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Detecting Interaction Effects
in Moderated Multiple Regression
With Continuous Variables

Power and Sample Size Considerations

Gwowen Shieh
National Chiao Tung University, Hsinchu, Taiwan

In view of the long-recognized difficulties in detecting interactions among continuous vari-

ables in moderated multiple regression analysis, this article aims to address the problem by

providing feasible solutions to power calculation and sample size determination for signifi-

cance test of moderating effects. The proposed approach incorporates the essential factors of

strength of moderator effect, magnitude of error variation, and distributional property of pre-

dictor and moderator variables into a unified framework. Accordingly, careful consideration

across different plausible and practical configurations of the prescribed factors is an impor-

tant aspect of power and sample size computations in planning moderated multiple regres-

sion research. The performance of the suggested procedure and an alternative simplified

method is illustrated with detailed numerical studies. The simulation results demonstrate that

an acceptable degree of accuracy can be obtained using the recommended method in asses-

sing moderated relationships.

Keywords: interaction; moderator variable; moderating effect; power; sample size

Despite the prevalent recognition and application of moderated multiple regression in

management, psychology, education, and related disciplines, the efforts devoted to

the detection of moderating effects are often futile because of insufficient statistical

power. Consequently, this situation impedes theory development involving hypothesized

moderating effects. To address this problem, various studies identified the conditions and

factors pertaining to the power issues in moderated multiple regression, see Aguinis

(1995, 2004) and the references therein. Specifically, Aguinis and Stone-Romero (1997),

and Stone-Romero, Alliger, and Aguinis (1994) provided thorough treatments on the

methodological artifacts and statistical implications associated with the effects of dichoto-

mous moderators. Moreover, the corresponding empirical results are employed to develop

approximate procedures and computer algorithms for estimating power using values of

manipulated factors in Aguinis and Pierce (1998) and Aguinis, Pierce, and Stone-Romero

(1994), respectively. Numerous investigations have been extended to the circumstance of

categorical moderator variables with heterogeneity of error variance; see Aguinis, Beaty,

Boik, and Pierce (2005) for a comprehensive and excellent review. However, unlike other
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empirical examinations that depend exclusively on simulation results, a theory-based

approximation to the power of detecting effects of categorical moderator variable was pre-

sented by Aguinis, Boik, and Pierce (2001). The essential features of their method are that

the categorical moderator variable may take on more than two levels, and that the criterion

variable and continuous predictor could be measured with error and/or truncation, and

subgroup variance heterogeneity.

It should be noted that the notorious difficulty of detecting moderator effects is particu-

larly true in observational studies with continuous variables. Arguably, the theoretical pro-

gress and computational considerations associated with the power analysis for the

interaction effects of continuous predictor and moderator variables have received little

attention in the context of moderated multiple regression. In addition, Baron and Kenny

(1986) emphasized the importance of choosing a proper analytic procedure for testing

moderation and considered four distinct cases for the moderator variable and predictor

variable combination: categorical and categorical, categorical and continuous, continuous

and categorical, and continuous and continuous. The method of Aguinis et al. (2001) for

categorical moderator is not appropriate for calculating power in assessing moderator

effect for the last situation that both moderator and predictor variables are continuous.

Naturally, the special consideration of continuous moderator and predictor variables

incurs the important notion of two different regression formulations. First, the conven-

tional linear regression models fall under the fixed or conditional modeling framework in

which the predictor configurations of the regression models are preset by the researcher.

Therefore, the corresponding results would be specific to the particular values of the pre-

dictor variables and in general, are not applicable in other design settings. These should

be the cases more likely to occur in experimental studies where the factors are under the

control of the investigators. On the other hand, it is quite common in field studies that not

only the values of response variables for each subject are just available after the observa-

tions are made, but the levels of predictor variables are also outcomes of the research,

especially when the predictors are of continuous measures. Under such circumstances, it

is more suitable to employ the random regression or unconditional setup. This subtle con-

sideration is closely related to the implication of stochastic regressors commonly dis-

cussed in econometric texts such as Greene (2008) and Murray (2006). In practice, the

tests of hypotheses and estimates of parameters are the same under both models. However,

the distinction between the two modeling approaches becomes important when power and

sample size calculations are to be made. See Cramer and Appelbaum (1978) and Sampson

(1974) for further details about the intrinsic appropriateness and theoretical properties

of fixed and random models. Similar emphasis and related implication can be found in

Dunlap, Xin, and Myers (2004), Gatsonis and Sampson (1989), Mendoza and Stafford

(2001), and Shieh (2006, 2007). Particularly, I rely primarily on the general result of Shieh

(2007) for the distinct advantage of applying directly to the problems that arise in the

detection of moderating effects.

In this article, I focus on the simple interaction models with criterion variable Y, contin-

uous predictor variable X, continuous moderator variable Z, their cross-product term XZ,

and error term e in the formulation of Y = bI +XbX + ZbZ +XZbXZ + e that have been

extensively discussed in many moderated multiple regression applications. The moderator

Z is essentially the second predictor variable hypothesized to moderate the X − Y

Shieh / Detecting Interaction Effects 511

 at NATIONAL CHIAO TUNG UNIV LIB on April 25, 2014orm.sagepub.comDownloaded from 

http://orm.sagepub.com/


relationship. See Aiken and West (1991), Cohen, Cohen, West, and Aiken (2003) and

Jaccard and Turrisi (2003) for general and illuminating expositions. To take account of the

embedded randomness and variability of the predictor and moderator, the appropriate strat-

egy is to consider the random regression setting. It has been demonstrated in McClelland

and Judd (1993) that the joint distribution of the predictor and moderator is one of the deter-

ministic factors of detecting moderating effects. Specifically, McClelland and Judd noted

that the statistical power for the test of interactions is partly attributed to the extra variance

of the product XZ after controlling for the main effects of X and Z or the unique variation in

XZ that is not shared with either X or Z which, in turn, is determined entirely by the joint

distribution of X and Z. Moreover, even though a useful yet complex expression was derived

by McClelland and Judd for the extra variance of the product after controlling for the main

effects of X and Z in terms of various variances and covariances of the predictor and

moderator variables, no specific operational guideline was provided for power and sample

size calculations to take account of the distinguishing underlying variability of the predictor

and moderator variables. It will be shown later that failing to account for the variability

of the predictor and moderator may distort power analysis and lead to a poor choice of

sample size.

Regarding the distributional assumptions of the associated predictor and moderator

variables, it is common to assume that the two continuous predictor and moderator vari-

ables have a joint bivariate normal distribution in illustrative and theoretical treatments

of moderated multiple regression. For example, see McClelland and Judd (1993) and

O’Connor (2006). However, it should be obvious that the product of two normally distrib-

uted variables does not have a normal distribution. Therefore, the established results for

power analysis of fixed characteristics and multinormal settings do not apply in this applica-

tion. Moreover, there are also many situations where the predictor and moderator variables

are continuous, but the assumption of normality is completely unrealistic. Consequently, a

general approach to encompassing both normal and nonnormal distributions of the predictor

and moderator variables is essential to moderated multiple regression for performing power

and sample size calculations in practical applications.

Shieh (2007) has recently considered a unified approach to the determinations of power

and sample size for random regression models with arbitrary distributional formulations

of the stochastic explanatory variables. Note that the prescribed moderated multiple

regression with continuous predictor and moderator variables can be viewed as a special

case of the random regression models. Hence, the unified and pedagogical presentation of

Shieh furnishes the basis for detailed examination and theoretical justification of the infer-

ential procedures for moderated multiple regression analysis. In a continual effort to sup-

port the analytical development and improve the essence of research findings in

moderated multiple regression, the general result of Shieh is specialized to provide expli-

cit and useful computational formulas for power calculation and sample size determina-

tion here. Essentially, the impact of the methodological artifacts on statistical power for

detecting moderating effects can be assessed directly without resorting to empirically

derived formulas or results.

The rest of the article is organized as follows. In the next section, the fundamental the-

ory and analytical results of the significance test of interactions and moderating effects in

the context of moderated multiple regression with fixed and random configurations of
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predictor and moderator variables are described. Moreover, the emphasis is placed on the

fundamental discrepancy between two approximate procedures in terms of power function

and sample size determination. Then, numerical illustrations are presented to exemplify the

critical differences between the two methods and the implementation of the accompanying

SAS and R programs for power calculation and sample size determination. To further

demonstrate the advantage of the proposed approach over the alternative simplified method,

simulation studies are also conducted. Finally, some concluding remarks are given.

Moderated Multiple Regression

Consider the simple interaction model or moderated multiple regression model within

the fixed modeling framework,

Yi =bI +XibX +ZibZ +XiZibXZ + ei, ð1Þ

where Yi is the value of the response variable Y, Xi and Zi are the known constants of the

predictor X and moderator Z, ei are iid N(0, s2) random errors for i= 1, . . . , N; and bI, bX,

bZ, and bXZ are unknown parameters. For the purpose of detecting the moderator effect,

the problem is naturally concerned with the least squares estimator b̂XZ of bXZ, and the

distributional property of the corresponding test statistic tXZ for the hypothesis H0: bXZ = 0

versus H1: bXZ 6¼ 0. The analytical formulation of tXZ is described in Appendix A. If the null

hypothesis H0: bXZ = 0 is true, the statistic tXZ is distributed as t(N − 4), a central t distribu-

tion with N − 4 degrees of freedom, and H0 is rejected at the significance level a if

|tXZ|> tN − 4, a=2, where tN − 4, a=2 is the upper 100(a/2)th percentile of the t distribution

t(N − 4). Moreover, the corresponding power function is,

Pf|tXZ |> tN − 4,a=2g=Pf|tðN − 4,LÞ|> tN − 4, a=2g, ð2Þ

where t(N − 4, L) is the noncentral t distribution with N − 4 degrees of freedom and non-

centrality parameter L given in Equation A2. The observed proportional reduction in error

(PRE; see McClelland & Judd, 1993) or squared partial correlation of the moderator effect

is a function of the statistic tXZ as follows:

PRE= t2
XZ

1+ t2
XZ

:

Here I restrict attention to the specific circumstance that both the predictor X and mod-

erator Z are continuous variables. Owing to the nature of continuous measurements

encountered in field research, the explanatory variables typically cannot be controlled and

are only available after observation. Hence, to extend the concept and applicability to

moderated multiple regression, the continuous predictor and moderator variables {(Xi, Zi),

i= 1, . . . , Ng in Equation 1 are assumed to have a joint probability function g(Xi, Zi) with

finite moments. It is assumed that the form of g(Xi, Zi) does not depend on any of the

unknown parameters (bI, bX, bZ, bXZ) and s2. From a practical standpoint of providing
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generally useful and versatile solution without specifically confining to any particular joint

probability function g(Xi, Zi), it is prudent to consider the large sample viewpoint

described in Appendix B. The formulation is because of Shieh (2007). However, the sim-

plified approximate distribution of tXZ as a normal mixture of noncentral t distributions in

Theorem 1 of Appendix B provides a theoretically more transparent representation than

that of Shieh where the formulation is expressed in terms of a normal mixture of noncen-

tral F distributions within the broader general linear hypothesis framework.

With the important justification of asymptotic properties given in Appendix B, the pro-

posed approximate power function in the context of random regression is,

Pf|tXZ |> tN − 4, a=2g=EW*½Pf|tðN − 4,L*Þ|> tN − 4, a=2g�, ð3Þ

where t(N − 4, L*) is the noncentral t distribution with N − 4 degrees of freedom and non-

centrality parameter L* = bXZf(N − 1)W*=s2g1=2
as defined in Equation B4, the expecta-

tion EW* ½ · � is taken with respect to the approximate normal distribution of W* presented

in Equation B2 with W* = 1=f(N − 1)Mg, M is the (3, 3) element of A−1,

A=PN
i= 1 (Xi − �X)(Xi − �X)T, �X= PN

i= 1 Xi=N, and Xi = (Xi, Zi, XiZi)
T is the 3× 1 row

vector for values of predictor Xi, moderator Zi and their cross-product XiZi for

i= 1, . . . , N. It should be noted that the numerical computation of approximate power in

Equation 3 requires the evaluation of noncentral t cumulative distribution function and the

one-dimensional integration with respect to a normal distribution. The suggested formula-

tion of normal mixture of t distributions in Equation 3 is referred to as the NT approxima-

tion or approach for ease of exposition. This procedure is not as simple as using a z or t
table, but it is not unreasonable in light of modern computing capabilities.

Consider the alternative simplified approximation to the distribution of tXZ presented in

Theorem 2 of Appendix B; one shall be content with the approximate power function,

Pf|tXZ |> tN − 4, a=2g =· Pf|tðN − 4, l*Þ|> tN − 4, a=2g, ð4Þ

where l* is a constant defined in Equation B6. For ease of reference this simplified t
approximation is described as the ST approximation or method. In this case, the computa-

tion of approximate power of Equation 4 involves only the noncentral t cumulative distri-

bution function as in the case of Equation 2. It can be justified that the two approximate

distributions given in Theorems 1 and 2 of Appendix B are asymptotically equivalent as N
goes to infinity. However, the finite-sample properties of the NT and ST approaches can

be substantially different and the respective power functions defined in Equations 3 and 4

may yield markedly different results for small samples.

Furthermore, it is insightful to consider that the asymptotic mean mW* of W* can be

viewed as the extra variance of the product XZ after controlling for X and Z, denoted by

V[XZ|(X, Z)], as presented in Equation B3 of Appendix B. Moreover, it was demonstrated

in the simulation studies of McClelland and Judd (1993) that the magnitude of V[XZ|(X,

Z)] or mW* plays an important role for the differences in statistical power performance

between experiments and field studies. However, the impact of the joint distribution of X
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and Z is more transparent and assessable with the aforementioned approximate power

functions given in Equations 3 and 4. Accordingly, the effect size of the simplified t
approximation in Equation 4 can be approximately quantified as,

fXZ = l*

N1=2
=· bXZ

mW*

s2

n o1=2

: ð5Þ

Owing to the proposed two-stage distribution approximation to the t statistic in Theo-

rem 1 of Appendix B, the corresponding effect size is intrinsically determined by the nor-

mal approximation for W* given in Equation B2. However, the actual effect size of the

test statistic tXZ is a function of the underlying distribution of � or W within the context of

random regression.

For the purpose of sample size determination, the approximate power functions defined

in Equations 3 and 4 can be employed to calculate the sample size needed to test hypoth-

esis H0: bXZ = 0 versus H1: bXZ 6¼ 0 to attain the specified power for the chosen signifi-

cance level a, parameter values (bI, bX, bZ, bXZ, s2), and moments of (Xi, Zi) obtained

with the joint probability distribution g(Xi, Zi). It can be readily seen that the prescribed

power formulas Equations 2, 3, and 4 do not depend on the three coefficient parameters

bI, bX, and bZ, therefore they are entirely irrelevant to the power and sample size calcula-

tions for detecting moderating effect. Moreover, the mean values of the predictor, modera-

tor and their product are not included in the power functions of Equations 3 and 4. Hence,

the mean vector or first moments associated with the joint distribution of explanatory vari-

ables has no influence on the power or on the required sample size. An important aspect

of computation is that a simple and standard iterative search is required to find the neces-

sary sample size. These results will be applied later to implement varieties of power calcu-

lation and sample size determination for moderated multiple regression analysis. Finally,

the corresponding hypothesis testing procedures and approximate power functions for the

two one-sided tests of H0: bXZ ≤ 0 versus H1: bXZ > 0, and H0: bXZ ≥ 0 versus H1: bXZ < 0

and nonzero minimum effect can be readily established but the details are not given here.

Numerical Examples

For illustrative purposes, I present in this section the power and sample size calculations

for detecting interaction effects in moderated multiple regression analysis based on a

given set of pilot data. The following numerical assessment represents a typical research

situation most frequently encountered in the planning stage of a study. The ultimate aim is

to reveal the potential consequence of failing to account of the underlying stochastic prop-

erty of the explanatory variables.

Suppose there are 40 pairs of observations for predictor variable X and moderator vari-

able Z obtained from a pilot study. The values of (X, Z) listed in Table 1 represent random

samples generated from a bivariate normal population with mX = mZ = 0, s2
X =s2

Z = 1 and

correlation r= 0:5. According to the continuous characteristics of measurements X and Z,

it is clear that the sample values in the subsequent study vary from one application to

another. However, the observed configurations from the pilot study can be employed as an
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empirical approximation to the underlying joint distribution of X and Z. Moreover, it is

shown next that the prescribed NT and ST approaches utilize the empirical features asso-

ciated with the predictor and moderator variables in distinctive ways and, accordingly the

two formulas lead to substantially different results in power and sample size calculations.

As a continued exposition of the numerical studies in McClelland and Judd (1993,

p. 379), I follow their setup where the parameters of the moderated multiple regression

are chosen as bI = 0, bX = bZ = bXZ = 1 and s2 = 16: It follows from the data in Table 1

that the approximate normal distribution of W* has the mean m̂W* = 2:1030 and variance

ŝ2
W* = 54:5894. Moreover, the approximate effect size defined in Equation 5 is

fXZ = 0:3625. As described in the preceding section, for planning future research based on

current information, the sample sizes needed to obtain specified power at the significance

level a= 0:05 of the NT and ST methods are determined by the approximate power func-

tions defined in Equations 3 and 4, respectively. The resulting sample sizes for NT method

are 101 and 127 for power level 0.90 and 0.95, respectively. On the other hand, the corre-

sponding sample sizes are 82 and 101 for the ST method. Obviously, the calculated

sample sizes of the two procedures differ considerably for the given set of (X, Z) data.

The discrepancies in terms of percentage of required size are 100%× (101− 82)/

101= 18.81% and 100%× (127− 101)/127= 20.47% for the respective two power level

0.90 and 0.95. Furthermore, the sample size of 101 required for the ST method to attain

power 0.95 yields instead the power level of 0.90 for the more sophisticated NT approach.

Moreover, it can be shown that the presumably adequate sample size 82 reported by the

ST procedure to reach 0.90 power value only gives the power level 0.84 with the NT

approach. Thus, the differences in power performance are 0.90− 0.84= 0.06 and

0.95− 0.90= 0.05 for the two cases considered here. In short, the sample sizes calculated

with the ST algorithm are comparatively smaller than those of the NT approach and the

phenomenon shall continue to exist in other settings of random explanatory variables. The

differences between the two approaches will be further examined and reinforced in

the simulation study. The SAS/IML (SAS Institute, 2003) and R (R Development Core

Team, 2006) programs used to perform these power and sample size calculations is pro-

vided in Appendices C and D, respectively. Users can easily identify the statements with

this self-contained exposition and it only requires a slight modification of the program to

Table 1
The Observed Values of Predictor Variable X and

Moderator Variables Z of the Pilot Study

X Z X Z X Z X Z X Z

0.11 −1.02 0.58 −0.46 0.27 0.51 0.64 0.35 0.76 0.48

0.98 0.26 −0.76 0.06 −0.18 0.15 0.78 0.70 0.18 0.47

−0.58 0.91 0.28 1.18 1.14 1.43 0.83 −0.86 −0.78 0.17

0.61 −0.17 0.08 0.74 −0.67 −1.70 1.52 0.32 0.18 0.85

0.04 2.06 1.08 −0.31 −0.15 −0.62 −0.50 0.79 −0.30 −0.02

0.60 0.56 −0.49 0.60 0.87 0.34 −0.29 −0.66 −1.04 1.30

0.14 −1.35 −1.12 −0.79 0.74 1.68 −0.69 −1.44 −0.80 −1.01

−3.21 −1.91 −0.42 −0.49 2.79 2.35 −0.47 −0.96 −0.77 −1.58
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accommodate their own specifications. Moreover, electronic copies of the programs are

available on request and can also be downloaded from the website: www.ms.nctu.edu.tw/

faculty/shieh.

Because of the prevalence of the fixed modeling setup and the close resemblance

between the two power functions Equations 2 and 4, the researcher may unknowingly

assume the ST procedure is the right tool for performing power assessment and planning

necessary sample size within the context of random regression. It is well recognized that

effect size has an important impact on statistical power performance and sample size

determination. As shown above, the effect size fXZ of ST method given in Equation 5 is a

direct function of mW* or V[XZ|(X, Z)], that is, the extra variance of the product XZ after

controlling for X and Z. In the numerical demonstration just described for sample size

planning in the detection of moderator effect, it is comprehensible that the more involved

NT method not only utilizes mW* or V[XZ|(X, Z)] in the formulation, but it also combines

other distributional aspects into one unified framework. In viewing the indispensable role

of the joint distribution of predictor and moderator along with the magnitudes of interac-

tion coefficient parameter and model random error, it is advisable that researchers should

have thorough understanding of the impact of each of these factors on statistical power

and how they work as whole in the detection of moderating effect. The generality and

accuracy of the proposed methodology for power and sample size calculations will be

demonstrated in the subsequent section.

Simulation Studies

To evaluate the performance and reinforce the key concept of the proposed approach,

further numerical investigations are performed for the detection of moderating effect in

moderated multiple regression in this section. Because the considered approaches use

large sample approximations, simulation studies are conducted to assess their adequacy

for finite sample and robustness under various parameter specifications and power levels.

For the sake of analytical tractability in derivation and primary focus in literature, the

moderated multiple regression model with bivariate normal predictor and moderator vari-

ables is considered in this numerical examination. However, it is frequently the case that

not only the distributions of the variables are not necessarily normal, often they are not

even symmetrical, especially in small samples. Therefore, the simple interaction model

with bivariate gamma predictor and moderator variables is examined as well.

Specifically, the following parameter values are fixed throughout the numerical investi-

gation: bI = 0, bX = bZ = 1 and s2 = 16: The magnitude of interaction coefficient para-

meter bXZ is chosen as 0.50, 0.75, and 1 so as to represent reasonably the range of

moderating effects that are possible in most studies. However, space limitations preclude

reporting all details; only the outcomes associated with bXZ = 1 are presented. For the joint

bivariate distribution of predictor and moderator, the variables are standardized so that the

means and variances of the predictor and moderator variables are mX = mZ = 0 and

s2
X =s2

Z = 1. Moreover, the correlation parameter r between the predictor variable and

moderator variable is set at the four levels of 0, 0.1, 0.5, and 0.9.
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With the specifications described above, the numerical study is conducted in two steps.

First, under the selected values of coefficient parameters, error, distribution configurations

of bivariate predictor and moderator distribution, the estimates of sample sizes required

for testing the moderating effect of H0: bXZ = 0 versus H1: bXZ 6¼ 0 with significance level

0.05 and power= 0.90 and 0.95 are calculated. The computed sample sizes are presented

in Tables 2 and 3 for the bivariate normal and gamma settings, respectively.

Preliminary inspection of the tables reveals the expected general relations: increase in

sample sizes with increasing power level, and with decreasing effect size for both meth-

ods. As in the case of pilot study, the sample size associated with the ST procedure is less

than that of the NT method for all cases in these tables.

In the second step, I continue the comparison by conducting simulation studies. The

sample size N calculated by the NT approach is utilized as the benchmark to recalculate

the approximate powers for both competing methods. Then, estimates of the true power

associated with given sample size and parameter configuration are then computed through

Monte Carlo simulation of 10,000 independent data sets. For each replicate, N sets of pre-

dictor and moderator values are generated from the designated bivariate normal or bivari-

ate gamma distribution. The generations of bivariate normal random variables with

mX = mZ = 0, s2
X =s2

Z = 1 and correlation r= 0, 0.1, 0.5 and 0.9 are straightforward. In

contrast, the desirable bivariate gamma random variables are standardized version of (X,

Z), where (X, Z)= (X1, Z1), (X1 +G1, Z1 +G1), (X1 +G2, Z1 +G2) and (X1 +G3,

Table 2
Calculated Sample Sizes for the Detection of Moderating Effect

With Bivariate Normal Predictor and Moderator Variables
(βXZ = 1, σ2 = 16, σ2

X =σ2
Z = 1, α= .05)

The ST Method The NT Method

r 0.0 0.1 0.5 0.9 0.0 0.1 0.5 0.9

Power

0.90 171 169 137 95 182 181 154 116

0.95 210 208 169 117 226 224 192 146

Table 3
Calculated Sample Sizes for the Detection of Moderating Effect

With Bivariate Gamma Predictor and Moderator Variables
(βXZ= 1, σ2= 16, σ2

X =σ2
Z = 1, α= .05)

The ST Method The NT Method

r 0.0 0.1 0.5 0.9 0.0 0.1 0.5 0.9

Power

0.90 174 150 119 93 203 194 165 120

0.95 214 185 147 115 255 246 211 151
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Z1 +G3) for r= 0, 0.1, 0.5, and 0.9, respectively. The random variables X1, Z1, G1, G2,

and G3 have independent gamma distributions with X1 ∼ gamma(3, 1), Z1 ∼ gamma(5, 1),

G1 ∼ gamma(0.43, 1), G2 ∼ gamma(3.94, 1), and G3 ∼ gamma(35.89, 1). These values of

predictor and moderator in turn determine the mean responses for generating N normal

outcomes with the moderated multiple regression model. Next, the test statistic tXZ is com-

puted and the simulated power is the proportion of the 10,000 replicates whose absolute

values |tXZ| exceed the critical value tN − 4, 0:025. The adequacy of the examined procedure

for power and sample size calculation is determined by the error= simulated power−
approximate power between the simulated power and approximate power computed

earlier. The simulated power, approximate power, and error are summarized in Tables 4

and 5 for the bivariate normal and gamma settings, respectively.

As can be seen from the results, the approximate powers of the NT method are almost

identical to 0.90 or 0.95, whereas the approximate power associated with the ST method

are marginally greater than 0.90 or 0.95. Moreover, the performance of the large sample

approximations improves with the power levels because large errors generally occur with

smaller power level for both ST and NT methods. However, the situation for the ST

method is much more pronounced than that of the NT approach. It appears that the ST

method yielded acceptable results with absolute errors smaller than 0.02 for some cases in

Tables 4 and 5, but absolute error are as large as 0.0442 and 0.0499 in Tables 4 and 5 for

r= 0:9 and 0.5, respectively, when the simulated power nears 0.90. In contrast, the abso-

lute errors of the NT approach are uniformly smaller than 0.02 for all the cases considered

here. The largest error is 0.0179 which is associated with the case of r= 0:5 and simulated

power nears 0.90 in Table 5. In addition, for r= 0:1, 0.5, and 0.9, the discrepancies of the

Table 4
Approximate Powers and Simulated Powers at Specified Sample

Sizes for the Detection of Moderating Effect With Bivariate Normal
Predictor and Moderator Variables (βXZ= 1, σ2= 16, σ2

X =σ2
Z = 1, α= .05)

The ST Method The NT Method

N Simulated Power Approximate Power Error Approximate Power Error

(i) r= 0 (fXZ= 0.2500)

182 0.8925 0.9184 −0.0259 0.9005 −0.0080

226 0.9469 0.9626 −0.0157 0.9506 −0.0037

(ii) r= 0.1 (fXZ= 0.2512)

181 0.8964 0.9195 −0.0231 0.9010 −0.0046

224 0.9476 0.9628 −0.0152 0.9503 −0.0027

(iii) r= 0.5 (fXZ= 0.2795)

154 0.8979 0.9314 −0.0335 0.9007 −0.0028

192 0.9470 0.9708 −0.0238 0.9505 −0.0035

(iv) r= 0.9 (fXZ= 0.3363)

116 0.9044 0.9486 −0.0442 0.9012 0.0032

146 0.9543 0.9811 −0.0268 0.9509 0.0034
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NT procedure in Table 5 for the predictor and moderator with a bivariate gamma distribu-

tion are generally larger than those in Table 4 with a bivariate normal distribution.

According to these findings, the ST method is always outperformed by the NT approach.

Although the accuracy of both approaches improve with smaller bXZ = 0:50 and 0.75,

the general pattern of results is similar to those reported herein for bXZ = 1: Overall, the

performance of the NT method appears to be reasonably good for the range of model

specifications considered here. Therefore, the accurate power formula Equation 3 can be

employed to calculate the achieved power level with available sample size so that the pos-

sible low statistical power problem for detecting moderating effect can be recognized in

advance and naturally, alternative action or analysis may be considered. In planning future

research, the procedure can be inverted to determine the minimum sample size required to

attain adequate nominal power with specified model configurations and significance level.

Thus, the difficulty in detecting moderating effect because of low statistical power can be

alleviated with appropriate calculation of sample size.

Note that the effect sizes fXZ are also presented in Tables 4 and 5. Although it is rather

obvious that effect size is an increasing function of bXZ, it appears that the effect size and

V[XZ|(X, Z)] increase with increasing |r| as well. In other words, if X and Z are highly

correlated, then the three explanatory variables X, Z, and XZ tend to have a strong linear

dependence among them. It was previously stated that the multicollinearity has an adverse

effect on the power of the test H0: bXZ = 0, see Morris, Sherman, and Mansfield (1986).

However, it was empirically shown in Dunlap and Kemery (1987) that it is not the case.

Nonetheless, the numerical results in Tables 4 and 5 reveal that if sample size and other

factors remain constant, the power is an increasing function of |r|.

Table 5
Approximate Powers and Simulated Powers at Specified Sample Sizes

for the Detection of Moderating Effect With Bivariate Gamma Predictor
and Moderator Variables (βXZ= 1, σ2= 16, σ2

X =σ2
Z = 1, α= .05)

The ST Method The NT Method

N Simulated Power Approximate Power Error Approximate Power Error

(i) r= 0 (fXZ= 0.2500)

203 0.9033 0.9397 −0.0364 0.9004 0.0029

255 0.9586 0.9762 −0.0176 0.9506 0.0080

(ii) r= 0.1 (fXZ= 0.2665)

194 0.9160 0.9585 −0.0425 0.9009 0.0151

246 0.9609 0.9862 −0.0253 0.9502 0.0107

(iii) r= 0.5 (fXZ= 0.2997)

165 0.9191 0.9690 −0.0499 0.9012 0.0179

211 0.9677 0.9912 −0.0235 0.9500 0.0177

(iv) r= 0.9 (fXZ= 0.3402)

120 0.9133 0.9587 −0.0454 0.9021 0.0112

151 0.9591 0.9859 −0.0268 0.9502 0.0089
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Conclusions

Despite the existing low statistical power problem, moderated multiple regression has

remained as one of the important research methods that are applicable to a wide range of

fields including education, management, psychology, and other social sciences. Notably,

moderation analysis has been the main focus in a variety of management subdisciplines,

including organizational behavior, human resources management, operation management,

and strategic management. From the methodological viewpoint, the lack of a full range of

accessible and accurate statistical methods is a severe dilemma and major setback to the

advance of moderation research. In addition to the considerations of methodological arti-

facts and statistical implications that have been identified and discussed, this article pur-

ports to provide feasible formulas for power calculation and sample size determination in

moderated multiple regression with continuous predictor and moderated variables. As

reported in numerous methodological investigations, the distributional property of the pre-

dictor and moderator variables is a key factor affecting power of moderated multiple

regression. The essential and distinct notions of fixed and random modeling formulations

are greatly emphasized and their discrepancies in power analysis are closely evaluated.

In particular, the suggested procedure entails the large sample theory and results in a ver-

satile formulation that possesses the flexibility in the joint distribution of predictor and

moderator variables. The primary reason of inducing such scheme and asymptotic approx-

imation is because of the lack of a proper and exact procedure that accounts for the nature

of all possible continuous joint distributions of predictor and moderator variables. The

numerical assessments suggest that the formula and algorithm for power and sample size

calculations are accurate enough for practical purposes. Specifically, the simplified ST

method gives reliable results for sufficiently large sample sizes when the predictor and

moderator variables have a joint bivariate normal distribution. Alternatively, the NT

approach is not seriously affected by mild departures from the normality assumption for

the predictor and moderator variables. However, when the predictor and moderator vari-

ables of interest are extremely long tailed or heavily skewed, they can be transformed to a

more appropriate scale before applying the proposed procedure. Consequently, researchers

are advised to comprehend fully the underlying features of predictor and moderator vari-

ables and synthesize the information into study designs.

In view of the usual approximate nature of advance research planning, it is a difficult task

to assess the robustness of the proposed approach for selected configuration of the predictor

and moderator variables, magnitude of moderating effect, and error variance. Hence, it is

good practice to consider a range of design variations to provide guidance about the

achieved power levels and required sample sizes for the study. Typical sources like pre-

viously published research, successful pilot study, and subject matter expertise can offer

plausible and reasonable planning values for the vital model characteristics. Nonetheless,

the suggested procedure will yield accurate power estimation and sample size calculation

provided that all the required information is properly specified. Hopefully, the presented

results can be utilized to improve the verification and identification of moderator effects so

that researchers can further extend theoretical models to incorporate more complex and rich

moderated relationships in future applications of moderation multiple regression.
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Appendix A
The Distribution of tXZ

It follows from the standard assumption in Equation 1 that the test statistic tXZ can be expressed as,

tXZ = b̂XZ

fŝ2Mg1=2
, ðA1Þ

where ŝ2 is the usual unbiased estimator of s2, M is the (3, 3) element of A−1, A=PN
i= 1 (Xi − �X)

(Xi − �X)T, �X= PN
i= 1 Xi=N, and Xi = (Xi, Zi, XiZi)

T is the 3× 1 row vector for values of predictor
Xi, moderator Zi, and their cross-product XiZi for i= 1, . . . , N. It is well known under the conditional
setup that tXZ has a noncentral t distribution t(N − 4, L) with N − 4 degrees of freedom and noncen-
trality parameter L, where,

L= bXZ

fs2Mg1=2
: ðA2Þ

Appendix B
The Approximate Distributions of tXZ Under

Random Regression Modeling

The moments of the explanatory vectors Xi = (Xi, Zi, XiZiÞT are defined as m=E[Xi],

S=E[(Xi − m)(Xi − m)T], C=E[(Xi − m)(Xi −m)T�(Xi − m)(Xi −m)T], E[ · ] denotes the expecta-
tion taken with respect to the joint probability density function g(Xi, Zi) of (Xi, Zi), and � repre-
sents the Kronecker product. For notational simplicity, m and S are expressed as,

m=
mX

mZ

mXZ

2
4

3
5 and �=

s2
X CðX, ZÞ CðX, XZÞ

CðX, ZÞ s2
Z CðZ, XZÞ

CðX, XZÞ CðZ, XZÞ VðXZÞ

2
4

3
5,

where s2
X, s2

Z, and V(XZ) are the variances of Xi, Zi, and cross-product XiZi, respectively, and C(X,
Z), C(X, XZ) and C(Z, XZ) denote the covariances among the random variables Xi, Zi, and XiZi. It
follows from the standard asymptotic result (Muirhead, 1982, Corollary 1.2.18) and algebraic
operation that,

ðN − 1Þ1=2½vec(S)− vecðSÞ� ∼· Np2ð0p2 ,C− vecðSÞ · vecðSÞTÞ, ðB1Þ

where S= PN
i= 1 (Xi − �X)(Xi − �X)T=(N − 1) and vec( · ) is a matrix operator that arranges the col-

umns of a matrix into one long column. According to the formulations of A and M presented in
Equation A1 for the test statistic tXZ, both A= (N − 1)S and M are random variables within the ran-
dom regression framework and therefore tXZ has a noncentral t distribution with random noncentral-
ity L. Nonetheless, it is worthwhile to note that the reciprocal of M, denoted by W (= 1/M), can be
viewed as the error sum of squares from regressing XZ on X and Z when both predictor X and
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moderator Z are continuous variables. Ultimately, the actual distributional property of tXZ depends on
the distribution of W. With the prescribed asymptotic result in Equation B1, it can be shown that,

W* ∼· NðmW* ,s2
W*Þ, ðB2Þ

where W* =W=(N − 1), mW* = 1/(cTS−1c), s2
W* = m4

W*f(cTS−1 � cTS−1)C(S−1c � S−1c)

−m−2
W*g= (N − 1), and c= (0, 0, 1)T is a 3× 1 row vector. Denote the extra variance of the product

XZ after controlling for X and Z by V[XZ|(X, Z)]. Then, it can be shown by applying the algebraic
manipulation that mW* is equivalent to V[XZ|(X, Z)] and can be written as,

mW* =VðXZÞ− ½CðX, XZ CðZ, XZÞ� s2
X CðX, ZÞ

CðX, ZÞ s2
z

� �−1
CðX, XZÞ
CðZ, XZÞ

� �
: ðB3Þ

See Equation 2 of McClelland and Judd (1993) for an alternative expression.
Accordingly, the noncentrality parameter L in Equation A2 associated with the noncentral t dis-

tribution of tXZ is expressed as L* to emphasize the stochastic property of both predictor X and
moderator Z:

L* = bXZ

ðN − 1ÞW*

s2

� �1=2

ðB4Þ

And W* approximately follows a normal distribution given in Equation B2. Therefore, the sug-
gested approximate distribution of tXZ under the random regression setting is completely specified
in the following theorem.

Theorem 1. Consider the linear regression model in Equation 1, and (Xi, Zi) are independent and
identically distributed with finite moments, i= 1, . . . , N. The tXZ statistic defined in Equation A1
has the following approximate two-stage distribution,

tXZ |W* ∼ tðN − 4, bXZfðN − 1ÞW*=s2g1=2Þ and W* ∼· NðmW*,s2
W*Þ, ðB5Þ

where mW* and s2
W* are given in Equation B2.

Note that under the null hypothesis H0: bXZ = 0, the null distribution of tXZ remains as t(N − 4)

under random settings. The values of W* involved in the noncentrality parameter of t distribution

for tXZ in Equation B5 are presumably nonnegative. In the normal approximation of W* with large

samples, the probability of negative W*, P(W* < 0), is often small enough so that the normal
approximation is nearly adequate. It was found that there is essentially no practical difference in

the adequacy for power and sample size calculations by replacing negative values of W* with 0.
For comparative purpose, consider the even stronger asymptotic result for S that S converges in

probability to S. As direct consequences of this property, W* and L* can be approximated by mW*

and l*, respectively, where,

l* = bXZ

ðN − 1ÞmW*

s2

� �1=2

ðB6Þ

Then, it leads to the alternative and simplified approximation to the distribution of tXZ summarized
in the next theorem.
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Theorem 2. Consider the linear regression model in Equation 1, and (Xi, Zi) are independent and
identically distributed with finite moments, i= 1, . . . , N. The tXZ statistic defined in Equation A1
has the following approximate distribution,

tXZ ∼· tðN − 4, l*Þ,

where l* is given above in Equation B6.

Appendix C
The SAS IML program for Power and Sample Size Calculations

PROC IML;PRINT ‘MODERATED MULTIPLE REGRESSION’;
PRINT ‘H0: BETAXZ= 0 VS H1: BETAXZ <> 0—TWO-TAIL TEST’;

*REQUIRED USER SPECIFICATIONS PORTION;
ALPHA= 0.05;POWER= 0.90;BETAXZ= 1;SIGMASQ= 16;
XZ= {
0.11 −1.02, 0.58 −0.46, 0.27 0.51, 0.64 0.35, 0.76 0.48,
0.98 0.26, −0.76 0.06,−0.18 0.15, 0.78 0.70, 0.18 0.47,
−0.58 0.91, 0.28 1.18, 1.14 1.43, 0.83 −0.86, −0.78 0.17,
0.61 −0.17, 0.08 0.74, −0.67 −1.70, 1.52 0.32, 0.18 0.85,
0.04 2.06, 1.08 −0.31, −0.15 −0.62, −0.50 0.79, −0.30 −0.02,
0.60 0.56, −0.49 0.60, 0.87 0.34, −0.29 −0.66, −1.04 1.30,
0.14 −1.35, −1.12 −0.79, 0.74 1.68, −0.69 −1.44, −0.80 −1.01,
−3.21 −1.91, −0.42 −0.49, 2.79 2.35,−0.47 −0.96, −0.77 −1.58};
*END OF REQUIRED USER SPECIFICATIONS;
XE=XZ||(XZ[,1]#XZ[,2]);
N=NROW(XE);
XC=XE-J(N, 1,1)*XE[:,];
H= J(3,3,0);HH=H@H;
DO I= 1 TO N;
H=H+XC[I,]’*XC[I,];
HH=HH+ (XC[I,]’*XC[I,])@(XC[I,]’*XC[I,]);
END;
SIGM=H/N;
PSI=HH/N;
ISIGM= INV(SIGM);
MUW= 1/ISIGM[3,3];
VW= ISIGM[3,];
VARW= (MUW##4)#((VW@VW)*PSI*(VW’@VW’)-MUW##(−2));
LFXZ=BETAXZ#SQRT(MUW/SIGMASQ);
PRINT ALPHA POWER N BETAXZ SIGMASQ;
PRINT MUW VARW LFXZ[FORMAT= 6.4];
*FOR NUMERICAL INTEGRATION;
NUMINT= 1000;
COEVEC= ({1}||REPEAT({4 2},1,NUMINT/2−1)||{4 1})’;
INT= PROBIT(0.999995);
INTERVAL= 2#INT/NUMINT;
ZVEC= ((INTERVAL#(0:NUMINT))+ (-INT))’;
WZPDF= (INTERVAL/3)#COEVEC#PDF(‘NORMAL’,ZVEC, 0,1);
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*ST APPROACH;
STPOWER= 0;M= 5;
DO WHILE(STPOWER<POWER);
M=M+ 1;
TCRIT=TINV(1-ALPHA/2,M-4);
STPOWER= 1-CDF(‘T’,TCRIT, M-4,SQRT(M)#LFXZ);
END;
NST=M;
*NT APPROACH;
NTPOWER= 0;M=MAX(NST-10,5);
DO WHILE(NTPOWER< POWER);
M=M+ 1;
TCRIT=TINV(1-ALPHA/2,M-4);
WVEC= SQRT(VARW/(M-1))#ZVEC+MUW;WVEC=WVEC#(WVEC> 0);
NTPOWER= 1-WZPDF’*CDF(‘T’,TCRIT,M-4,BETAXZ#SQRT((M-1)#WVEC/

SIGMASQ));
END;
NNT=M;
*RECALCULATE NTPOWER FOR SAMPLE SIZE NST;
M=NST;
TCRIT=TINV(1-ALPHA/2,M-4);
WVEC= SQRT(VARW/(M-1))#ZVEC+MUW;WVEC=WVEC#(WVEC> 0);
NTPOWER_NST= 1-WZPDF’*CDF(‘T’,TCRIT,M-4,BETAXZ#SQRT((M-1)#WVEC/

SIGMASQ));
DN=NNT-NST;
DNTPOWER=NTPOWER-NTPOWER_NST;
PRINT NST STPOWER[FORMAT= 6.4] NNT NTPOWER[FORMAT= 6.4];
PRINT DN NTPOWER_NST[FORMAT= 6.4] DNTPOWER[FORMAT= 6.4];
QUIT;

Appendix D
The R Program for Power and Sample Size Calculations

function () {
#REQUIRED USER SPECIFICATIONS PORTION
alpha<−0.05
power<−0.90
betaxz<−1
sigmasq<−16
xzvec<−c( 0.11, −1.02, 0.58, −0.46, 0.27, 0.51, 0.64, 0.35, 0.76, 0.48, 0.98, 0.26, −0.76,

0.06, −0.18, 0.15, 0.78, 0.70, 0.18,
0.47, −0.58, 0.91, 0.28, 1.18, 1.14, 1.43, 0.83, −0.86, −0.78, 0.17, 0.61, −0.17, 0.08, 0.74,

−0.67, −1.70, 1.52, 0.32, 0.18,
0.85, 0.04, 2.06, 1.08, −0.31, −0.15, −0.62, −0.50, 0.79, −0.30, −0.02, 0.60, 0.56, −0.49,

0.60, 0.87, 0.34, −0.29, −0.66, −1.04, 1.30, 0.14, −1.35,
−1.12, −0.79, 0.74, 1.68, −0.69, −1.44, −0.80, −1.01, −3.21, −1.91, −0.42, −0.49, 2.79,

2.35, −0.47, −0.96, −0.77, −1.58)
#END OF REQUIRED USER SPECIFICATION
xz< -matrix(xzvec, length(xzvec)/2,2,byrow=TRUE)
xe< -cbind(xz, xz[,1]*xz[,2])
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n< -nrow(xe)
cmean< -apply(xe, 2,mean)
xc< -xe-matrix(rep(cmean, 40),40,3,byrow=TRUE)
h< -matrix(rep(0,9),3,3)
hh< -h %x% h
for (i in 1:n)
{
xci< -xc[i,,drop= FALSE]
h< -h+ (t(xci)%*%(xci))
hh< -hh+ (t(xci)%*%(xci))%x%(t(xci)%*%(xci))
}
sigm< -h/n
psi< -hh/n
isigm< -solve(sigm)
muw< -1/isigm[3,3]
vw< -isigm[3,,drop= FALSE]
varw< -(muw\^4)*(((vw)%x%(vw))%*%psi%*%(t(vw)%x%t(vw))-muw\^(-2))
lfxz< -betaxz*sqrt(muw/sigmasq)
print(c(alpha, power, n,betaxz, sigmasq),digits= 4)
print(c(muw, varw, lfxz),digits= 4)
#for numerical integration
numint< -1000
coevec< -c(1,rep(c(4,2),numint/2–1),4,1)
int< -qnorm(0.999995,0,1)
interval< -2*int/numint
zvec< -interval*seq(0,numint)+ (-int)
wzpdf< -(interval/3)*coevec*dnorm(zvec, 0,1)
#st approach
stpower< -0
m< -5
while (stpower< power){
m< -m+ 1
tcrit< -qt(1-alpha/2,m-4,0)
stpower< -1-pt(tcrit, m-4,sqrt(m)*lfxz)
}
nst< -m
#nt approach
ntpower< -0
m< -max(nst-10,5)
while (ntpower< power){
m< -m+ 1
tcrit< -qt(1-alpha/2,m-4,0)
wvec< -sqrt(varw/(m-1))*zvec+muw
wvec< -wvec*(wvec>0)
ntpower< -
1-sum(wzpdf*pt(tcrit, m-4,betaxz*sqrt((m-1)*wvec/sigmasq)))
}
nnt< -m
#recalculate ntpower for sample size nst
m< -nst
tcrit< -qt(1-alpha/2,m-4,0)
wvec< -sqrt(varw/(m-1))*zvec+muw
wvec< -wvec*(wvec>0)
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ntpower_nst< - 1-sum(wzpdf*pt(tcrit, m-4,betaxz*sqrt((m-1)*wvec/sigmasq)))
dn< -nnt-nst
dntpower< -ntpower-ntpower_nst
print(c(nst, stpower, nnt, ntpower),digits= 4)
print(c(dn, ntpower_nst, dntpower),digits= 4)
}
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