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This article introduces a general quadratic approximation scheme for pricing
American options based on stochastic volatility and double jump processes. This
quadratic approximation scheme is a generalization of the Barone-Adesi and
Whaley approach and nests several option models. Numerical results show that
this quadratic approximation scheme is efficient and useful in pricing American
options. © 2009 Wiley Periodicals, Inc. Jrl Fut Mark 29:478–493, 2009
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INTRODUCTION

The goal of this research is to provide an efficient analytic approximation for
pricing American options in a general model that allows for stochastic volatility,
return jumps, and volatility jumps. The fact that asset returns exhibit both sto-
chastic volatility and jumps has been widely documented. Although some
closed-form solutions for European options based on these diffusion processes
have been derived in recent years, no known analytic solution for American
options exists. Consequently, simulative and numerical approaches are used to
calculate American option values.

Barone-Adesi and Whaley (1987) originally applied the quadratic approxi-
mation method to price American options using the decomposition technique.
Bates (1991) first extended this method by introducing jumps into the process
of the underlying asset return. Ju and Zhong (1999) improved the accuracy of
the original method for options with intermediate maturities by adding a cor-
rection term onto the approximation. Chang, Kang, Kim, and Kim (2007)
introduced an additional parameter into the original method and succeeded in
extending its application from basic options to barrier options and lookback
options. Nevertheless, these methods do not continuously evolve in conjunc-
tion with the rapid growth of new option pricing models in the stochastic
volatility framework. Additional empirical studies provide evidence that an
option model allowing for stochastic volatility and double jumps dramatically
reduces option-pricing errors (see Bakshi, Cao, & Chen, 1997; Broadie,
Chernov, & Johannes, 2007; and others). These studies illustrate the impor-
tance of extending the quadratic approximation method for American options
based on these processes.

Stochastic volatility models with double jumps proposed by Duffie, Pan,
and Singleton (2000) were used as examples to highlight the generalization of
the authors’ quadratic approximation scheme, followed by a comparison with the
least-squares simulation approach proposed by Longstaff and Schwartz (2001).
The results of the authors’ comparison show that the quadratic approximation
scheme is useful and efficient in pricing American options based on these dif-
fusion processes. To illustrate its generality, this approximation scheme is also
applied to other existing models.

The remainder of this article is organized as follows: the second section
briefly describes the stochastic volatility model with correlated double jumps
and the authors’ quadratic approximation scheme. The third section gives ana-
lytic approximation formulae for other jump models. The fourth section com-
pares quadratic approximations with the least-squares simulation approach.
Conclusions are presented in the fifth section.
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ANALYTIC AMERICAN OPTION APPROXIMATIONS
FOR THE STOCHASTIC VOLATILITY MODEL WITH
DOUBLE JUMPS

The primary expression of the stochastic volatility model with double jumps,
adopted from Duffie et al. (2000) was reproduced to generate a self-contained
treatment. Under the risk-neutral measure, the underlying asset price, S(t), is
posited to follow a geometric jump diffusion with the instantaneous conditional
variance, Y(t), following a mean-reverting square root jump process:

(1)

(2)

where r is the risk-free interest rate and d is the dividend yield. x(t) represents a
percentage jump in the stock price and follows a normal distribution,

, where y(t) is a level jump in the volatility and follows an expo-
nential distribution, Exponential(uy) . qS(t) and qY(t) are two correlated Poisson
counters with intensity lx,y

. r denotes the instantaneous correlation coefficient
between the stock price return process and its conditional variance process. To
retain the Martingale property, the compensator, �

, is subtracted from the stock price
process, such that the drift of the stock return rate is equal to r � d.

The partial integro-differential equation for a contingent claim price, P, on
the underlying asset is given by

. (3)

Compared with European option values, American option values can be
exercised at any time before maturity. The flexibility of the right-to-exercise
options determines the “early-exercise premium” markup of American prices
over European option prices. MacMillan (1987), Barone-Adesi and Whaley
(1987), and Bates (1991) decomposed the value of an American option into its
European counterpart and an early-exercise premium to obtain an approxima-
tion formula. The price of a basic American call option, CA(S, Y, T; K), with a
strike price, K, and a maturity date, T, can be represented as

�  lx,y�
�

0
�

�

��

[P(Sex, Y � y) � P(S, Y)]£(x, y) dxdy
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lx,y(exp[m0 � 0.5s2
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EQ[(exp[x(t)]�1)dqS(t)]

N(m0 � mx,yy, s
2
x,y)

dY(t) � (Y � kYY(t) )dt � sY2Y(t)dWY(t) � y(t)dqY(t), t � 0

dS(t)
S(t)

� (r � d)dt � 2Y(t)dWS(t) � (ex(t) � 1)dqS(t) � EQ[(ex(t) � 1)dqS(t)]
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(4)

where CE(S, Y, T; K) is the price of the corresponding European call option and
�(S, Y, T; K) is the value of the corresponding early-exercise premium. Given
the linearity of Equation (4), the early-exercise premium must satisfy Equation
(3) because American option values, as well as European option values, satisfy
the aforementioned partial differential equation in the nonstopping region
under the risk-neutral measure.

Given an analytic European option solution1 (see Appendix A), the only
unsolved problem in deriving the pricing formula of an American option is a
good approximation for the early-exercise premium. Because options are homo-
geneous in S and K, the premium is also homogeneous in S and K: 

�(S, Y, T; K) � K�(S/K, Y, T; 1). The Barone-Adesi and Whaley method
(1987) was used to define the premium as

(5)

where z � S/K and H(T) is an arbitrary function of time-to-maturity, T. The
partial derivatives of � are �S � HFz, �SS � HFzz /K, �Y � KHFY, �YY � KHFYY, �SY �

HFzY, and �T � KFHT � KHFHHT. Equation (6) is generated by substituting
Equation (5) into Equation (3)

. (6)

Barone-Adesi and Whaley (1987) chose H(T) as 1 � exp[�rT] for simplic-
ity. Chang et al. (2007) further adjusted H(T) to equal 1 � exp[�arT] for con-
trolling a to reduce barrier option pricing errors of the quadratic approximation.
After substituting H(T) � 1 � exp[�arT] into Equation (6), Equation (7)
resulted:

. (7)� rKHF � lx,yKH�
�

0
�

�

��

[F(zex,Y � y) � F(z,y)]£(x,y)dxdy

� ar(1 � H)KF � ar(1 � H)KHFH� KHFzYrsYzY � KHFY(Y � kYY)

 0 �
1
2

 KHFzz 
z2Y � KHFz((r � d) � lx,yE[ex � 1])z �

1
2

 KHFYY 
s2

YY

� rKHF � lx,yKH�
�

0
�

�

��

[F(zex, Y � y) � F(z, Y)]£(x, y)dxdy

 � KHFzYrsYzY � KHFY(Y � kYY) � HT(KF � KHFH)

 0 �
1
2

 KHFzzz
2Y � KHFz((r � d) � lx,yE[ex � 1])z �

1
2

 KHFYY 
s2

YY

�(S, Y, T; K) � KH(T)F(S�K, Y, H) � KH(T)F(z, Y, H)

CA(S, Y, T; K) � CE(S, Y, T; K) � �(S, Y, T; K)

1Guo and Hung (2007) suggested a simple way to avoid the branch cut difficulties arising from the choice of
the branch of the complex logarithm in the implementation of the European option solution.
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As described in Barone-Adesi and Whaley (1987), Bates (1991), and
Chang et al. (2007), ar[1 � H]KHFH is negligible. Substituting F(z, Y) �

into Equation (7) and separating variables A1

and A2, yields

(8)

After further separating Equation (8) into two equations for Y-terms and
non-Y-terms, respectively, Equations (9) and (10) are generated.

(9)

and

. (10)

For given values of the parameters r, d, , kY, sY, r, l
x,y, m0, m x,y, sx,y, uy,

and a, accurate values of f1, f2, B1, and B2 can be rapidly determined from
Equations (9) and (10) using Newton’s method. Initial values are obtained
from Equation (10) given by replacing exp[(�(B � fmx,y)uy)] � 1 � Buy �

fmx,yuy and expanding in a first-order
Taylor expansion, ignoring powers of f and B higher than 2. The result of the
approximation of Equation (10) is

(11)

where h0 � ar (1 � H)/H � r and 
. Equation (11) indicates that for� lx,y(exp[m0 � s2

x,y�2]�(1 � uymx,y) � 1)
h1 � (r � d) � lx,y (m0 � m x,yuy)

B � (h0 � h1f)�(Y � lx,yuy)

exp[(m0 � mx,yuy)f � s2
x,yf

2�2 � uyB]

Y

 � lx,yaexp[ 12 f2s2
x,y � m0f]

1 � Buy � fmx,yuy
� 1b

0 � BY � aara 1
H

� 1b � rb � a(r � d) � lx,yaexp[m0 � 1
2s

2
x,y]

1 � uymx,y
� 1bbf

0 �
1
2

 f2 � aBrsY �
1
2
bf �

1
2

 B2s2
Y � BkY

� lx,y aexp[1
2f

2s2
x,y � m0f]

1 � Buy � fmx,yuy
� 1b.

�
1
2

B2s2
Y 
Y � fBrsYY � B(Y � kYY) � ara 1

H
� 1b � r

0 �
1
2

 f(f � 1)Y � fa(r � d) � lx,yaexp[m0 � 1
2s

2
x,y]

1 � uymx,y
� 1bb

A1exp[B1Y]zf1 � A2exp[B2Y]zf2



A Generalization of the Barone-Adesi and Whaley Approach 483

Journal of Futures Markets DOI: 10.1002/fut

jumps with plausible amplitudes (�m0� , �mx,y � , sx,y, and uy substantially less than 1),
a one-to-one relationship exists between f and B. Substituting Equation (11)
into Equation (9) generates

. (12)

Parameters that satisfy the relationship guaran-
tee that one root (f1) is negative for puts, whereas the other (f2) is positive for
calls. Because the relationships f1 � 0 and A1 � 0 imply that the limSS0C

A

(S, Y; T, K) � q, therefore, it follows that A1 � 0. Once values for f2 and B2

are obtained, A2 and (the critical early-exercise price for calls) can be solved
from the value-match condition and the high contact condition:

(13)

. (14)

Equations (13) and (14) imply that is the implicit solution to

(15)

and A2 can be determined by

(16)

The resulting formula for a basic American call option is

. (17)

Although the American puts must satisfy the same partial differential
equation, the boundary conditions are somewhat different compared with
those for calls. The boundary conditions for puts are

(18)
and

(19)PA
S (S, Y, T; K) � �1

PA(S, Y, T; K) � K � S

for S � S or S � K for S � S

CA(S, Y, T; K) � CE(S, Y, T; K) � (S � K � CE(S, Y, T; K) )(S�S)f2

A2 �
S � K � CE(S, Y, T; K)

K(1 � exp[�arT])exp[B2Y]a S
K
bf2

S �
f2(S � K � CE(S, Y, T; K) )

1 � CE
z (S, Y, T; K)

S

�S(S, Y, T; K) � 1 � CE
S(S, Y, T; K)

�(S, Y, T; K) � S � K � CE(S, Y, T; K) and

S

h0 � 2kY(Y � lx,yuy)�s2
Y

 � (s2
Yh

2
0 � 2kY(Y � lx,yuy)h0)

 � (2rsY(Y � lx,yuy)h0 � 2kY(Y � lx,yuy)h1 � (Y � lx,yuy)
2 � 2s2

Yh0h1)f

 0 � ((Y � lx,yuy)
2 � s2

Yh
2
1 � 2rsY(Y � lx,yuy)h1)f2
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where S is the critical early-exercise price. The positive root (f2) is precluded
for the puts because it implies that the limSSqPA(S, Y; T, K) �q. Consequently,
A2 � 0 and therefore,

(20)

where

. (21)

Note that, after turning off the specification of stochastic volatility and
volatility jumps ( , r� 0, sY � 0, mx,y � 0, and uy � 0), the authors’ gen-
eral solution reduces to that of Bates (1991). Table I demonstrates that their
results are consistent with the results in this case. Data in Table I for Bates and
for the finite difference method  are taken from Table II in Bates (1991).

kYY � Y

S �
f1(K � S � PE(S, Y, T; K))

�1 � PE
S(S, Y, T; K)

for S 	 S or K � S for S 
 (S)

PA(S, Y, T; K) � PE(S, Y, T; K) � (K � S � PE(S,Y, T; K) )(S�S)f1

TABLE I

American Option Values Under Stochastic Volatility When sYS 0

K sY � 0.5 sY � 0.25 sY � 0.1 sY � 0.01 Bates FD

P 220 0.223 0.209 0.196 0.19 0.19 0.19
(0.2196) (0.2058) (0.1923) (0.1866) (0.19) (0.19)

235 1.612 1.621 1.628 1.631 1.63 1.63
(1.6007) (1.6091) (1.6159) (1.6186) (1.62) (1.62)

250 6.773 6.807 6.839 6.852 6.85 6.82
(6.7330) (6.7664) (6.798) (6.8109) (6.81) (6.81)

265 16.918 16.923 16.925 16.926 16.91 16.90
(16.7916) (16.7942) (16.7949) (16.7949) (16.79) (16.79)

280 30.223 30.217 30.210 30.208 30.19 30.21
(29.8443) (29.8325) (29.821) (29.8162) (29.82) (29.82)

C 220 30.014 30.011 30.009 30.008 30.01 30.00
(29.4789) (29.4651) (29.4516) (29.4459) (29.45) (29.45)  

235 16.398 16.410 16.420 16.425 16.42 16.41
(16.2304) (16.2387) (16.2456) (16.2483) (16.25) (16.25)  

250 6.789 6.824 6.857 6.870 6.86 6.84
(6.733) (6.7664) (6.798) (6.8109) (6.81) (6.81)

265 2.182 2.185 2.186 2.187 2.18 2.18
(2.162) (2.1645) (2.1653) (2.1653) (2.17) (2.17)

280 0.593 0.581 0.570 0.565 0.56 0.56
(0.585) (0.5732) (0.5617) (0.5569) (0.56) (0.56)

Note. S � 250, T � 0.25, r � 0.1, d � 0.1, Y � 0.01, lx,y � 10, m0 � 0.01005, sx,y � 0.03, r � 0, mx,y � 0 uy � 0, kYY �
¯Ȳ � 0.24sY, and a � 1. Puts (P) and Calls (C), the Bates’ approximation at sY � 0 (Bates), and the finite difference
method (FD) are abbreviated accordingly. European option values are given in parentheses.
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ANALYTIC APPROXIMATION FORMULAE FOR
OTHER JUMP MODELS

The quadratic approximation scheme can be applied to the stochastic volatility
model with other jump types, such as independent return jumps and volatil-
ity jumps. The partial integro-differential equation for a contingent claim price,
P, on the underlying asset is given by

(22)

where x is a return-jump amplitude, lx is the arrival rate of return jumps, y is a
volatility-jump amplitude, and ly is the arrival rate of volatility jumps.

It is assumed that x follows a normal distribution, ,
and y follows an exponential distribution, Exponential(uy). Equation (22)
induces the following differential equation:

N(log(1 � mx) � 1
2s

2
x,s

2
x)

 � lx�
�

��

[P(Sex) � P(S)]£(x)dx � ly�
�

0

[P(Y � y) � P(Y)]£(y)dy

 � PS((r � d) � lEQ[ex � 1])S � PY(Y � kYY) � PT � rP

 0 �
1
2

 PSSS
2Y �

1
2

 PYY 
s2

YY � PSY 
rsY 

SY

TABLE II

Comparisons of American Options: Correlated Double Jumps

S European Option Simulated American (s.e.) Approx Diff

P 60 39.501 40.006 0.026 40.000 0.005 
70 29.936 30.173 0.038 30.138 0.035 
80 20.948 21.067 0.034 21.033 0.034 
90 13.302 13.365 0.044 13.341 0.024 

100 7.786 7.843 0.048 7.805 0.038 
110 4.417 4.463 0.049 4.428 0.036 
120 2.546 2.575 0.047 2.552 0.023 

C 60 0.097 0.106 0.011 0.097 0.009 
70 0.382 0.423 0.028 0.383 0.040 
80 1.246 1.287 0.033 1.247 0.040 
90 3.451 3.517 0.053 3.454 0.062 

100 7.786 7.858 0.079 7.794 0.064 
110 14.268 14.351 0.069 14.286 0.064 
120 22.249 22.362 0.051 22.288 0.073 

Note. K � 100, T � 0.25, r � 0.06, d � 0.06, Ȳ̄ � 0.49, Y � 0.0968, r � �0.1, lx,y � 1.64, m0 � �0.03, mx,y � �7.87,
sx,y � 0.22, uy � 0.0036, sY � 0.61, kY � 5.06, and a � 1.
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(23)

Further separating Equation (23) into two equations for Y-terms and non-
Y-terms, respectively, yields

(24)

and

(25)

Similarly, accurate values of f1, f2, B1, and B2 can be rapidly determined
from Equations (24) and (25) using Newton’s method. Initial values are
obtained from Equation (25) given by replacing 1/(1 � uyB) � 1 � uyB and
expanding in a first-order Taylor expan-
sion, ignoring powers of f higher than 2. The approximation of Equation (25)
results in Equation (26)

(26)

where h0 � ar(1 � H)/H � r and .
Substituting Equation (26) into Equation (24) yields

. (27)

Parameters that satisfy the relationship guarantee
that one root (f1) is negative for puts, whereas the other (f2) is positive for
calls. The successive derivation is similar to those described for Equations
(13)–(21). The characteristic function of this model is also provided in Appendix A.

h0 � 2kY(Y � lyuy)�s2
Y

 � (s2
Yh

2
0 � 2kY(Y � lyuy)h0)

 � (2rsY(Y � lyuy)h0 � 2kY(Y � lyuy)h*1 � (Y � lyuy)
2 � 2s2

Yh0h*1)f

 0 � ((Y � lyuy)
2 � s2

Y(h*1)2 � 2rsY(Y � lyuy)h*1)f2

h*1 � (r � d) � lxmx � lx(log[1 � mx] � 1
2s

2
x

B � (h0 � h*1f)�(Y � lyuy)

exp[flog[1 � mx] � s2
xf(f � 1)�2]

� ly a 1
1 � uyB

� 1b.
 � lx aexp cflog[1 � mx] �

1
2

 s2
xf(f � 1) d � 1b

0 � BY � aara 1
H

� 1b � rb � ((r � d) � lxmx)f

0 �
1
2

 f(f � 1) �
1
2

 B2s2
Y � fBrsY � BkY

� ly a 1
1 � uyB

� 1b.
�

1
2

 s2
xf(f � 1) d � 1b � ar a 1

H
� 1b � r � lx aexp cflog[1 � mx]

 0 �
1
2

 f(f � 1)Y � f((r � d) � lxmx) �
1
2

 B2s2
YY � fBrsYY � B(Y � kYY)
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NUMERICAL RESULTS AND COMPARISONS

Longstaff and Schwartz (2001) proposed a simple least-squares method (LSM)
to value American options by simulation. Table II gives a comparison of the
LSM and the quadratic approximation proposed in this research for the sto-
chastic volatility model with correlated double jumps. The parameters reported
in Bakshi and Cao (2003) are used for this computation. The simulation is
based on 20,000 paths for the stock-price process and the option is exercisable
20 times before maturity. Puts (P) and Calls (C) are abbreviated as accordingly.
The LSM proposed by Longstaff and Schwartz (2001), the quadratic approxi-
mation, and their difference, are represented by Simulated American, Approx,
and Diff, respectively. The standard errors of the simulation estimates (s.e.) are
given in parentheses. As shown, the differences between the LSM and the
quadratic approximation (Approx) are typically small.

Table III gives a comparison of the LSM and the quadratic approximation
for the stochastic volatility model with independent double jumps using param-
eters presented in Bakshi and Cao (2003). The differences between the LSM
and the quadratic approximation presented in this research are also typically
small. By turning off the specification of volatility jumps (ly � 0), the approxi-
mation formula reduces to the solution of the stochastic volatility model with
return jumps empirically examined in Bakshi et al. (1997) and Bates (1996). As
shown in Table IV, the differences between the LSM and the quadratic approx-
imation are small. Table V exhibits that the differences between the LSM and

TABLE III

Comparisons of American Options: Independent Double Jumps

S European Option Simulated American (s.e.) Approx Diff

P 60 39.423 39.999 0.013 40.000 �0.001 
70 29.749 30.065 0.028 30.090 �0.025 
80 20.747 20.899 0.040 20.950 �0.050 
90 13.261 13.328 0.046 13.389 �0.060 

100 7.843 7.908 0.070 7.927 �0.019 
110 4.381 4.426 0.047 4.439 �0.013 
120 2.361 2.396 0.035 2.403 �0.007 

C 60 0.019 0.020 0.001 0.019 0.001 
70 0.195 0.198 0.005 0.197 0.001 
80 1.045 1.049 0.009 1.049 0.000 
90 3.410 3.425 0.018 3.419 0.006 

100 7.843 7.877 0.019 7.863 0.014 
110 14.232 14.287 0.039 14.274 0.013 
120 22.064 22.171 0.027 22.145 0.026 

Note. K � 100, T � 0.25, r � 0.06, d � 0.06, Ȳ̄ � 0.49, Y � 0.1623, r � �0.31, lx � 0.87, mx � �0.014, sx � 0.04, 
ly � 2.43, uy � 0.0036, sY � 0.54, kY � 3.02, and a � 1.
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TABLE IV

Comparisons of American Options: Stochastic Volatility With Jump in Return

S European Option Simulated American (s.e.) Approx Diff

P 60 39.556 39.998 0.030 40.000 �0.002 
70 30.156 30.400 0.046 30.309 0.091 
80 21.564 21.636 0.084 21.623 0.013 
90 14.436 14.505 0.044 14.461 0.043 

100 9.181 9.247 0.061 9.193 0.054 
110 5.686 5.722 0.048 5.692 0.030 
120 3.505 3.519 0.046 3.508 0.011 

C 60 0.151 0.166 0.009 0.152 0.014 
70 0.603 0.628 0.027 0.605 0.024 
80 1.862 1.893 0.038 1.866 0.027 
90 4.585 4.660 0.082 4.594 0.066 

100 9.181 9.206 0.109 9.200 0.006 
110 15.537 15.611 0.063 15.572 0.039 
120 23.207 23.350 0.079 23.271 0.079 

Note. K � 100, T � 0.25, r � 0.06, d � 0.06, Ȳ̄ � 0.49, Y � 0.125, r� �0.16, lx � 3.05, mx � �0.03, sx � 0.19, ly � 0,
uy � 0, sY � 0.41, kY � 3.92, and a � 1.
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FIGURE 1
The choice of a in reducing pricing errors for calls. Note: K � 100, T � 0.25, r � 0.06, 

d � 0.06, , Y � 0.1623 , r � �0.31, lx � 0.87, mx � �0.014, sx � 0.04, ly � 2.43, 
uy � 0.0036, sY � 0.54, and kY � 3.02. S60, S80, S100, and S120 denote cases for which 

S � 60, S � 80, S � 100, and S � 120.

Y � 0.49
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FIGURE 2
The choice of a in reducing pricing errors for puts. Note: K � 100, T � 0.25, r � 0.06, 

d � 0.06, , Y � 0.1623, r � �0.31, lx � 0.87, mx � �0.014, sx � 0.04, ly � 2.43, 
uy � 0.0036, sY � 0.54, and kY � 3.02. S60, S80, S100, and S120 denote cases for which 

S � 60, S � 80, S � 100, and S � 120.

Y � 0.49

TABLE V

Comparisons of American Options: Stochastic Volatility With Jump in Volatility

S European Option Simulated American (s.e.) Approx Diff

P 60 39.445 40.012 0.032 40.000 0.012 
70 29.865 30.188 0.054 30.194 �0.006 
80 21.066 21.245 0.053 21.273 �0.028 
90 13.783 13.860 0.068 13.920 �0.061

100 8.439 8.488 0.063 8.534 �0.046 
110 4.915 4.964 0.040 4.983 �0.019 
120 2.770 2.778 0.044 2.821 �0.043 

C 60 0.040 0.046 0.006 0.041 0.005 
70 0.311 0.325 0.021 0.314 0.011 
80 1.363 1.402 0.031 1.369 0.033 
90 3.932 3.983 0.053 3.945 0.038 

100 8.439 8.498 0.056 8.466 0.032 
110 14.766 14.882 0.067 14.817 0.064 
120 22.472 22.652 0.104 22.564 0.088 

Note. K � 100, T � 0.25, r � 0.06, d � 0.06, Ȳ̄ � 0.49, Y � 0.189922, r � �0.26, ly � 0, mx � 0, sx � 0, ly � 1.36, 
uy � 0.0016, sY � 0.53, kY � 2.58, and a � 1.



the authors’ approximation for the stochastic volatility model with volatility
jumps (lx � 0) are small. These computations are performed with the parame-
ters referenced from Bakshi and Cao (2003).

Figures 1 and 2 illustrate that the choice of a affects the pricing errors of
the quadratic approximation for the stochastic volatility model with independent
double jumps. Although the optimal choice of a, between 50 and 60, minimizes
pricing errors for calls, a corresponding choice for puts in this case cannot be
determined. Therefore, the approach of Barone-Adesi and Whaley (1987)  is
followed and a value of a � 1 is selected for simplicity in these cases because
the pricing errors are small and often well within the market bid–ask spread.

CONCLUSIONS

In this article,  the application of a quadratic approximation method is
described to obtain efficient analytic formulae for American options on
processes permitting stochastic volatility and double jumps to illustrate its gen-
erality. To the best of one’s knowledge, the literature suggests no approximation
formulae for American option values based on these processes. This quadratic
approximation scheme is a generalization of the Barone-Adesi and Whaley
approach and nests several option models.

The constant volatility model is the first special case. The solution, with
parameters specified as sY � 0, , ly � 0, and lx � 0, reduces to that of
Barone and Whaley in 1987. Bates’ constant volatility model with return jumps
presented in 1991 is the second special case (sY � 0, , ly � 0, and lx

� 0). The third special case is Heston’s (1993) stochastic volatility model with-
out jumps (lx � 0 and ly � 0) proposed in 1993. The stochastic volatility model,
with return jumps, empirically examined in Bakshi et al. (1997) and Bates (1996)
(ly � 0), is the fourth special case. The fifth special case is the stochastic volatil-
ity model with volatility jumps (lx � 0) proposed by Duffie et al.(2000).
Moreover, the stochastic volatility model with correlated double jumps is also
included in this scheme.

Comparisons with the least-squares approach show that the quadratic
approximation scheme is very useful and efficient in pricing American options
with stochastic volatility and double jumps. It is anticipated that the scheme
can be further applied to American exotic options in the future.

kYY � Y

kYY � Y
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APPENDIX A

Stochastic Volatility Model With 
Correlated Double Jumps

The present value of a basic European call option can be formulated as
CE(S, Y, T; K) � EQ[e�rT max{S(T) � K, 0}] and is given by

(A1)

where J(T; f) is the characteristic function of the state density. The character-
istic function is given by

(A2)

where A(T; f) and B(T; f) are

(A3)

(A4)

(A5)e � 2(ifsYr � kY)2 � if(if � 1)s2
Y

B(T; f) �
if(if � 1)(1 � exp[�eT])

2e � (e � ifsYr � kY)(1 � exp[eT])

 � 
2lx,yuy if(if � 1)expaifm0 �

1
2
f2s2

x,yb
pq

 log ap � qe�  eT

p � q
b

 � 
lx,y(2e � b)exp aifm0 �

1
2

 f2s2
x,ybT

p

 � iflx,y° exp am0 �
1
2

 s2
x,yb

1 � uymx,y
� 1¢T � lx,y T

 � 
Y
s2

Y
c(e � ifsYr � kY)T � 2log c1 �

(e � ifsYr � kY)(1 � exp[�eT])

2e
d d

 A(T; f) � (if(r � d) � r)T

J(T; f) � exp[A(T; f) � B(T; f)Y]Sif

 � K a1
2

 J(T; 0) �
1
p �

�

0

Im[J(T; � n)exp[in log[K]]]
n

 dn

 CE(S, Y, T; K) �
1
2

 J(T; � i) �
1
p �

�

0

Im[J(T; � i � n)exp[inlog[K]]]
n

 dn
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(A6)

(A7)

. (A8)

The proof is published in Duffie et al. (2000). Given the solution for
European calls, the formula for puts, PE (S, Y, T; K), can be obtained by the
put-to-call conversion equation (Grabbe, 1983):

. (A9)

Stochastic Volatility Model With Independent 
Double Jumps

The characteristic function of the state density has the same functional form as
in Equation (A2). However, the component function A(T; f) is somewhat dif-
ferent than Equation (A3).

(A10)

. (A11)
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