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A Mashng-Threshold-Adapted 
Weighting Filter for Excitation Search 

Wen-Whei Chang, Member, 

Abstract-Most LPC-based audio coders improve reproduction 
quality by using predictor coefficients to embody perceptual 
masking in noise spectral shaping. Since the predictor coeffi- 
cients were originally derived to characterize sound production 
models, they cannot precisely describe the human ear’s nonlinear 
responses to frequency and loudness. In this paper, we report on 
new approaches to exploiting the masking threshold in the design 
of a perceptual noise-weighting filter for excitation searches. 
To track the nonstationary evolution of a masking threshold, 
an autoregressive spectral analysis with finite order has been 
shown to be capable of providing sufficient accuracy. In seeking 
faster response, an artificial neural network was also trained 
to extract autoregressive modeling parameters of the masking 
threshold from typical audio signals via mapping. Furthermore, 
we propose the concept of sinusoidal excitation representation 
to better track the intrinsic characteristics of prediction error 
signals. Simulation results indicate that the combined use of a 
multisinusoid excitation model and a masking-threshold-adapted 
weighting filter allows the implementation of an LPC-based audio 
coder that delivers near transparent quality at the rate of 96 kb/s. 

I. INTRODUCTION 

OR MANY years there has been considerable interest in F transparent reproduction of bit rate reduced audio signals, 
not just for using statistical correlation to remove redundancies 
but also to eliminate the perceptual irrelevancy by applying 
psychoacoustic measures [ 11. In many coding applications, 
it is generally sufficient to assume that coded signals are 
contaminated by some additive reconstruction noise. Many 
perceptual coding schemes have been proposed to prevent the 
appearance of such audio artifacts. In essence, the system is 
not modeled with respect to the source waveform itself, but 
is designed to take into consideration the human perception 
of sound. Recent research has placed emphasis on either 
transform coding [2]  or subband coding [3]. In both cases, 
the audio frequency range is subdivided into critical bands 
and then quantized in accordance with the estimated masking 
threshold. 

An alternative approach to audio representation is based 
on the linear predictive coding (LPC) model, in which audio 
signals are decomposed into the product of excitation and 
system spectra. Unfortunately, however, most psychoacoustic 
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experiment results are expressed in the frequency domain 
and are not directly applicable for use in conjunction with 
the LPC model. For this reason, conventional LPC-based 
coders employ relatively simple techniques for incorporating 
the perceptual masking properties either in postfiltering [4] 
or in noise feedback coding [5 ] .  Even recently proposed 
analysis-by-synthesis predictive coders also utilize the pre- 
dictor coefficients to implement perceptual noise-weighting 
filters for excitation searches [6]. The basic problem with 
this approach is that the predictor coefficients were originally 
determined to characterize sound production models and hence 
cannot precisely describe human perception of sound. Further 
improvement can only be realized through some intelligent 
exploitation of new findings in psychoacoustic studies. Since 
the audibility of noise depends heavily on its spectral shaping, 
we attempt to improve performance using a newly designed 
noise-weighting filter based on the properties of the peripheral 
auditory system, as opposed to those based on the properties 
of the sound production mechanism. 

When dealing with the LPC model, it is also important to 
address the accuracy of representation for the prediction error 
signals after inverse filtering. The majority of the proposed 
coder candidates rely on either the multipulse or stochastic 
codebooks [7], [SI. Indeed, analysis of experimental data 
shows that real residual signals exhibit predominantly pulse- 
like trends in the frequency domain. To better reflect this, we 
propose to represent the excitation waveform in terms of a 
multiplicity of amplitude and frequency-modulated sinusoids. 
The concept of sinusoidal representation has been successfully 
applied in providing an approximation of speech waveforms 
[9], [lo]. Because of the time-varying nature of the parameters, 
this straightforward approach leads to parameter discontinu- 
ities at the frame boundaries and causes audible artifacts in the 
steady-to-transient regions. As shortcomings appear, both the 
frequency-tracking and the parameter-smoothing techniques 
must be introduced to deal with rapid changes during the 
transients. As we shall see, the parameter continuity problem 
is not a serious obstacle provided that sinusoidal analysis is 
performed on the prediction error signal instead of on the 
incoming sound, as in [9] and [lo]. 

In this paper, we attempt to capitalize more fully on psy- 
choacoustic knowledge and then develop a new perceptual 
noise-weighting filter for use in analysis-by-synthesis predic- 
tive audio coders. The first part of this paper focuses on 
analyzing the masking thresholds evoked by incoming sounds. 
We use an autoregressive (AR) spectral estimator that allows 
tracking of the masking threshold’s evolution by means of 
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an all-pole model with finite order. Of more concern is the 
heavy computational load required for calculating the masking 
threshold functions. To reduce computational complexity, we 
trained an artificial neural network to extract the perceptually 
significant features from audio signals via mapping. The next 
step of the present investigation was concerned with the 
accuracy of excitation representation. Toward this end, we 
explored the benefits of sinusoidal approximation for its use 
in modeling the pulselike characteristics of residual spectra. 

The paper is organized as follows. This section provides an 
overall view of the investigation. In Section 11, we briefly 
review the basic aspects of auditory perception and then 
propose a perception-oriented objective measure for quality 
assessment. Algorithms for AR modeling of the masking 
threshold are presented in Section 111. Comparative perfor- 
mance results for various weighting filter configurations are 
listed in Section IV in terms of signal-to-noise ratio (SNR), 
segmental SNR (SNRSEG), generalized Bark spectral distor- 
tion, and subjective listening tests. In Section V, we introduce 
the multisinusoid excitation model and develop an efficient 
algorithm for extracting the associated modeling parameters. 
Finally, Section VI presents a short summary and list of 
conclusions. 

11. AUDITORY PERCEPTION 

Since psychoacoustic interpretation is central to the de- 
sign of perceptual coding systems, we first summarize the 
relevant aspects of auditory perception here; more compre- 
hensive accounts can be found in [11]-[13]. In essence, 
information received by human ears can be described most 
conveniently as nonlinear auditory responses to frequency 
selectivity and perceived loudness. The general properties of 
frequency selectivity are related to the concept of critical band. 
Fletcher's band-widening experiment [ 141 laid the foundation 
for the critical-band concept by virtue of the assumption that 
incoming sounds are preprocessed by the peripheral auditory 
system through a bank of bandpass filters. Each auditory filter 
behaves like a frequency-weighting function, and corresponds 
closely to the ear's frequency selectivity across the critical 
bands. Since the critical bandwidth increases toward higher 
frequencies, we find the human ear has poorer discrimination 
in the higher frequency region than in lower ones. The 
process of auditory filtering involves two steps: critical-band 
analysis, which accounts for nonlinear perceptual resolution; 
and critical-band integration, which describes the spread of 
masking effect across the critical bands. In correspondance 
with the Hertz-to-Bark transformation [ 151, critical-band anal- 
ysis is first carried out to derive the critical-band density X ( b )  
by substituting the frequency variable f in the magnitude 
spectrum X ( f )  with the Bark scale b. Next, we perform 
critical-band integration to determine the excitation pattern 
D(b) by taking the convolution of the critical-band density 
X ( b )  with the basilar-membrane spreading function B ( b )  [ 161. 

Loudness is another important attribute of auditory per- 
ception in terms of which sounds can be ranked on a scale 
extending from quiet to loud. To measure the loudness quanti- 
tatively, two commonly used scaling criteria are the loudness 
level (in phons) and the subjective loudness scale (in sones) 
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Fig. 1. Equal-loudness contours for pure tones (after [17]). 

[ll]. The loudness level of a test sound is defined as the 
intensity level in decibels (dB) of a 1000 Hz reference 
tone to which it sounds equally loud. It is well known that 
the human ear is more sensitive in the frequency range of 
1-5 kHz and less sensitive at higher and lower frequencies. 
The phenomenon that relates audibility to frequency may 
be demonstrated with the equal-loudness curve [17], which 
indicates how the intensity level of a tone must be varied with 
frequency in order to maintain a constant level of loudness. 
To illustrate this, some typical examples of equal-loudness 
curves for pure tones are shown in Fig. 1. For purposes 
of comparison, the absolute threshold (dashed line) is also 
included to indicate the minimum audible intensity level in 
quiet surroundings. As seen in the figure, the equal-loudness 
curves have a shape for low loudness levels that runs almost 
parallel to the absolute threshold. This is especially true for 
frequencies above about 200 Hz and, in that frequency range, 
also holds for higher loudness levels Ell]. 

The shape of the equal-loudness curve provides a useful 
model for perceptual weighting of spectral energy in the 
design of objective measures of sound quality. Among the 
many measures to be considered for sound quality evaluation 
[18], the most frequently used one is represented in terms 
of the mean-squared error distortion between original and 
coded waveforms, as in the SNR. Such objective measures are 
derived to quantify signal waveform differences, and hence 
often result in a less perceptually relevant assessment. To 
compensate for this shortage, Wang et al. [19] proposed a 
Bark spectral distortion (BSD) measure, which does not simply 
sum up the waveform differences, but rather performs an 
equal-loudness preemphasis process on the excitation pattern. 
Consequently, the BSD measure has been shown to correlate 
more closely with the results of human preference tests than 
those obtained by other conventional objective measures. As 
outlined in Fig. 2, several steps are required to compute the 
BSD measure. They are: a fast Fourier transform (FFT), a 
critical-band analysis, a critical-band integration, an equal- 
loudness preemphasis, and a subjective-loudness conversion. 
For use in the telephone band (300-3 400 Hz, 40-80 dB inten- 
sity level), a bilinear preemphasis filter [ 191 has been proposed 
to approximate the equal-loudness response. However, the 



126 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 4, NO. 2, MARCH 1996 

Cl-iticalJ3md 
Preemphasis xo_ FFT 

Y ( 4  Y(f) Transformation Y(b) Integration D e )  

PX(0 

Subjective sx(i) 

Fig. 2. Bark spectral distortion (BSD) calculation. 
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equal-loudness contour for wideband audio (20 to 20k Hz) 
should be emulated more precisely to cover the spectral range 
of interest. Recognizing this, we propose a generalized BSD 
(GBSD) measure in which the equal-loudness preemphasis 
process is carried out by weighting the excitation pattern with 
the sign-inverted absolute threshold dB values. Accordingly, 
we calculate the weighted excitation pattern within the ith 
critical band as follows: 

P ( z )  = lOlogD(i) - LT,(i) dB 15 i 5 26 (1) 

where LT,(i) denotes the absolute threshold in dB and D(i)  
represents the down-sampled version of the excitation pattern 
D(b) at one-Bark intervals. Note that the total number of 
critical bands required to cover the entire spectral range is 
26. Finally, a subjective-loudness conversion is needed to 
compensate for the difference between the loudness level and 
the truly perceived loudness. This difference is due to the 
perceptual nonlinearity principle, which states that the increase 
in phons needed to double subjective loudness varies with the 
loudness level. A 1000 Hz reference tone of 40 dB intensity 
level was used to give a perceived loudness of one sone. 
Since an increase of ten phons tends to double the subjective 
loudness, we can calculate the Bark spectrum S( i )  from the 
weighted excitation pattern P( i )  by the conversion [20] that 
follows: 

GBSD - Distortion 
SA9 

The resulting Bark spectrum, which reflects the ear's nonlinear 
transformation of frequency and loudness, yields a measure in 
terms of which subjective quality can be evaluated. Let S t ( i )  
and S i ( i )  denote the Bark spectra of the original signal z(n) 
and coded signal y(n), respectively, at the ith critical band 
within the kth frame. The overall distortion-the GBSD-is 
then calculated by taking the average squared difference over 
the entire utterance of K frames, as follows: 

111. AR MODELING OF THE MASKING W S H O L D  

Most perceptual coding systems rely, at least to some extent, 
on the auditory masking effect to reduce the subjective impair- 
ments of reconstruction noise r6-81, [13]. The phenomenon 
of masking lies in the observation that the ear's perceptual 
resolution is insufficient to perceive the signal in the presence 
of another masking signal. In the context of audio coding, 

the signal to be masked is undesired reconstruction noise, and 
the masking signal is typically the incoming sound. The audio 
source can generate a perceptual concealment function below 
which simultaneously existing artifacts become inaudible. In 
the present work, we calculate the masking threshold according 
to the psychoacoustic model of layer I as specified in the 
ISOMPEG Audio Standard 11 172-3 [21]. The calculation 
starts with a precise spectral analysis on 512 windowed 
audio source samples to generate the magnitude spectrum. 
The spectral lines are then examined to discriminate between 
tonal and nontonal maskers by taking the local maximum 
of audio spectrum as an indicator of tonality. Among all 
the labeled maskers, only those above the absolute threshold 
are retained for further calculation. Using rules known from 
psychoacoustics, the individual masking thresholds for the 
relevant maskers are then calculated dependent on frequency 
position, loudness level, and the nature of tonality. Finally, 
we obtain the global masking threshold from the upper and 
lower slopes of the individual masking thresholds of tonal and 
nontonal maskers and from the absolute threshold in quiet. A 
more detailed description can be found in the informative part 
of the ISOMPEG standard [21]. 

Once the masking threshold has been estimated, we can 
determine the amount and spectral shape of noise that might 
be inaudibly inserted into the audio signal. In this respect, the 
frequency-dependent masking threshold can be regarded as the 
desired reshaping of fhe noise spectrum, denoted as Sn(eJw). 
Its highly nonstationary evolution has been investigated by 
using an autoregressive (AR) spectral estimator with the 
autocorrelation method [22]. This choice is motivated in 
part by the success of AR modeling in the discipline of 
spectral estimation, and partly because accurate estimates 
of AR parameters can easily be found by solving a set of 
linear equations. With a pth order AR spectral estimator, the 
masking threshold is modeled by a linear filter for which 
the transfer function is all-pole of the form l/Am(,z), where 
A,(z) = 1 - E:='=, c,z-'. Using such a parametric modeling, 
the original spectral estimation problem can be formulated as 
one of the optimal identification of AR parameters { c L ,  1 5 
i 5 p}. In order to solve for the optimal AR parameters, we 
first compute the autocorrelation functions { r ( i ) ,  0 5 z 5 p} 
by taking an inverse Fourier transform of the desired noise 
spectrum Sn(eJw). When a pth order all-pole model is fitted to 
the noise spectrum, their normalized autocorrelation functions 
should match exactly for the first (p + 1) time lags. Given 
the autocorrelation functions, we can then determine the opti- 
mal values of {G} by solving the least-squares Yule-Walker 
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equations [23] ,  as follows: 

P 

C k T ( l i  - k l )  = .(i) 1 5 i 5 p .  (4) 
k = l  

The process above can be considerably simplified if Levin- 
son’s recursive algorithm [24] is applied by exploiting the 
Toeplitz nature of the autocorrelation matrix. 

While the masking threshold is conceptually useful in noise 
spectral shaping, it has some limitations as far as its time- 
consuming estimation process is concerned. To overcome 
this problem, we attempt to examine whether the perceptual 
attributes of the masking threshold can be extracted from typ- 
ical audio signals via neural network mapping. As illustrated 
in Fig. 3, a multilayer perceptron consists of feedforward 
connections with parallel layers of computational elements 
(neurons). The neurons between successive layers are fully 
interconnected through the weighting coefficients. The input 
layer receives data from the audio source, the hidden layer 
models the ear’s physiological mechanism, and the output 
layer provides relevant aspects of the masking threshold. A 
series of experiments were performed to optimize the neural 
network design based on various input-output mapping pairs. 
It was concluded that optimum mapping is achieved by 
presenting the input with predictor coefficients {a,} and using 
AR parameters {e,} of the masking threshold as the desired 
response at the output layer. To describe the binary activity 
of neural firing, a neuron’s output is generally obtained by 
applying a sigmoid function to the weighted sum of its inputs 
[25], [26]. A sigmoid, or S-shaped, function is defined by 
f(y) = 1/(1 + e-y),  i.e., 0 5 f(y) 5 1. To understand this, 
consider the j-th neuron at the hidden layer, whose output is 
given by 

where w$’ denotes the weight connecting the input-layer 
neuron 0; to the hidden-layer neuron 0:. Unfortunately, this 
nonlinear sigmoid description fails to apply for the activation 
of neurons at the output layer because the present output-layer 
neurons are associated with AR parameters of the masking 
threshold and, hence, may have output values with magnitudes 
greater than one. Recognizing this, we propose using linear 
nodes at the output layer of the neural net 

0, = ,(2) 23 0: (6) 
3 

where w::) denotes the interconnecting weight between the 
hidden-layer neuron 0; and the output-layer neuron 0,. 

Before a neural network can perform any specific mapping 
function, it must be trained by presenting a set of input patterns 
and adjusting the weights until the desired response occurs 
within a small error margin. Two updating schemes can be 
differentiated: one for the linear units at the output layer, the 
other for the sigmoid units at the hidden layer. We begin 
by defining an efficient learning procedure that adjusts the 

a1 a2 1 1  ......... 
Input Layer: (Of’} 

Hidden Layer: {0,’} 

”‘ 1 
e1 e 2  hl 

Fig. 3. Multilayer neural network used for extracting AR modeling param- 
eters of masking threshold. 

weights {w!:)} between the hidden layer and the output layer. 
For the ith output-layer neuron, we calculate the squared- 
error distortion between the desired response T, and the actual 
output 0,, as follows: 

622% = (T, - 0,)2 = 

By differentiating the above with respect to the weight, we get 
the following value for the gradient: 

According to the least-mean-square algorithm [25], successive 
corrections needed to drive the weight toward the optimum 
value should be in a direction opposite to its gradient. In view 
of this, we proceed with updating as follows: 

U):;) = w y  + 7 7 s 2 , o ;  (9) 
where the learning step 7 is chosen empirically to be 0.05 
here. The next problem to be addressed is updating the weights 
{wii’} between the input layer and the hidden layer. We stress 
that these weights must be trained through backpropagation for 
lack of a desired response as an update reference. Specifically, 
the output error 6 2 ,  is propagated back through the intercon- 
necting weights w::) to the hidden layer. The output error of 
the j th hidden-layer neuron is given [25] by 

61, = 0; (1 - 0;) 62,w:;) (10) 
2 

which is used, in turn, to adjust all the weights feeding into 
the j th hidden-layer neuron 

(1 1) 

A preliminary experiment was conducted to examine whether 
AR parameters of the masking threshold can be efficiently 
identified through neural network mapping. Toward this end, 
we implemented a multilayer perceptron network with 30 
neurons in the hidden layer and ten neurons in the input and 

4:) = U)$ + 7761,Of. 
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Fig. 4 Fitting of AR models to the audio spectrum and maslung threshold. 

output layers. Before starting the training process, all of the 
weights were initialized to small random numbers. The outputs 
of the well-trained neural network, designated by E,, were then 
used to implement an all-pole filter 1 /A, ( z ) ,  where A, (2) = 
1 - &z?. Although this straightforward approach could 
lead to the filter's instability, representing the E, in terms of 
equivalent partial correlation (PARCOR) coefficients ii, [27] 
and using them to implement the all-pole filter in a lattice 
form [28] guarantees stability. Such an alternative provides a 
convenient test and, if necessary, compensation for stability 
control in view of the bounded condition , i.e., -1 < e, < 1. 

To test the validity of the neural network, an all-pole fit to 
the masking threshold obtained by mapping, e.g., l/A,(z), 
was first compared with that obtained by means of direct esti- 
mation, e.g., 1/A, ( z ) .  Extensive experiments were conducted 
using various audio sources with different characteristics. Our 
general conclusion is that the neural network can learn to pro- 
vide an approximation of the estimated masking threshold to a 
reasonable degree of accuracy. This is illustrated, for a typical 
audio segment, in Fig. 4 where the true spectrum X(eJw) 
and the corresponding AR modeled version l/A,(eJw) are 
also included for purposes of comparison. A few comments 
must be made concerning these results. First, the masking 
threshold tends to become flattened at high frequencies (above 
16 kHz). As stated in ISOMPEG standard 11 172-3 [21], 
for layer I at the sampling rate of 44.1 kHz, it is generally 
sufficient to assume a constant value of 68 dB for the absolute 
threshold above 16 kHz. Second, a comparison between the 
l /A,(eJW) and l/A,(eJW) indicates that in the former, the 
spectral envelope decays monotonically, whereas in the latter, 
the spectral envelope rises abruptly above 12 kHz. The reason 
for this is that at higher frequencies the sound pressure level 
of audio input is far below the absolute threshold in quiet. 
Hence, it appears that absolute threshold dominates the spectral 
evolution of the masking threshold above 12 kHz. It is thus 
reasonable to expect that new work based on the masking 
threshold will yield the noise spectral shaping that differs 
noticeably from those based on the spectral envelopes of 
incoming sounds. 

IV. A MASKING-THRESHOLD ADAPTED WEIGHTING RLTER 
Many perceptual coding schemes have been proposed to 

alleviate the adverse effects of reconstruction noise with 

varying degrees of success. This is made possible by exploiting 
the new findings in psychoacoustics, which suggest that better 
sound reproduction quality can be achieved by perceptual 
reshaping of noise spectra than by reducing noise power. 
Hiding noise under the masking threshold is a particularly 
desirable feature in view of the ear's noise-masking properties 
[ 131. In analysis-by-synthesis predictive coders, this task is 
generally accomplished by using a perceptual noise-weighting 
filter for excitation searches [6]-[8]. A weighting filter is 
considered to be perceptually optimum if the inverse of its 
magnitude response matches the ear's sensitivity to reconstruc- 
tion noises in different frequency ranges. In other words, a 
small value of magnitude response indicates that a high value 
of reconstruction noise variance is acceptable at that frequency, 
and vice versa. Depending upon the choice of parameters, 
a number of different weighting filter configurations can be 
realized. In order to compare them on the same basis, all the 
weighting filters considered here are implemented by means 
of the bandwidth expansion of a 10th th order denominator 
polynomial using a weighting factor y = 0.8. 

One approach consists of starting with a conventional LPC- 
based weighting filter, whereby the noise power is distributed 
in accordance with the input spectrum X(eJW). In this case, 
linear prediction analysis provides a simplistic approach to 
implementing the linear predictor A, (2) as well as the percep- 
tual weighting filter W, ( z )  . For further discussion, this type 
of LPC-based weighting filter configuration is refered to as 
PWF1. Its transfer function is given by 

where {a,} denotes the linear predictor coefficients and the 
weighting factor y controls the energy of the error embedded 
in the formant regions. There has been considerable experience 
with such LPC-based weighting filters; they are currently 
the basis for many practical coders. The basic problem with 
this approach is that the predictor coefficients were originally 
derived to provide an all-pole fit to the audio spectrum. We 
thus attempt to improve on this approach by redistributing 
the noise power in relation to the masking threshold produced 
by the audio signal, instead of the audio spectrum itself. In 
the proposed system, we implement the weighting filter using 
masking threshold AR parameters, which may be obtained 
either through direct processing or through neural network 
mapping. The corresponding transfer functions, designated by 
PWF2 and PWF3, are given, respectively, by 

The suitability of each of the noise-weighting filters in- 
troduced above has been evaluated for use in noise spectral 
shaping. The experimental arrangement of a code-excited LPC 
(CELP) encoder (after [291) is shown in Fig. 5, and we 
denote CELP systems with weighting filters PWF1, PWF2, 
and PWF3 as CELP1, CELP2, and CELP3, respectively. 



CHANG AND WANG: MASKING-THRESHOLD-ADAPTED WEIGHTING FILTER 

Piano Horn 
1. 
oder l?: 

CELPl 27 4/30 31219 8 31 8/32 31149 5 

CELPZ 26 5/29 11144 4 26 8/28 5/83 I 

CELP3 25 3/28 11131 0 25 7/27 8/88 3 

129 

Drum 

32 2/32 U149 2 

27 6/28 1/74 6 

27 9/28 8/78 5 

, Input 4"" x(n) , 

Fig. 5. Block diagram for the CELP encoder. The perceptual weighting 
filter can be characterized using either predictor coefficients {a , }  or masking 
threshold AR parameters { c, }, 

A CELP system produces its excitation by summing the 
gain-scaled codevectors from an innovation codebook and an 
adaptive codebook. The adaptive codebook, which accounts 
for long-term pitch periodicity, is updated using the past 
history of excitation sequences. The innovation codebook, 
on the other hand, is usually populated by Gaussian random 
samples whose statistics resemble noiielike residual signals. 
In this experiment, audio source samples were segmented into 
frames of 160 samples long. Each frame was further divided 
into eight subframes. The filter's coefficients were updated 
once per frame. The excitation parameters were transmitted 
once per subframe. The optimal values of system parameters 
were determined in two steps. First, the predictor coefficients 
{ u z ,  1 5 i 5 lo} were calculated using linear predictive 
analysis with the autocorrelation method. Prior to transmis- 
sion, these predictor coefficients were transformed into line 
spectrum pair (LSP) frequencies and linearly quantized. As 
mentioned in [30], LSP representation has the advantages 
of allowing more efficient quantization and conserving the 
synthesis filter's stability after quantization provided that its 
natural ordering relationship is preserved. Next, the system 
finds the excitation parameters with the least squared-error 
distortion by sequentially feeding all possible codewords to 
the synthesis filter and using a weighted distortion measure to 
evaluate the reconstructed signal until the best fit is found. 

Table I presents the comparative performance results for 
CELP coding of audio in conjuction with different noise- 
weighting filter structures. The transmission rate is 92.61 
kb/s with bits allocated to parameters as listed in Table 11. 
The monophonic audio database for these studies consisted 
of piano, drum, and horn signals of four seconds duration 
and sampled at a rate of 44.1 kHz. SNR, SNRSEG, and 
GBSD were measured on the reconstructed signals. We also 
conducted informal listening tests. GBSD results were consis- 
tent with the results of the listening tests. Informal listening 
tests indicated that the CELPl output is subjectively inferior 
to the CELP2 and CELP3 in spite of its higher values of 
SNR and SNRSEG. In other words, the nominal advantage 
in waveform difference measures should not be interpreted 
as an indication of subjective preference. Since GBSD is 

TABLE I1 
BIT PLLLOCATION FOR CELP CODERS AT 92.61 KB/S 

Update Rate Bits 

Subframe 
Innovation Codebook Gaii 

I 
I I 

LPC Coefficients 
I I 

Total Bits Per Frame 

(Frame Length = 160 Samples) 
336 

more indicative of perceptual cues than SNR and SNRSEG, 
the GBSD comparison performed on three noise-weighting 
filter configurations should be instructive. As the table shows, 
CELP2 and CELP3 yielded substantial improvement over 
CELPl for all test samples. The results also indicated that 
CELP2 and CELP3 produced comparable performance, with 
perhaps a slight advantage going to CELP2. Among the 
reasons for success, we find that an all-pole system with finite 
order is sufficient to model the masking threshold because 
its spectral evolution has few deep valleys that require a large 
number of poles for adequate spectral approximation. It is also 
important to note that audibility of noise depends heavily on 
the relative distribution between noise power and frequency 
response of the noise-weighting filter. In CELP2 and CELP3, 
the noise spectrum much more closely duplicates the masking 
threshold, and thus, even though the noise power is greater 
than that of CELP1, it is better masked and so less audible. 

We next compare the proposed system with the well- 
established ISOMPEG 96 kb/s audio-coding system [21]. In 
layer I, the MPEG system employs a filterbank to create 32 
critically sampled representations of the input signal, which 
are then quantized using adaptive block companding under the 
control of the estimated masking threshold. As listed in Table 
111, none of the CELP-based audio coders can outperform the 
audio coder in conforming to the ISOMPEG standard. The 
reason for this seems to be that real residual samples are highly 
correlated and hence fail to meet the white noise assumption 
used in populating the stochastic innovation codebook. Therein 
lies the motivation for further work on the incorporation of 
sinusoidal excitation representation, which is detailed in the 
following section. 

V. THE MULTISINUSOID EXCITATION MODEL 

A code-excited LPC coder decomposes the signal into the 
product of excitation and system spectra, and then represents 
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TABLE I11 
SNR/SNRSEG/GBSD PERFORMANCE OF VARIOUS AUDIO CODERS 

Piano Horn Dtum 

CELP2 

MSLPC 

the excitation by using a stochastic codebook. When dealing 
with periodic sounds, its near-white spectrum fails to provide a 
good approximation of the pulselike envelope of a real residual 
spectrum. As an alternative to the above models, we propose 
to represent the excitation waveform by a sum of sine waves 
with arbitrary amplitudes, frequencies, and phases [9]. Fig. 6 
illustrates the functional block diagram of a MultiSinusoid 
LPC (MSLPC) encoder. The general form of a multisinusoid 
excitation model is given by 

M 

e (n )  = Erz cos(w,nT + &), 1 5 n 5 N (15) 

where N is the subframe length, M is the number of sinusoids, 
and the rZ, wz, and dZ represent the associated amplitude, 
frequency, and phase, respectively, of the ith sinusoid. Letting 
h(n) denote the impulse response of the weighted-synthesis 
filter, we produce the output signal y ( n )  by taking the con- 
volutional sum 

2 = 1  

Y(n) = e (n )  * h(n) (16) 

(17) 

where Q, = T,  cos 4z, Pz = -rZ sin q5z, h,,(n) = cos(w,nT) * 
h(n) ,  and h,,(n) = sin(w,nT) * h(n). It is more convenient 
to rewrite the above set of linear equations in vector form as 
follows: 

M 

= C[Qzhcz(n) + Pzhsz(n)l, 1 5 n 5 N 
z=1 

M 

i=I 

An accurate identification of excitation parameters should 
be the basis for the success of MSLPC. Assuming that the 
frequencies {w3, 1 5 j 5 M }  have been determined, the 
optimal values of a3 and P, can then be found by minimizing 
the mean-squared error E defined as 

N 

E = (x( n) - y ( n ) )  = 2 . k - 2Z.  y” + y’. y”. (19) 

Th~s  minimization results in the set of linear equations for 

n=l 

j = 1 , 2 , .  . . , A 4  as follows: 

I I 
Fig. 6. Block diagram for the multisinusoid LPC (MSLPC) encoder. 

or, rewritten in matrix form as 

s’.+c‘ (22) 

where the entries in 3, Z and s’ are given, respectively, for 
1 5 j 5 2 M  and 1 5 5 5 2M, as follows: 

(23) 

Indeed, the above equation can be solved more efficiently 
by taking advantage of the symmetric nature of the matrix 
2. According to the Cholesky factorization theorem [31], a 
symmetric matrix s’ can be decomposed into the form of 6$ 
where G‘ is a lower triangular matrix whose nonzero entries 
are given by the following expressions: 

1-1 

In correspondence with this factorization, we can rewrite (22) 
in terms of 6 as follows: 

where the entries in if are given by 

Substituting these optimum parameters into (19) leads to the 
least-squared error expression 

where the superscript “&I” denotes the number of sinusoids 
used in approximating the excitation waveform. From inspec- 
tion of (31), it follows that the squared error distortion is 
guaranteed to converge by increasing the number of sinusoids. 

From the perspective of computational efficiency, the 
Cholesky factorization technique also provides an ideal 
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Subframe 

TABLE IV 
BIT ALLOCATION FOR THE MSLPC CODER AT 96 KB/S 

Frequency Patterns 12 

Amplitudes 7x8 

Phases 6x8 

I UpdateRate I Item I Bits I 

Frequency Candidates 
Frame 

LPC Coefficients 

Total Bits Per Frame 

erame Leneth = 480 Samdes) 

77 

40 

1045 

framework for independently estimating the parameters 
{wz} and { r z ,  $%} in a two-step procedure. Consider the 
frequencies{w,, 1 5 i 5 M } ,  which are exclusively 
embedded in the entries of 4: Under such conditions, the 
frequency of the ith component sine wave can be determined 
as the location of the spectral peak, which maximizes the 
term (q2z-1 + 422%). Though the sine wave frequencies 
could be tracked using the procedure above, the necessity 
of an exhaustive search makes algorithm implementation 
impossible. Fortunately, computational complexity can be 
reduced because sinusoidal components should correspond to 
the occurence of spectral peaks. It is therefore sufficient to 
search only the spectral region around the spectral peaks to 
find the best fit for the underlying sine waves. 

In this experiment, a set of L frequencies were chosen 
once per frame by locating the predominant peaks of the 
associated audio spectrum. Only these L frequency candidates 
were examined to find the M best frequencies needed within 
each constituent subframe. We empirically chose L = 12 
and M = 8 as the best compromise between coding gain 
and implementational complexity. Together with the weighting 
filter PWF2, the proposed multisinusoid excitation model was 
evaluated to assess its suitability for use in developing an 
LPC-based audio coder. The performance of MSLPC at a 
transmission rate of 96 kb/s is listed in Table 111. With an 
analysis frame length of 480 samples, the total number of bits 
allocated per frame is 1045, with the breakdown according to 
parameters as shown in Table IV. For transmission to receiver, 
the phases and amplitudes of the sinusoidal components were 
linearly quantized. In addition, the frequencies were quantized 
in a two-step procedure. First, we employed a differential 
coding strategy to quantize twelve frequency candidates once 
per frame. Second, each constituent subframe was associated 
with a 12-b pattern in which the absence or presence of a 
sinusoid is indicated by a “0” or a “1 .” The results indicate that 
the sinusoidal excitation model is preferred to the codebook- 
excited model for use in audio representation, because the 
former better fits the pulselike natures of residual spectra. 
We also stress that it is the combined use of a multisinusoid 
excitation model and a masking-threshold adapted weighting 
filter that allows the implementation of an LPC-based coder 
to outperform its ISOMPEG counterpart. 

VI. CONCLUSION 
This paper presents and discusses technical options that 

allow an LPC-based audio coder to deliver near- transparent 
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quality at 96 kb/s. We first emphasized the importance of 
matching the weighting filter’s response to the noise-masking 
threshold. This task was done by using AR parameters of 
the masking threshold to implement the noise-weighting filter 
rather than using linear predictor coefficients, as do con- 
ventional LPC-based coders. Furthermore, an efficient neural 
network was trained to extract most of the perceptual in- 
formation concerning the masking threshold from the audio 
sources via mapping. One enhancement that further increases 
performance is the use of a sinusoidal excitation representation 
that more closely matches the intrinsic natures of residual 
spectra. 
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