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An Energy Band-Pass Filter 
Using Superlattice Structures 

Hsin-Han Tung and Chien-Ping Lee, Senior Member, IEEE 

Abstract- A novel quantum mechanical energy band-pass 
filter (EBPF) using semiconductor superlattices is proposed. Such 
structures with a Gaussian superlattice potential profile allow 
the incident electrons to be nearly totally transmitted when the 
impinging electron energy is in the passband. On the other hand, 
a complete reflection occurs when the impinging energy is in the 
stopband. By adjusting the parameters of the potential profile 
and the superlattice, the desired passband and stopband of such 
filter can be obtained. Time evolution of an electron wave packet 
moving through such a structure is calculated by numerically 
solving the time-dependent Schrodinger equation. The numerical 
simulation clearly demonstrates the characteristics of total trans- 
mission and total reflection. The generalized concept of matched 
quantum-mechanical wave impedance (QMWI) analogous to that 
used in the transmission line theory is presented to explain the 
occurrence of total transmission of the proposed structures. 

I. INTRODUCTION 

UPERLATTICE structures have been of considerable in- S terest for many years as means of manipulating electron 
dispersion in semiconductors [I], [ 2 ] .  These structures can 
be created by stacking alternately ultra-thin layers of semi- 
conductor films. Recent developments in epitaxial growth 
technology have made it possible to control the structure, 
composition, and doping profile of these artificially structured 
semiconductors to nearly arbitrary precision. Thus, one can 
design structures with energy band gap characteristics and 
more generally band structures exhibiting the desired transport 
and optical properties for specific applications. Many useful 
devices such as optical modulators [3], waveguides [4], and 
infrared photodetectors [5] have been fabricated using these 
new structures. Investigation of electron propagation in such 
layered media is of particular interest because the transport 
property is governed by the minibands formed in the superlat- 
tices. Multiple quantum barriers that enhance carrier blocking 
161 and resonant tunneling structures that enhance carrier 
transmission 171 are good examples which demonstrate the 
current manipulating capability of these structures. However, 
because of the finite thickness (or number of layers) of the 
superlattice structures, the minibands for carrier transmission 
are not really flat “bands.” 100% transmission cannot be 
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achieved for all the energies within the bands. Therefore, 
transporting of carriers with energies in the bands can never 
be complete. A wavepacket with a finite width or energy 
impinging upon such a structure will be partially reflected and 
partially transmitted even its energy lies within a miniband. 

Nakagawa et al. [8] have considered the problem of electron 
reflection at the semiconductor/superlattice interface and pro- 
posed to use a transition region at the interface to minimize the 
reflection. The transition region is a linearly graded superlattice 
which consists of layers with linearly graded potential height. 
By adding such an antireflection layer, good transmission from 
the bulk semiconductor to the superlattice was obtained. In this 
paper, we proposed a new superlattice structure which has the 
transmission characteristics and reflection characteristics like 
a perfect “energy” bandpass filter (EBPF). 100% transmission 
and 100% reflection can be obtained when the electron energy 
lies within the respective bands. The bands are flat and their 
positions and the bandwidths are adjustable. Details of the 
superlattice structures and their transmission characteristics 
are presented in Section 11. The transmission probability is 
calculated using the transfer-matrix method, which is derived 
from the plane wave type solution 191 with assumed bound- 
ary conditions. The wave equation approach is conceptually 
simple and it naturally provides the first level of theoretical 
analysis. In Section 111, the time evolution of a Gaussian wave 
packet moving through this superlattice structure is presented 
to demonstrate the capability of total transmission or total 
reflection for EBPF’s. In Section IV, we use the cmcept 
of matched quantum-mechanical wave impedance (QMWI), 
which is analogous to the transmission theory, to explain the 
occurrence of total transmission. Our conclusion is given in 
Section V. 

11. STRUCTURE OF EBPF SUPERLATTICES 

Fig. 1 shows the conduction-band edge of the investigated 
superlattices. The structure can be considered as a regu- 
lar superlattice modulated by a Gaussian function. a and 
b are the widths of the potential barriers and the wells, 
respectively, L is the total length of the superlattice, and 
Vo is the largest barrier height. The Gaussian function is 
expressed by exp(-x2/az), where x is the coordinate in 
the direction normal to the superlattice and a , / a  is the 
standard deviation of the Gaussian function. This potential 
profile can be obtained, for example, by gradually changing 
the mole fraction in a GaAs-AlGaAs-InGaAs material system. 
From the basic quantum theory [lo], we know that when 
electrons are moving in a region where the spatial variation 
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Fig. 1. 
structure. 

Schematic diagram of potential profile for an EBPF superlattice 

Normallzed Incident Electron Energy, (ENo) 

Fig. 2. Plot of the transmission probability as a function of normalized 
incident electron energy for an EBPF superlattice structure of 40 layer-pairs 
with a = 32 A, b = 32 A, L = 2560 A, us = L / 4 ,  and Vo = 0.45 eV. 

of potential is small compared with the electron wavelength, 
the reflection is expected to be small. By combining a slowly 
varying potential with a periodic superlattice which exhibits 
miniband structures, we thereby obtain an energy band-pass 
filter. 

Consider one of the examples with the structure shown in 
Fig. 1. The superlattice is composed of 40 layer-pairs with 
a barrier width a = 32 A and a well width b = 32 A. 
Thus, the total length of the superlattice L is 2560 W. The 
width os of the modulating Gaussian function is taken to 
be L/4, and the barrier height VO is 0.45 eV. The electron 
effective mass is assumed to be 0.067 mo throughout the 
structure. In Fig. 2, the calculated transmission probability 
by the transfer-matrix method is plotted as a function of 
electron energy E.  This figure shows nearly total transmission 
when the electron energy is in the range between 0.7-1.0 
Vo and above 1.7 VO, while the transmission probability is 
zero when the electron energy lies outside these ranges. Flat 
passbands and stopbands result. The bands are flat and the 
boundaries between the passbands and stopbands are abrupt. 
This superlattice structure behaves like an energy band-pass 
filter (EBPF), which is similar to the frequency band-pass filter 
in circuit theory. This is quite different from the transmission 
characteristics of other types of superlattice structures. To 
make a comparison with regular superlattices, we calculate 
the transmission probability of a rectangular MQW (multiple 

0.5 

0.3 

0.2 

0.1 

I I  
0 5  1 1 5  2 2 5  

Norma!.!.zed Incident Electron Energy, (E&) 

Fig. 3. Plot of the transmission probability as a function of normalized 
incident electron energy for a rectangular MQW structure of 40 layer-pairs, 
both barrier and well width are 40 A, and the barrier height is 0.4 eV. 
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Fig 4. Plot of the transmission probability as a function of normalized 
incident electron energy for an EBPF superlattice structure of 40 layer-pairs 
with a = 32 A, b = 32 A, L = 2560 A, u3 = L/4, and Vo = 0.3 eV 

quantum wells) superlattice with 40 layer-pairs. The barrier 
height used here is 0.4 eV, the widths of both barriers and wells 
are 40 A. Fig. 3 shows the calculated transmission Probability 
versus energy. It indicates the existence of allowed minibands. 
But the transmission probability is not uniformly equal to 
one within each band. It is obvious that these conventional 
rectangular MQW superlattices do not have flat passbands as 
the EBPF does. 

The position of the passbands and the widths of the bands 
can be easily adjusted by changing the layer parameters 
of the superlattice. Fig. 4 shows the calculated transmission 
probability for an EBPF with the same structure parameters as 
those used in Fig. 2 except Vo is changed to 0.3 eV. We can 
see as the barrier height is reduced the position of the passband 
moves higher (relative to VO) and the bandwidth becomes 
wider. Fig. 5 shows the calculated transmission probability of 
an EBPF with the same structure parameters as in Fig. 2 but 
with a shorter period of 50 A (a  = b = 2.5 A). We again see that 
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Fig. 5. Plot of the transmission probability as a function of normalized 
incident electron energy for an EBPF superlattice structure of 40 layer-pairs 
with a = 25 A, b = 25 A, L = 2000 A, us = L/4, and VO = 0.45 eV. 
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Fig. 6. Plot of the transmission probability as a function of normalized 
incident electron energy for an EBPF superlattice structure of 40 layer-pairs 
with a = 28 A, a + b = 64 A, L = 2560 A, us = L/4 ,  and Vo = 0.45 eV. 

the energy of the passband moves higher and the bandwidth is 
wider. The trend is similar to that of a conventional superlattice 
where the quantized energy bands become higher and wider as 
the barriers and the wells of the superlattice become narrower. 
Fig. 6 shows the transmission probability spectrum of an EBPF 
with a smaller barrier width ( a  = 28 A) but the period, a + b, 
and the rest of the parameters in Fig. 2 are kept unchanged. 
The position of the passband moves lower in this case. In 
summary, one can design an EBPF with desired bandwidth and 
band position by adjusting the parameters such as V,, a + b, 
a/(. + b ) ,  etc. The shape of the Gaussian function can be also 
changed. But in order for efficient modulation, the width (a,) 
of the Gaussian profile has to be much wider than the period 
of the superlattice. If we change os to 1/16 of the total length 
( L )  of the superlattice and leave other parameters the same as 
those in Fig. 2, the transmission spectrum becomes that shown 
in Fig. 7. Although the position of the passband remains about 
the same, the shape of the band profile becomes much poorer. 
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Fig. 7. Plot of the transmission probability as a function of normalized 
incident electron energy for an EBPF superlattice structure of 40 layer-pairs 
with a = 32 A, b = 32 A, L = 2560 A, us = L/16, and VO = 0.45 eV. 

In this case, os being only a little longer than the length of two 
periods of the superlattice, the incident electrons see a more 
abrupt change in potential profile, so a poorer transmission 
characteristic result. 

From our numerical experience, we found that a gradually 
changing potential envelope function is crucial for a good 
energy band-pass filter, and a superlattice structure with a 
Gaussian potential profile does fulfill this requirement. An 
effective Gaussian envelope function can be also achieved by 
varying the widths of the barriers and the wells while keeping 
the period and the barrier height the same throughout the 
structure. We have performed calculation on such structure and 
similar band-pass transmission characteristics were obtained 
[ l l ] .  We have also tried other types of envelope functions, 
such as a triangular function, but none of them can work as 
well as the Gaussian function. 

111. TIME EVOLUTION OF ELECTRON 
WAVE PACKET THROUGH EBPF 

To further check the concept discussed above, the time 
evolution of an electron wave packet propagating through an 
EBPF is calculated by numerically solving the Schrodinger 
equation. Our work follows closely that of Goldberg et al. 
[12] who first applied computer to demonstrate the motion of 
a Gaussian wave packet scattered from a square well or barrier. 
The time-dependent wave equation for a system governed by 
a time-independent potential V ( x )  is: 

where +(x, t )  is the electron wave function, m is the effective 
mass of electron, and f i  is the Plank's constant. To solve this 
equation numerically, we first discretize the equation into a set 
of difference equations in a finite space-time grid. The wave 
function at each grid point is represented by 
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where 

j = 1) 2, 3 )  . ’ .  ) J 

and 

12. = 1, 2)  3, . . .  , N .  

The difference equations are solved with the initial condition: 

We see that this packet is centered at x = xg with a spread 
in x governed by 00. The factor ezkoa: makes our initial wave 
function move to the right with an average momentum liko, 
and ko is equal to m / h ,  where E is the average energy of 
the electron wave packet. We imagine that the physical system 
with which we work is situated in a large (one-dimensional) 
“box,” and that the wave function for the system must vanish 
on the “walls” of the box. Thus, our boundary conditions may 
be stated in the form 

$)o” = $; = 0, for all n. 

The criteria for a suitable choice of input parameters are 
given by Goldberg, et al. [12]. Fig. 8 shows the time series 
of a Gaussian wave packet impinging upon an EBPF which 
has the same structure as that used for Fig. 2. The average 
incident energy of the wave packet is chosen to be 0.425 VO 
and the spread of the packet, 00 is 400 A, which corresponds 
to an energy uncertainty about 0.023 eV. From Fig. 2 we know 
that the energy of the wave packet lies within the stopband of 
the EBPF. Fig. 8 shows clearly that the wave packet is totally 
reflected. If the initial wave packet moves to the right with an 
incident energy E = 0.85 Vo and a same width of 400 A (this 
corresponds to an energy uncertainty about 0.0325 eV), that is, 
when the incident energy lies in the passband of the EBPF, the 
time evolution of the wavepacket, shown in Fig. 9, is totally 
different. Complete transmission happens and no noticeable 
reflection is detected. Although the scattering strength is strong 
when the wave packet is moving within the superlattice, there 
is no distortion for the transmitted wave except the spreading 
of the wave packet. To make a comparison between EBPF 
and the conventional rectangular MQW, we also simulated 
the scattering of a Gaussian wave packet by a rectangular 
MQW with the transmission characteristics shown in Fig. 3. 
The wavepacket has an incident energy of 1.15 VO with a 
width of 0.036 eV (the energy spreading again corresponds 
to a spatial width of 400 A) which lies within the miniband 
of the MQW. The time evolution of the wave packet moving 
through such a structure is shown in Fig. 10. As expected, 
partial reflection and partial transmission are observed even 
the energy of the wave packet is within the miniband of the 
MQW. From the numerical results presented here, it is clear 
that EBPF’s can really serve as energy band-pass filters for 
electrons. 

\ 

IV. QUANTUM-MECHANICAL WAVE IMPEDANCE MATCHING 

The generalized concept of quantum-mechanical wave 
impedance (QMWI) was first introduced by Khondker et al. 
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Fig 8 Gaussian wave-packet scattering from an EBPF superlattice structure 
with the same structure parameters in Fig 2 The average incident energy is 
0 425 VO Numbers denote the time of each configuration in arbitrary units 
The region enclosed by the positwe and negative Gaussian function is the 
superlattices as shown in Fig 1 

Fig. 9. Gaussian wave-packet scattering from an EBPF superlattice structure 
with the same structure parameters in Fig. 2. The average incident energy is 
0.85 KO. Numbers denote the time of each configuration in arbitrary units. 
The region enclosed by the positive and negative Gaussian function is the 
superlattices as shown in Fig. 1. 

1131. This concept is analogous to the impedance in the well- 
developed transmission line theory. The quantum-mechanical 
transmission probability can be easily calculated using this 
method. The QMWI at any plane x can be defined as 

where Z ( x )  is the wave impedance looking into the positive x 
direction, j = G, m is the electron effective mass, + ( E )  and 
$(z) are the electron wave function and its spatial derivative, 
respectively, for the potential problem interested. For an 
arbitrary-shaped potential we can approximate the potential 
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Fig. 10. Gaussian wave-packet scattering from a rectangular MQW with the 
same structure parameters in Fig. 3 .  The average incident energy is 1.15 VO, 
where VO is the barrier height of MQW. Numbers denote the time of each 
configuration in arbitrary units. The region enclosed by rectangle is the MQW 
structure. 

by multistep functions with a sequence of N segments. Thus, 
if x, and x,+1 are the boundaries of segment 2, the QMWI at 
x, can be calculated by 

( 3 )  
Z(G+I) cosh ( 7 2 4 )  - 20% sinh (7tIt) Z ( G )  = 2 0 %  
20, cosh (rZlZ) - Z(Z,+I) sinh ( " i , I z )  ' 

where 

(5 )  

is the characteristic impedance of the medium. Equation (3 )  
expresses the QMWI at x, in terms of the QMWI at x,+1, 
and "yz, I , ,  and 20,. Once Z(Z,) is calculated, we can repeat 
the process for segment i- 1 to calculateZ(x,-l) using ~ ~ - 1 ,  

I z - l r  and Zo,-l. Repeatedly using (3)-(5), we can evaluate the 
total input impedance of EBPF and treat the whole superlattice 
structure as an equivalent load impedance ZEBPF. Thus, the 
reflection coefficient p(E) for the wave amplitude can be 
calculated as 

(6) 

where 20 is the characteristic QMWI of the bulk semicon- 
ductor outside the EBPF, and the transmission probability is 
given by 

ZEBPF - 20 
= z E B ~ F  + Z, 1 

T ( E )  = 1 - lp(E)12. (7) 

We have used (7) to calculate the transmission probability 
for an EBPF with the identical structure parameters used 
in Fig. 2. The result is the same as that calculated by the 
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Fig 11 The absolute values of quantum-mechanical wave impedance 
(QMWI) Z E B ~ F  and 20 as a function of normalized incident electron 
energy with the same structure parameters in Fig. 2. 
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Fig. 12. The absolute values of quantum-mechanical wave impedance 
(QMWI) ZMQW and 20 as a function of normalized incident electron 
energy with the same structure parameters in Fig. 3 .  

From the transmission line theory [14] we know that 
matched condition occurs when the load impedance is equal 
to the characteristic impedance of the transmission line. Under 
such condition, the reflection coefficient p(E) in (6) should 
be zero and the transmission probability T ( E )  in (7) should 
be equal to 1. Fig. 11 shows the QMWI, ZEBPF, and 20 
as functions of energy of an EBPF with the same structure 
parameters used in Fig. 2. It clearly demonstrates that when 
the incident energy lies in the passband, ZEBPF matches 
20 completely, while outside the passband, large impedance 
mismatch exists. The result is in good agreement with that 
calculated in Fig. 2. Fig. 12 shows the calculated QMWI, 
ZMQW, and 20 as functions energy for a rectangular MQW, 
which has the structure parameters the same as those used 
in Fig. 3 .  The figure demonstrates that impedance mismatch 
exists everywhere, even in the minibands. This explained why 
a rectangular MQW structure does not have the property of 

transfer-matrix method shown in Fig. 2. total transmission for a Gaussian wave packet. 
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V. CONCLUSION [I31 A. N. Khondker, M. R. Khan, and A. F. M. Anwar, “Transmission line 
analogy of resonance tunneling phenomena. The generalized impedance 
concept,” J. Appl Phys,  vol 63, pp 5191-5193, 1988 
D K. Chew, Field and Wave Electrc“netm Reading, MA 
Addison-Wes1ey, 1983, pp 390-395 

An energy band-pass filter (EBPF) using superlattice stmc- 
tures with a Gaussian envelope profile is proposed. Adjustable 
flat transmission bands and reflection bands are obtained by 
properly choosing the layer parameters. When an electron 
impinges upon an EBPF, it will be completely reflected or 
transmitted depending on whether the incident energy lies in 
the stopband or passband of the EBPF. Simulations of the time 
evolution of wave packets traveling through such structures 
clearly demonstrate the bandpassing characteristics of EBPF‘s. 
The phenomenon of total transmission can be successfully 
explained by using the concept of wave impedance analogous 
to that in the transmission line theory. 
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