 2 b, βXZ 1 b) 5 (2.58 2 0.15, 2.58 1 0.15) 5 

and .95. As in the numerical evaluations associated with 
Table 2, the sample sizes given in Table 4 are applica-
ble to both cases of one-sided intervals because of the 
special feature of the noncentral t distribution. It can be 
seen from Tables 3 and 4 that required sample sizes in-
crease with an increasing level of tolerance probability 
1 2 γ, and with a decreasing value of bound w when 
all other factors are fixed. As before, the sample size 
reported in Table 3 for the two-sided confidence interval 
is greater than the corresponding value of the one-sided 
confidence interval reported in Table 4 for fixed values 
of ρ, w, and 1 2 α. Furthermore, although the results are 
not completely comparable, the sample sizes in Tables 3 
and 4 are larger than those in Tables 1 and 2.

Numerical Examples
The following numerical assessment represents a typi-

cal research situation frequently encountered in the plan-
ning stage of a study in order to assess interaction effects 
in the context of MMR. The ultimate aim is to demonstrate 
the sample size calculations for precise interval estimation 
of moderating effects based on a pilot sample and to show 
the potential consequence of failing to account for the un-
derlying stochastic property of the explanatory variables.

As a continued exposition of the illustration of Aiken 
and West (1991), it is important to remember that the aim 

Table 4 
Minimum Sample Sizes Required to Ensure That the 95% One-
Sided Confidence Interval (2`, βXZ 1 tN24,.05{̂σ2M}) and (βXZ 2 

tN24,.05{̂σ2M}, `) Is Within the Range of (2`, βXZ 1 w) and  
(βXZ 2 w, `), Respectively, With a Tolerance Probability of  

at Least .90 and .95 for Bivariate Normal Predictor and 
Moderator Variables (σ2 5 1, µX 5 µZ 5 0, σ2

X 5 σ2
Z 5 1)

w

0.2 0.225 0.25

 ρ  .90  .95  .90  .95  .90  .95  

0 227 287 182 230 150 190
.2 220 278 177 223 146 185
.4 201 254 162 206 135 171
.6 176 224 144 182 120 153

 .8  151  192  124  158  105  134  

Table 5 
Observed Values of Predictor Variable X and Moderator Variable Z of the Pilot Study

X  Z  X  Z  X  Z  X  Z

20.9121 20.7970 20.3581 0.1677 0.4875 0.0481 20.2312 22.6297
0.6161 0.4406 21.7096 20.0614 21.3712 20.2643 0.1967 0.6026

20.3459 20.2503 21.2201 1.0737 20.3063 0.4640 20.7609 20.1105
20.3654 0.7871 1.9457 20.4328 21.2158 20.8524 21.3095 20.1378

0.2258 20.7407 20.0119 0.4386 1.1241 0.5519 22.0270 0.3233
0.0206 0.5837 0.1606 0.2365 21.3135 1.5577 1.4949 0.7624
0.8080 2.2212 20.1174 21.1017 0.1751 0.1340 0.5943 20.3610

20.0031 20.9145 0.2718 1.0854 0.2313 0.3495 20.2982 20.2510
0.7696 0.6172 0.8000 0.2615 20.4457 0.9176 21.3263 20.1808
0.5753 20.5732 21.2381 20.1725 2.8890 1.2777 1.2771 1.4634

21.6247 20.3238 20.8302 21.1981 0.3750 0.2207 20.8958 0.4195
0.5934 20.5248 20.6407 20.6331 0.7223 1.2787 21.6284 20.5142
1.6639 0.8816 20.3646 0.9514 0.8073 1.2787 0.4745 1.2441

20.2153 1.3834 22.9043 22.2853 0.9276 1.5124 20.7966 0.5477
0.4095  0.1387  0.1980  0.1679  0.5019  0.4255  0.5386  0.9979
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SAS/IML (SAS Institute, 2008) programs employed to 
perform the sample size calculations of the proposed ap-
proaches are presented in Appendixes D and E.

Simulation Study
In order to compare the performance and to reinforce 

the fundamental distinction of the two competing ap-
proaches, further simulation studies are conducted. For 
demonstration, the MMR model with the bivariate normal 
predictor and moderator variables described above is ex-
ploited as the basis for a Monte Carlo examination. The 
numerical study is conducted in two steps. First, under 
the selected values of coefficient parameters, error vari-
ance, and distribution configurations of bivariate predic-
tor and moderator distribution, the approximate coverage 
probabilities of the two methods are calculated with the 
reported sample size of the proposed approach. The cor-
responding results are presented in Table 6. It follows that 
the approximate coverage probabilities of .8033, .9005, 
and .9507 for the proposed method are almost identical to 
the desired values of .80, .90, and .95 for sample sizes 74, 
116, and 162, respectively, whereas the computed cover-
age probabilities of .8484, .9274, and .9661 associated 
with the simplified method are somewhat greater than the 
desired values of .80, .90, and .95, respectively.

In the second step, the sample size N calculated by the 
proposed approach is utilized as a benchmark to assess 
the simulated coverage probability. Estimates of the true 
coverage probability associated with given sample size 
and parameter configurations are then computed through 
a Monte Carlo simulation of 10,000 independent data sets. 
For each replicate, N sets of predictor and moderator val-
ues are generated from the designated bivariate normal 
distribution. These values of predictor and moderator, in 
turn, determine the mean responses for generating N nor-
mal outcomes with the MMR model. Next, the estimate 
βXZ is computed, and the simulated coverage probability 
is the proportion of the 10,000 replicates whose values 
of βXZ fall between 2.43 and 2.73. The adequacy of the 
examined procedure for coverage probability and sample 
size calculation is determined by the formula error 5 
simulated coverage probability 2 approximate coverage 
probability, comparing the simulated coverage probability 
and approximate coverage probability that were computed 
earlier. All of the calculations are performed using pro-
grams written with SAS/IML (SAS Institute, 2008). The 

(2.43, 2.73) of βXZ with a desired coverage probability can 
be determined by the approximate coverage probability 
function defined in Equation B2. The resulting sample 
sizes are 74, 116, and 162 for coverage probabilities of 
.80, .90, and .95, respectively. On the other hand, the re-
searcher may presume that the identical empirical struc-
ture of predictor and moderator variables in the pilot data 
will continue to occur in the investigation. Therefore, the 
inference of moderating effects can be conducted with the 
simplified or conditional distribution of TXZ(β) in Equa-
tion A1. With the fixed modeling formulation of Equa-
tion A3, the minimum sample sizes needed to control the 
designated two-sided interval (βXZ 2 b, βXZ 1 b) 5 (2.43, 
2.73) of βXZ, with coverage probability of at least .80, .90, 
and .95, are 60, 98, and 139, respectively. These sample 
sizes are smaller than those reported earlier, according to 
the more involved normal mixture of noncentral t distri-
butions in Equation B1. The sizable discrepancy between 
these two procedures indicates the need to assess their ad-
equacy for interval estimation in achieving the nominal 
coverage probability.

Furthermore, so that the resulting confidence interval 
of a desired confidence coefficient will fall into a scien-
tifically credible range with a specified level of tolerance 
probability, the numerical study is extended to illustrate 
the advantage of the suggested procedure and the defi-
ciency of the alternative simplified method for sample 
size calculations. For the MMR model with the bivari-
ate normal predictor and moderator variables examined 
above, the minimum sample sizes required for the sug-
gested formula in Equation C2 to ensure that the 95% 
two-sided confidence interval ( βXZ 2 tN24,.025{ s2M}1/2, 
βXZ 1 tN24,.025{ s2M}1/2) is within the range of (βXZ 2 w, 
βXZ 1 w) 5 (2.58 2 0.225, 2.58 1 0.225) 5 (2.355, 
2.805), with tolerance probabilities of at least .80, .90, 
and .95, are 192, 239, and 285, respectively. Accordingly, 
the minimum sample sizes required for the conditional 
formulation in Equation C4 to ensure that the 95% two-
sided confidence interval ( βXZ 2 tN24,.025{ s2M}1/2, βXZ 1 
tN24,.025{ s2M}1/2) is within the range of (βXZ 2 wL, βXZ 1 
wU) 5 (2.355, 2.805), with tolerance probabilities of at 
least .80, .90, and .95, are 169, 208, and 246, respectively. 
Obviously, the calculated sample sizes of the two proce-
dures differ considerably for the setting considered pres-
ently. The differences between the two approaches are 
further examined in the following simulation study. The 

Table 6 
Approximate Coverage Probabilities and Simulated Coverage 

Probabilities at Specified Sample Sizes for the Prescribed Two-Sided 
Interval (βXZ 2 0.15, βXZ 1 0.15) of βXZ With Bivariate Normal 

Predictor and Moderator Variables (βXZ 5 2.58, σ2 5 1, µX 5 µZ 5 0, 
σ2

X 5 σ2
Z 5 1, r 5 .4)

Proposed Method Simplified Method

Simulated Approximate Approximate
Coverage Coverage Coverage

N  Probability  Probability  Error  Probability  Error

  74 .7983 .8033 20.0050 .8484 20.0501
116 .8943 .9005 20.0062 .9274 20.0331
162  .9457  .9507  20.0050  .9661  20.0204
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research is needed before it can be accepted in place of the 
commonly used fixed linear regression model. The present 
article aimed to demonstrate the technical development of 
precise interval estimation and related sample size meth-
odology with sufficient clarity so that MMR practitioners 
can perceive the applicability and usefulness of the infor-
mation. Specifically, the proposed approach fully accom-
modates the arbitrary distributional formulations of the 
stochastic explanatory variables. The differences and im-
pacts of failing to account for the randomness of predictor 
and moderator variables are elucidated through rigorous 
analytical presentations and numerical assessments. It is 
shown that the existing fixed modeling formulation may 
distort the precision analysis and lead to a poor choice of 
sample sizes. More importantly, although the suggested 
general procedures for sample size determinations are 
derived from large-sample theory, the simulation study 
demonstrates their accuracy in achieving desired levels of 
coverage and tolerance for interval estimation over a wide 
range of model settings. The generality and accuracy of 
the proposed methodology not only facilitate the echoed 
statistical practice of confidence intervals but also further 
fortify the potential applicability of MMR analysis. Ac-
cordingly, the results provide the basis for probing related 
considerations in more complicated situations, such as 
the three-way interactions discussed in Aiken and West 
(1991) and Dawson and Richter (2006).
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Appendix A 
The Distribution of TXZ

It follows from the standard assumption in Equation 1 under a fixed modeling framework that the variable
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(A1)

has a noncentral t distribution t(N 2 4, Γ) with N 2 4 degrees of freedom and noncentrality parameter Γ, where 
s2 is the usual unbiased estimator of σ2; M is the (3, 3) element of A21, A 5 S N

i51(Xi 2 X)(Xi 2 X)T, X 5 
S N

i51Xi/N, and Xi 5 (Xi, Zi, XiZi)T is the 3 3 1 row vector for values of predictor Xi, moderator Zi, and their 
cross product XiZi for i 5 1, . . . , N; β is a constant; and the noncentrality parameter Γ 5 (βXZ 2 β)/{σ2M}1/2. 
Accordingly, a particular formulation can be obtained by substituting β with βXZ into TXZ as follows:
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(A2)

and TXZ(βXZ) is distributed as t(N 2 4)—a t distribution with N 2 4 degrees of freedom. Note that TXZ(βXZ) in 
Equation A2 provides a useful tool for conducting statistical inferences of hypothesis testing and interval estima-
tion about the magnitude of moderating effect βXZ. In this case, the coverage probability for a designated interval 
(βXZ 2 bL, βXZ 1 bU) of βXZ can be computed using the simple expression of

	 P{βXZ 2 bL , βXZ , βXZ 1 bU} 5 P{t(N 2 4, 2δU) , 0} 2 P{t(N 2 4, δL) , 0}, 	 (A3)

where bL . 0, bU . 0, δU 5 bU/{σ2M}1/2, and δL 5 bL/{σ2M}1/2.
Instead of a mere fixed or conditional formulation, we focus on the particular random regression situation in 

which both the predictor X and the moderator Z are continuous random variables within the context of MMR. 
Specifically, the continuous predictor and moderator variables {(Xi, Zi), i 5 1, . . . , N} are assumed to have a joint 
probability function g(Xi, Zi) with finite moments. Moreover, the form of g(Xi, Zi) does not depend on any of the 
unknown parameters (βI, βX, βZ, βXZ) and σ2. The moments of the explanatory vectors Xi 5 (Xi, Zi, XiZi)T are 
defined as

	 µ 5 E[Xi], Σ 5 E[(Xi 2 µ)(Xi 2 µ)T],

and

	 Ψ 5 E[(Xi 2 µ)(Xi 2 µ)T ⊗ (Xi 2 µ)(Xi 2 µ)T],	 (A4)
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where E[·] denotes the expectation taken with respect to the joint probability density function g(Xi, Zi) of (Xi, Zi), 
and ⊗ represents the Kronecker product. According to the formulations of A and M presented in Equation A1 
for TXZ, both A and M are functions of random variables (Xi, Zi), i 5 1, . . . , N, within the random regression 
framework and, therefore, TXZ has a noncentral t distribution with random noncentrality Γ. It follows from Shieh 
(2009) that W * 5 1/{(N 2 1)M} has an asymptotic normal distribution:

	 W *  N(µW*, σ2
W*),	 (A5)

where µW* 5 1/(cTΣ21c), σ2
W* 5 m4

W*{(cTΣ21 ⊗ cTΣ21)Ψ(Σ21c ⊗ Σ21c) 2 µ2
W *

2}/(N 2 1), c 5 (0, 0, 1)T is a 3 3 1 
row vector, and Σ and Ψ are defined in Equation A4. Therefore, the distribution of TXZ(β) under the random 
regression setting can be well approximated by the following two-stage distribution:

	 TXZ(β) | W* ~ t{N 2 4, (βXZ 2 β)[(N 2 1)W*/σ2]1/2} and W*  N(µW*, σ2
W*).	 (A6)

The approximate distribution of TXZ(β) is particularly useful to evaluate the cumulative probability function for βXZ 
in terms of FXZ(c) 5 P{βXZ , c}, where c is a constant. It can be readily shown from the definition of TXZ that

	 FXZ(c) 5 P{βXZ 2 c , 0} 5 P{TXZ(c) , 0}.	

Accordingly, the cumulative distribution function FXZ(c) can be approximated by

	 FXZ(c)  EW*[P(t{N 2 4, [(N 2 1)W*/σ2]1/2(βXZ 2 c)} , 0)], 	 (A7)

where the expectation EW*[·] is taken with respect to the approximate normal distribution of W* presented in 
Equation A5.

Appendix A (Continued)

Appendix B 
Sample Size Calculations for Designated Interval Estimation of Moderating Effects

It follows from the definition of TXZ(β) given in Equation 5 and the associated asymptotic approximation 
of cumulative distribution function FXZ of βXZ presented in Equation A7 that the probability P{βXZ 2 bL , 
βXZ , βXZ 1 bU} in Equation 6 can be approximated by

	 P{βXZ 2 bL , βXZ , βXZ 1 bU} 5 FXZ(βXZ 1 bU) 2 FXZ(βXZ 2 bL)	

		   EW*[P{t(N 2 4, 2∆U) , 0}] 2 EW*[P{t(N 2 4, ∆L) , 0}],	 (B1)

where ∆U 5 bU{(N 2 1)W*/σ2}1/2, ∆L 5 bL{(N 2 1)W*/σ2}1/2, and the expectation EW*[·] is taken with respect 
to the approximate normal distribution of W* presented in Equation A5. Hence, the suggested computation of the 
smallest sample size N needed for the prescribed interval (βXZ 2 bL, βXZ 1 bU) of βXZ with coverage probability 
of at least 1 2 α is performed with the approximate coverage probability formula

	 EW*[P{t(N 2 4, 2∆U) , 0} 2 P{t(N 2 4, ∆L) , 0}] $ 1 2 α. 	 (B2)

It should be noted that numerical computations of the expected value in Equation B2 require the evaluation of 
a noncentral t cumulative distribution function and the one-dimensional integration with respect to a normal 
distribution. This procedure is not as simple as using a z or t table, but it is not unreasonable in light of modern 
computing capabilities. Moreover, two important aspects of the proposed procedure should be pointed out. 
First, both probability functions P{t(N 2 4, 2∆U) , 0} and P{t(N 2 4, ∆L) , 0} do not involve the regression 
coefficient βXZ, which corresponds to the extent of the moderating effect. However, there is a direct functional 
relation between the magnitudes of cumulative probability and the bounds bL and bU. Second, the mean values 
of the predictor, moderator, and their product are not included in the asymptotic distribution of W* defined in 
Equation A5. Hence, the mean vector (first moments) associated with the joint distribution of explanatory vari-
ables does not have any influence on the resulting probability levels and required sample sizes.

In a similar fashion, the corresponding sample size calculations for the prescribed lower and upper one-sided 
intervals in the form of (2`, βXZ 1 bU) and (βXZ 2 bL, `) for βXZ with coverage probability of at least 1 2 α 
can be conducted with the modified or approximate probability functions in terms of a normal mixture of a 
noncentral t cumulative distribution function given by

	 P{βXZ , βXZ 1 bU}  EW*[P{t(N 2 4, 2∆U) , 0}] $ 1 2 α	
and
	 P{βXZ 2 bL , βXZ}  1 2 EW*[P{t(N 2 4, ∆L) , 0}] $ 1 2 α,	 (B3)

respectively, where ∆U, ∆L, and W* are given above in Equation B1. It can be readily shown from Equation B3, 
with bU 5 bL 5 b and ∆U 5 ∆L 5 ∆ 5 b{(N 2 1)W*/σ2}1/2, that

	 P{t(N 2 4, 2∆) , 0} 5 1 2 P{t(N 2 4, ∆) , 0}	

and

EW*[P{t(N 2 4, 2∆) , 0}] 5 1 2 EW*[P{t(N 2 4, ∆) , 0}].
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Appendix C 
Sample Size Calculations for Confidence Intervals of Moderating Effects  

With Specified Ranges and Tolerances

According to the asymptotic results for βXZ presented in Appendix A, we propose to consider the following 
alternative formula for computing the probability described in Equation 7:

		  P{βXZ 2 wL , βXZ 2 tN24,α/2(s2M)1/2 and βXZ 1 tN24,α/2(s2M)1/2 , βXZ 1 wU}

	  EW*[P{t(N 2 4, 2ΛU) , 2tN24,α/2} 2 P{t(N 2 4, ΛL) , tN24,α/2}],	 (C1)

where ΛU 5 wU{(N 2 1)W */σ2}1/2, ΛL 5 wL{(N 2 1)W */σ2}1/2, and the expectation EW*[·] is taken with 
respect to the approximate normal distribution of W* presented in Equation A5. Thus, the minimum sample 
size N required to ensure that the 100(1 2 α)% two-sided confidence interval (βXZ 2 tN24, α/2{s2M}1/2, βXZ 1 
tN24, α/2{s2M}1/2) is within the range of (βXZ 2 wL, βXZ 1 wU) with a tolerance probability of at least 1 2 γ can 
be determined by

	 EW*[P{t(N 2 4, 2ΛU) , 2tN24,α/2} 2 P{t(N 2 4, ΛL) , tN24,α/2}] $ 1 2 γ.	 (C2)

Moreover, the sample size calculations for the lower and upper one-sided confidence intervals in the form of 
(2`, βXZ 1 tN24,α{s2M}1/2) and (βXZ 2 tN24,α{s2M}1/2, `) that fall within the ranges of (2`, βXZ 1 wU) and 
(βXZ 2 wL, `) with a tolerance probability of at least 1 2 γ can be performed with

	 P{βXZ 1 tN24,α(s2M)1/2 , βXZ 1 wU}  EW*[P{t(N 2 4, 2ΛU) , 2tN24,α}] $ 1 2 γ

and

	 P{βXZ 2 wL , βXZ 2 tN24,α(s2M)1/2}  1 2 EW*[P{t(N 2 4, ΛL) , tN24,α}] $ 1 2 γ, 	 (C3)

respectively, where ΛU and ΛL are given above for Equation C1. It can be readily shown from Equation C3, with 
wU 5 wL 5 w and ΛU 5 ΛL 5 Λ 5 w{(N 2 1)W*/σ2}1/2, that

	 P{t(N 2 4, 2Λ) , 2tN24,α} 5 1 2 P{t(N 2 4, Λ) , tN24,α}	

and

	 EW*[P{t(N 2 4, 2Λ) , 2tN24,α}] 5 1 2 EW*[P{t(N 2 4, Λ) , tN24,α}].	

In contrast, the tolerance probability with respect to the conditional distribution in Equation A1 is

		  P{βXZ 2 wL , βXZ 2 tN24,α/2(s2M)1/2 and βXZ 1 tN24,α/2(s2M)1/2 , βXZ 1 wU}	

	  5 P{t(N 2 4, 2λU) , 2tN24,α/2} 2 P{t(N 2 4, λL) , tN24,α/2}, 	 (C4)

where λU 5 wU/{σ2M}1/2 and λL 5 wL/{σ2M}1/2.

(Continued on next page)
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Appendix D 
SAS Program to Perform Sample Size Calculations for Designated  

Interval Estimation of Moderating Effects 

PROC IML;
*REQUIRED USER SPECIFICATIONS PORTION;
*SPECIFY THE VALUES OF ALPHA, SIGMA2, BETAXZ AND BOUND;
ALPHA=0.2;SIGMA2=1;BETAXZ=2.58;B=0.15;
*SPECIFY THE PAIRED-VALUES OF X AND Z SEQUENTIALLY;
XT={-0.9121 -0.7970,-0.3581  0.1677,0.4875  0.0481,-0.2312 -2.6297,
    0.6161  0.4406,-1.7096 -0.0614,-1.3712 -0.2643,0.1967  0.6026,
   -0.3459 -0.2503,-1.2201  1.0737,-0.3063  0.4640,-0.7609 -0.1105,
   -0.3654  0.7871,1.9457 -0.4328,-1.2158 -0.8524,-1.3095 -0.1378,
    0.2258 -0.7407,-0.0119  0.4386,1.1241  0.5519,-2.0270  0.3233,
    0.0206  0.5837,0.1606  0.2365,-1.3135  1.5577,1.4949  0.7624,
    0.8080  2.2212,-0.1174 -1.1017,0.1751  0.1340,0.5943 -0.3610,
   -0.0031 -0.9145,0.2718  1.0854,0.2313  0.3495,-0.2982 -0.2510,
    0.7696  0.6172,0.8000  0.2615,-0.4457  0.9176,-1.3263 -0.1808,
    0.5753 -0.5732,-1.2381 -0.1725,2.8890  1.2777,1.2771  1.4634,
   -1.6247 -0.3238,-0.8302 -1.1981,0.3750  0.2207,-0.8958  0.4195,
    0.5934 -0.5248,-0.6407 -0.6331,0.7223  1.2787,-1.6284 -0.5142,
    1.6639  0.8816,-0.3646  0.9514,0.8073  1.2787,0.4745  1.2441,
   -0.2153  1.3834,-2.9043 -2.2853,0.9276  1.5124,-0.7966  0.5477,
    0.4095  0.1387,0.1980  0.1679,0.5019  0.4255,0.5386  0.9979};
*END OF REQUIRED USER SPECIFICATIONS;
****************************************************************;
XE=XT||(XT[,1]#XT[,2]);K=NROW(XE);XM=XE[:,];XC=XE-J(K,1,1)*XM;
H=J(3,3,0);HH=H@H;
DO I=1 TO K;
H=H+XC[I,]`*XC[I,];HH=HH+(XC[I,]`*XC[I,])@(XC[I,]`*XC[I,]);
END;
CIL=BETAXZ-B;CIU=BETAXZ+B;COVERP=1-ALPHA;
NUMINT=1000;L=NUMINT+1;
COEVEC=({1}||REPEAT({4 2},1,NUMINT/2-1)||{4 1})`;
INT=PROBIT(0.999995);INTERVAL=2#INT/NUMINT;
ZVEC=((INTERVAL#(0:NUMINT))+(-INT))`;
WZPDF=(INTERVAL/3)#COEVEC#PDF('NORMAL',ZVEC,0,1);
SIGM=H/K;PSI=HH/K;ISIGM=INV(SIGM);MUW=1/ISIGM[3,3];
VW=ISIGM[3,];VARW=(MUW##4)#((VW@VW)*PSI*(VW`@VW`)-MUW##(-2));
DELTAW=BETAXZ#SQRT(MUW/SIGMA2);
N=10;NCOVERP=0;
DO WHILE(NCOVERP<COVERP);
N=N+1;
WVEC=SQRT(VARW/(N-1))#ZVEC+MUW;WVEC=WVEC#(WVEC>0);
NCOVERP=WZPDF`*(CDF('T',0,N-4,(BETAXZ-CIU)#SQRT((N-1)#WVEC))
        -CDF('T',0,N-4,(BETAXZ-CIL)#SQRT((N-1)#WVEC)));
END;
PRINT ALPHA BETAXZ B CIL CIU COVERP N;
QUIT;



Confidence Intervals of Interaction Effects        835

Appendix E 
SAS Program to Perform Sample Size Calculations for Confidence Intervals  

of Moderating Effects With Specified Ranges and Tolerances

PROC IML;
*REQUIRED USER SPECIFICATIONS PORTION;
*SPECIFY THE VALUES OF ALPHA, SIGMA2, BETAXZ, BOUND AND TOLERANCE;
ALPHA=0.05;SIGMA2=1;BETAXZ=2.58;W=0.225;LGAMMA=0.20;
*SPECIFY THE PAIRED-VALUES OF X AND Z SEQUENTIALLY;
XT={-0.9121 -0.7970,-0.3581  0.1677,0.4875  0.0481,-0.2312 -2.6297,
    0.6161  0.4406,-1.7096 -0.0614,-1.3712 -0.2643,0.1967  0.6026,
   -0.3459 -0.2503,-1.2201  1.0737,-0.3063  0.4640,-0.7609 -0.1105,
   -0.3654  0.7871,1.9457 -0.4328,-1.2158 -0.8524,-1.3095 -0.1378,
    0.2258 -0.7407,-0.0119  0.4386,1.1241  0.5519,-2.0270  0.3233,
    0.0206  0.5837,0.1606  0.2365,-1.3135  1.5577,1.4949  0.7624,
    0.8080  2.2212,-0.1174 -1.1017,0.1751  0.1340,0.5943 -0.3610,
   -0.0031 -0.9145,0.2718  1.0854,0.2313  0.3495,-0.2982 -0.2510,
    0.7696  0.6172,0.8000  0.2615,-0.4457  0.9176,-1.3263 -0.1808,
    0.5753 -0.5732,-1.2381 -0.1725,2.8890  1.2777,1.2771  1.4634,
   -1.6247 -0.3238,-0.8302 -1.1981,0.3750  0.2207,-0.8958  0.4195,
    0.5934 -0.5248,-0.6407 -0.6331,0.7223  1.2787,-1.6284 -0.5142,
    1.6639  0.8816,-0.3646  0.9514,0.8073  1.2787,0.4745  1.2441,
   -0.2153  1.3834,-2.9043 -2.2853,0.9276  1.5124,-0.7966  0.5477,
    0.4095  0.1387,0.1980  0.1679,0.5019  0.4255,0.5386  0.9979};
*END OF REQUIRED USER SPECIFICATIONS;
****************************************************************;
XE=XT||(XT[,1]#XT[,2]);K=NROW(XE);XM=XE[:,];XC=XE-J(K,1,1)*XM;
H=J(3,3,0);HH=H@H;
DO I=1 TO K;
H=H+XC[I,]`*XC[I,];HH=HH+(XC[I,]`*XC[I,])@(XC[I,]`*XC[I,]);
END;
CIL=BETAXZ-W;CIU=BETAXZ+W;COVERP=1-LGAMMA;
NUMINT=1000;L=NUMINT+1;
COEVEC=({1}||REPEAT({4 2},1,NUMINT/2-1)||{4 1})`;
INT=PROBIT(0.999995);INTERVAL=2#INT/NUMINT;
ZVEC=((INTERVAL#(0:NUMINT))+(-INT))`;
WZPDF=(INTERVAL/3)#COEVEC#PDF('NORMAL',ZVEC,0,1);
SIGM=H/K;PSI=HH/K;ISIGM=INV(SIGM);MUW=1/ISIGM[3,3];
VW=ISIGM[3,];VARW=(MUW##4)#((VW@VW)*PSI*(VW`@VW`)-MUW##(-2));
DELTAW=BETAXZ#SQRT(MUW/SIGMA2);
N=10;NCOVERP=0;
DO WHILE(NCOVERP<COVERP);
N=N+1;
WVEC=SQRT(VARW/(N-1))#ZVEC+MUW;WVEC=WVEC#(WVEC>0);
NCOVERP=WZPDF`*(CDF('T',TINV(ALPHA/2,N-4),N-4,(BETAXZ-CIU)#SQRT((N-1)#
WVEC))-CDF('T',TINV(1-ALPHA/2,N-4),N-4,(BETAXZ-CIL)#SQRT((N-1)#WVEC)));
END;
PRINT ALPHA BETAXZ W CIL CIU COVERP N;
QUIT;
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