
Researchers are often interested in determining whether 
the direction or strength of the relation between a predic-
tor variable and a response variable varies with the value 
of a third or moderator variable. The existence of moderat-
ing effects implies that the predictor has a fundamentally 
distinct impact on the response across levels of the mod-
erator. The formulation of differential prediction behavior 
occurs in diverse research settings such as gender studies. 
Essentially, the moderated relationships can be conceptu-
alized and analyzed in terms of interaction effects between 
the predictor and moderator variables. It is consensually 
recognized that moderated multiple regression (MMR) 
has become the major technique for testing hypotheses 
about moderating effects of categorical variables in psy-
chology, management, education, and related disciplines; 
see Aguinis (2004) for general and illuminating exposi-
tions. When the null hypothesis of no moderating effect is 
rejected, it indicates that the predictor–response relation-
ship is stronger for one moderator-based group than for 
another. Neglect of an interaction effect or failure to detect 
a moderating effect generally leads to prediction bias in 
favor of subjects in some groups and against members of 
the other groups.

The procedure for detecting the effects of categorical 
moderator variables is methodologically identical to that 
for testing the equality of regression slope coefficients in 
two or more regression lines. Accordingly, the test can be 
conducted with the ordinary least square (OLS) partial 
F test in traditional MMR analysis. However, numerous 
studies have shown that MMR may often yield erroneous 
conclusions; in particular, many theory-based hypotheses 
of moderated phenomena are frequently not supported. In 
response to the failures to detect sound hypothesized mod-
erating effects, several researchers have investigated the 
accuracy of MMR to evaluate moderating effects under 
various conditions. For example, Aguinis and Stone-
Romero (1997) and Stone-Romero, Alliger, and Aguinis 
(1994) provided thorough treatments of the methodologi-
cal artifacts and statistical implications associated with 
the effects of dichotomous moderators. More specifi-
cally, considerable attention has been devoted to raising 
awareness of the often violated assumption of homoge-
neous error variance when assessing moderating effects 
of categorical variables; see Aguinis, Petersen, and Pierce 
(1999) and Aguinis and Pierce (1998) for comprehensive 
descriptions and excellent reviews. It should be noted that 
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F statistics for testing categorical moderator hypotheses 
when the assumption on homogeneity of within-group 
error variance is not tenable. Although programs for 
computing A, J, and F * are available in Aguinis et al. 
(1999) and DeShon and Alexander (1996), it was pointed 
out in Overton (2001) that these test procedures do not 
support follow-up analyses. Accordingly, Overton pro-
posed a weighted least squares (WLS) approach for the 
K 5 2 groups that maintains MMR within the familiar 
multiple regression framework. Moreover, it was dem-
onstrated in Overton that the WLS Fω test is not only 
accurate, but can also be easily executed using the stan-
dard procedures of the SAS statistical package. There-
fore, one advantage of the WLS-based method over the 
existing approaches is that the corresponding follow-up 
analysis of moderating effects can be readily performed 
using the embedded features of SAS or other popular 
software systems. Consequently, there appears to be a 
lack of consensus in the literature on which method is 
most appropriate for detecting the effects of a dichoto-
mous moderator variable in MMR under heterogeneous 
error variance.

Although the notion of the WLS procedure and its cor-
responding computing aspect are thoroughly presented in 
Overton (2001), no explicit analytical form of the test sta-
tistics was available. Even though Overton noted that the 
WLS-based MMR and the OLS-based MMR yield iden-
tical regression coefficient estimators but differ in their 
standard errors for the coefficient estimators, no further 
detailed expressions were given. It is of both methodologi-
cal importance and practical interest to obtain the exact 
formulations of the coefficient estimators, associated es-
timated variance, and resulting test statistic in the context 
of the WLS principle. To our knowledge, no research to 
date has examined the theoretical issue of WLS-based 
procedures in greater detail. On the other hand, the hy-
pothesis testing procedure of F-type statistics for assess-
ing the moderating effects of a dichotomous variable is 
nondirectional in nature. Depending on the purpose of 
the study, a particular one-sided test might be preferable. 
Hence, it is more flexible and informative to conduct the 
test with a t statistic, since it can be used for one-sided 
alternatives, whereas a partial F test cannot. Furthermore, 
a confidence interval may be more useful for interpreting 
the magnitude of the moderating effect. As in many appli-
cations, a t statistic can be naturally adopted to construct 
a confidence interval. However, this is apparently not the 
case for an F test.

Since the detection of slope differences between two 
regression lines or interactions between a dichotomous 
moderator and a continuous predictor represents the vast 
majority of MMR research, this article attempts to derive 
the analytical results for the WLS analysis and the related 
criteria in a unified and relatively transparent way. The 
general formulations of the aforementioned techniques 
for comparing the equality of regression slopes of two and 
more groups are appealing and yet may not be necessary 
and advantageous for the current focus on the problem 
of the two-group situation. As discussed earlier, the non-
squared form of a partial F statistic or a partial t expres-

the 12-year review of Aguinis et al. showed that the viola-
tion of homogeneity assumption is approximately 40% to 
60% of the MMR tests reported in three prestigious jour-
nals with rigorous methodological standards: Academy 
of Management Journal, Journal of Applied Psychology, 
and Personnel Psychology. Hence, they suggested that the 
violation situation is at least as common for tests reported 
in other journals in organizational science.

Naturally, the accuracy of the OLS-based F test de-
pends on the strong assumption of homogeneous within-
group error variance. Several empirical studies have been 
conducted to ascertain the effects of heterogeneous error 
variance on the performance of the F test. For detailed 
discussions, see Alexander and DeShon (1994), DeShon 
and Alexander (1994, 1996), Dretzke, Levin, and Serlin 
(1982), and Overton (2001). These Monte Carlo simula-
tions concluded that the Type I error rate and power of the 
regular MMR F test may be substantially affected when 
group sample sizes are equal, and severely distorted when 
group sample sizes are unequal. Thus, researchers may 
commit a Type I error or a Type II error, depending on 
the specific sample characteristics and postulated model 
formulations. Consequently, the study may discover a 
fake interaction effect (Type I error) or mistakenly dis-
miss an important moderator variable (Type II error). In 
either case, the result impedes theoretical development 
and scientific advancement of moderation research. Ap-
parently, the regular F test is not a proper procedure that 
accounts for the nature of heterogeneity of within-group 
error variance, and continual efforts have explored alter-
native methods when testing hypotheses about categorical 
moderators. The complexity of heterogeneity error vari-
ance incurs numerous investigations, which offer various 
approximations and computing algorithms for solving the 
problem.

Since the problem of heterogeneity of error variance 
in testing for equality of regression slopes is statistically 
equivalent to the problem of variance heterogeneity in 
ANOVA, the available tests for examining mean equality 
under variance heterogeneity in ANOVA can be applied to 
the detection of categorical moderating effects in MMR. 
Notably, the methods of Alexander and Govern (1994), 
James (1951), and Welch (1951) for testing the equality 
of K ($2) independent means under heterogeneity of 
variance have been adapted to the tests for the equality 
of K independent regression slopes under heterogeneous 
error variance in Alexander and DeShon (1994), DeShon 
and Alexander (1994, 1996), and Dretzke et al. (1982). 
The exact formulations and test procedures of the three 
approximations A, J, and F * developed from Alexander 
and Govern (1994), James (1951), and Welch (1951), 
respectively, can be found in DeShon and Alexander 
(1996). On the basis of the numerical examinations for 
two-group situation in the abovementioned studies, the 
performance of the three methods A, J, and F * was es-
sentially equivalent for K 5 2, and choosing the best 
approximation is difficult. Nonetheless, the A approach 
was shown to possess a number of desirable character-
istics and was recommended by DeShon and Alexander 
(1996) as the general procedure in lieu of regular MMR 
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sis. Also, more importantly, detailed analytical examina-
tions are conducted to demonstrate the relationship and 
discrepancy of existing prominent methods. Conceivably, 
the well-supported recommendations offered in the pre-
sentation may be useful for empirical research.

Subgroup OLS
The fundamental statistical results are well known for 

the two simple regression models with normal error as-
sumption given in Equation 1—for example, see Rencher 
(2000). Suppose that ̂β10, ̂β11, ̂β20, and ̂β21 are the subgroup 
OLS estimators of β10, β11, β20, and β21, respectively. Al-
though it is not necessary to apply matrix algebra to de-
rive these estimators for the two simple linear models, the 
matrix formulations presented in Appendix A will later 
be shown to be useful for demonstrating the relationship 
between WLS and OLS estimators.

We are especially concerned with the statistical prop-
erties associated with the two estimators of slope coef-
ficients ̂β11 and ̂β21, specifically,

	 ˆβ11  N(β11, σ1
2/SSX1) and ̂β21 ~ N(β21, σ2
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2/SSX2). Moreover, the error sum of squares 
SSE1  σ1

2χ2(N1 2 2) and SSE2  σ2
2χ2(N2 2 2), where 

χ2(N1 2 2) and χ2(N2 2 2) are chi-square distributions 
with N1 2 2 and N2 2 2 degrees of freedom, respectively.

Welch Procedures
As a straightforward extension of Welch’s well-known 

“approximate degrees of freedom” or “approximate t” so-
lution to the Behrens–Fisher problem of comparing the 
difference between two means, Welch (1938, p. 356) also 
described the methods for comparing the difference in two 
regression slope coefficients within the simple regression 
framework of Equation 1. For the purpose of testing the 
hypothesis H0: β11 5 β21, one of the methods proposed by 
Welch (1938) is to consider the approximate distribution 
V  t(ν) when β11 5 β21, where
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Consequently, the unknown parameters σ1
2 and σ2

2 in ν are 
replaced by ̂σ1

2 and ̂σ2
2 for the practical purpose of hypoth-

sion proves to be more versatile than the squared form of 
the F test in this particular MMR application. The exami-
nation of the established results helps strengthen the im-
portance of the problem and reveals the closer functional 
relation between the existing vital approaches. It will be 
explicitly shown later that the WLS-based methods are 
closely related to the well-known Welch procedures. In the 
process, we also hope to account for some important find-
ings and ambiguous issues that may have been overlooked 
in the literature.

The rest of the article is organized as follows. The 
next section describes the fundamental theory and ana-
lytical results for the inference of interactions between 
a dichotomous moderator and a continuous predictor in 
the context of MMR with heterogeneous error variance. 
Then the emphasis is placed on the underlying similarities 
and differences between the Welch and WLS methods. 
Extensive numerical investigations are conducted to ex-
emplify the critical and subtle discrepancy between the 
two approaches. In order to enhance the application of 
the prevalent Welch procedure, the SAS and R programs 
are provided to ease the inferential analyses of hypothesis 
testing imposed by the technique.

Relationship Between Welch  
and WLS Procedures

Consider the following two simple linear regression 
models of the form

	Y1i 5 β10 1 X1iβ11 1 ε1i and Y2j 5 β20 1 X2jβ21 1 ε2j,	(1)

where ε1i and ε2j are iid N(0, σ1
2) and N(0, σ2

2) random 
variables, respectively, i 5 1, . . . , N1, and j 5 1, . . . , N2. In 
view of moderated multiple regression with the focus on 
the two-group parallelism problem, it is often more illu-
minating to combine the two models in Equation 1 as the 
following multiple regression model with a dichotomous 
moderator variable:

	 Yk 5 β20 1 Xkβ21 1 Zkδ0 1 ZkXkδ1 1 εk,

	 k 5 1, . . . , N, N 5 N1 1 N2,	 (2)

where

	 δ0 5 β10 2 β20, δ1 5 β11 2 β21;

	 Yk 5 Y2j, Xk 5 X2j, εk 5 ε2j, and  
		  Zk 5 0 if k 5 j, j 5 1, . . . , N2;

	 Yk 5 Y1i, Xk 5 X1i, εk 5 ε1i, and 
		  Zk 5 1 if k 5 N2 1 i, i 5 1, . . . , N1.

Methodologically, the existence and magnitude of re-
gression coefficient δ1 5 β11 2 β21, representing the in-
fluence of the moderating effect, is the major concern for 
the analysis of the moderated multiple regression model in 
Equation 2. In the present section, we discuss the statisti-
cal tests for the homogeneity of slopes of two simple re-
gression models by summarizing the fundamental results 
from different disciplines; this not only underscores the 
importance of the problem, but also provides a compre-
hensive review of various solutions for moderation analy-
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model (Equation 2) yield identical coefficient estimators 
for β20, β21, δ0, and δ1, but differ in their respective vari-
ance estimators. However, Overton did not provide the spe-
cific analytic formulations for the WLS estimator ̂δW1 and 
the corresponding estimated variance V̂( ˆδW1). More im-
portantly, the exact formulation of the test procedure was 
not given; instead, only numerical results were presented 
in Overton. Although empirical investigations are useful in 
assessing the properties of the competing methods, it is of 
pedagogical interest to see how different the WLS estima-
tor is from other procedures that have been used in many 
applications. As expected, the WLS test statistic TW for the 
test of H0: δ1 5 0 can be expressed as
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general form does not provide much information about 
the theoretical implications of TW. It follows from the 
matrix representation and manipulation, in Equation C7 
of Appendix C, that the WLS estimator of δ1 is ˆδW1 5 
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It follows from Equation C14 of Appendix C that the WLS 
test statistic for H0: δ1 5 0 is

	
Tω
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where V̂ω is defined in Equation C13. Also, Tω has the 
approximate t distribution

	 Tω  t(dfw),	 (7)

where dfw 5 N 2 4. The null hypothesis is rejected at 
the significance level α, if |Tω| . tdfw,α/2. Accordingly, the 
WLS procedure of Overton (2001) is the square of Tω or 
Fω (5 T 2w) in our notation.

An alternative modified WLS (MWLS) method is also 
examined in Overton (2001). Equations C9, C10, and C11 
of Appendix C provide details about the derivation of the 
MWLS Tm method. It is important to emphasize that WLS 
estimators of δ1 5 β11 2 β21 are identical for any proper 
selection of weights; however, the estimated variances are 
generally different, as are the variance estimates ̂Vm and ̂Vω 
in Equations C10 and C13 of the two WLS-based test statis-
tics Tm and Tω, respectively. Nonetheless, the only exception 
occurs in the special circumstance of balanced group sizes 
N1 5 N2 that V̂m 5 V̂ω, and Tm and Tω with the same 
referred t distribution t(dfw). Although this distinguishing 
property between two WLS criteria was not mentioned in 
Overton, this phenomenon was already shown in the simu-
lation results of Type I error rate and power reported for 
the two tests in Tables 1 and 4 of Overton, respectively, for 

esis testing. Hence, it leads to the modified approximation 
with random number of degrees of freedom:

	 V  t(ˆn),	 (4)
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The null hypothesis is rejected at the significance level α if

	 |V | . tˆn,α/2,	 (5)

where tˆn,α/2 is the 100(1 2 α/2) percentile of the t distribu-
tion t(ˆn) with degrees of freedom ̂n.

Several studies have shown that Welch’s approximate 
degrees of freedom approach offers a reasonably accurate 
solution to the Behrens–Fisher problem; for example, see 
Best and Rayner (1987), Davenport and Webster (1975), 
Nel, van der Merwe, and Moser (1990), Scariano and Dav-
enport (1986), and Scheffé (1970). Because the prescribed 
Welch’s V for comparing regression slope coefficients is 
a natural adaptation of Welch’s original approximate t test 
for equality of two normal means, the V test (Equation 5) 
should possess the same advantage of accurate control of 
the magnitudes of size and power. Nonetheless, it can be 
demonstrated that the general Welch–Aspin F * test for 
comparing regression slope equality presented in De-
Shon and Alexander (1996) reduces to the F* method in 
Dretzke et al. (1982) under the two-group circumstance. 
Moreover, the F* of Dretzke et al. is actually the square 
of the V given in Equation 5, F* 5 V 2. Consequently, F* 
is referred to the F distribution with degrees of freedom 1 
and ˆn, according to the notations used here. Notably, the 
accurate performance of the Welch procedure for compar-
ing the slopes of two regression lines has been demon-
strated in DeShon and Alexander (1996), Dretzke et al., 
and Overton (2001). Also, a related Z procedure proposed 
in Welch (1938) is presented in Appendix B for the sake 
of completeness and convenient reference.

WLS
Under the notion of heterogeneous error variance 

σ1
2  σ2

2, Overton (2001) considered a WLS analysis of the 
problem using multiple regression model in Equation 2. In 
general, the properties of WLS estimators differ from those 
of OLS estimators; the WLS approach is employed to cor-
rect for heteroscedasticity, in that error variance changes 
as a function of covariate variables. For example, see Kut-
ner, Nachtsheim, Neter, and Li (2005, sections 11.1 and 
18.4). Moreover, WLS is a special case of generalized least 
squares, in which the error terms not only may have differ-
ent variances but may also be correlated in pairs. However, 
the situation of heterogeneity of group error variances con-
sidered here requires only a single weight for each group. 
As reported in Overton (2001, p. 222), the WLS-based 
and OLS-based analyses of moderated multiple regression 
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characteristics of the Welch and WLS approaches were 
not addressed in Overton (2001), yet the simulation stud-
ies in Tables 1–5 of Overton exemplified these features 
between the two approaches under the notations of F* and 
MWLS for V and Tm, respectively.

Additionally, the prescribed Welch’s Z test of Equa-
tion B2 and WLS-based Tω procedure in Equation 7 are 
entangled in formulation and approximate distribution. 
In view of the distinctive form of the estimated variance 
V̂ω given in Equation C13, the statistic Tω of Equations 6 
and C14 is in relation to the Z statistic in Equation B1 
through dTω 5 Z, where d 5 {(N 2 8)/(N 2 4)}1/2. 
Hence, the approximate distribution of Tω  t(dfw) de-
fined in Equation 7 can be rewritten as

	 dTω 5 Z  dt(dfw).	

On the contrary, Welch’s approximation for Z is 
Z  ct( f *), as presented in Equation B2. Consequently, 
Welch’s Z approach and the specific transformation d·Tω 
of the WLS-based Tω method belong to a family of (ap-
proximate) distributions, each of which is approximated 
by kt( f ), where, for Z, k 5 c and f 5 f *, and for d·Tω, 
k 5 d and f 5 dfw. Note that the approximate ct( f *) dis-
tribution of Welch’s Z is optimized in terms of the scalar 
multiplier c and degrees of freedom f *. Therefore, the ap-
proximate distribution in terms of dt(dfw) for the trans-
formed statistic dTω or Z does not possess the optimality 
property and is less adequate under the moment-matching 
criterion of Welch (1938). Later, the differences between 
the WLS Tω and Welch’s V methods will be further exam-
ined and reinforced in the simulation study.

Simulation Study

On the basis of the present results, the WLS-based Tω and 
Welch’s V methods emerge as the prominent and represen-
tative test procedures of the two distinct WLS (error vari-
ance heterogeneity neutralization) and Welch (approximate 
degrees of freedom) methodologies. To further help clarify 
similarities and differences for the competing Tω and V 
methods, simulation investigations are performed to exam-
ine their numerical performance. For ease of exposition, the 
two test procedures will be referred to in the remainder of 
this article as the WLS and Welch approaches, respectively.

It was concluded in Overton (2001) that the behavior in 
controlling the Type I error rate for the WLS method is not 
as spectacular as the Welch procedure and other formulas. 
On the other hand, the WLS test is virtually identical to the 
Welch procedure in its ability to detect a true interaction ef-
fect. However, the conditions in which the Welch and WLS 
procedures incur the most discrepancy were not identified. 
Hence, we performed an extensive replication of Overton’s 
simulation study to reevaluate the empirical Type I error 
rate for the detection of interaction effects. Throughout 
the numerical study, the nominal Type I error rate is set as 
α 5 .05. The estimates of the true Type I error rate associ-
ated with given sample size and model configurations are 
computed through Monte Carlo simulation of 10,000 in-
dependent data sets. For each replicate, N1 and N2 values 
of predictor X1 and X2 are generated from the designated 

the balanced group size N1 5 N2 5 50. However, Overton 
concluded that the MWLS Fm 5 T 2

m test does not perform 
as well as the WLS test Fω 5 T 2ω, according to his extensive 
Monte Carlo investigations across a wide range of model 
configurations.

In contrast to the WLS analysis, the OLS regression 
analysis of the model in Equation 2 is straightforward. As 
shown in Equation C15 of Appendix C, the OLS test sta-
tistic for H0: δ1 5 0 is
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where ˆσO

2 5 SSEO/(N 2 4) and SSEO 5 SSE1 1 SSE2. 
The null hypothesis is rejected at the significance level α 
if |TO| . tN24,α/2. It is well known that the pattern of test 
TO parallels exactly what is known about the usual two-
sample pooled-variance t test under homogeneous group 
error variances. As evidenced in the simulation studies of 
Overton (2001), the test TO is outperformed by the WLS-
based tests Tm and Tω and Welch’s V test under the condi-
tion of heterogeneous group error variance.

Distinction Between Welch and WLS Procedures
It is notable from the methodical presentations in the 

two preceding subsections that the Welch’s procedures 
and the WLS methods are apparently developed from dif-
ferent perspectives. It is not particularly surprising to see 
that two distinct principles lead to substantially different 
formulations and properties for the developed methods. 
However, there are important similarities and differences 
between the methodological formulations of Welch’s V 
and WLS-based Tm, and Welch’s Z and WLS-based Tω. 
The following discussions derive the relevant results to 
show the closer relation of these renowned tests.

First, it follows from the resulting expressions (Equa-
tions 3 and C11) that, in fact, the two statistics of Welch’s 
V and the WLS-based Tm are identical. Therefore, it is 
worthwhile to note that Welch’s V statistic accommodates 
implicitly the notion of WLS. However, the respective 
approximate t distributions of the two tests are different. 
Actually, it can be shown that this phenomenon also ex-
ists in the framework of the Behrens–Fisher problem for 
comparing two normal means under heterogeneous vari-
ance assumption; specifically, the corresponding degrees 
of freedom for the referred t distribution of V and Tm in 
Equations 4 and C11 are ˆn and dfw 5 N 2 4, respec-
tively. Note that the degrees of freedom ̂n of V is bounded 
between the minimum of (N1 2 2, N2 2 2) and N 2 4. 
Therefore, the associated critical values of tˆn,α/2 and tdfw,α/2 
are in the order of tdfw,α/2 # tˆn,α/2. See Ghosh (1973) for 
the monotonicity properties of the family of t distribution. 
Hence, the observed significance level or p value of the 
Welch’s V test is always greater than or equal to that of the 
WLS Tm test; in other words, the WLS test is more liberal 
than the Welch approach is, in the sense that the WLS 
test tends to reject the null hypothesis more often than 
the Welch method does. Correspondingly, the achieved 
significance level and power of the Welch method never 
exceed those of the WLS procedure. Interestingly, these 
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error rates of WLS had a similar range of .0444 to .0606, 
where the value 0.0606 is associated with Condition 31 in 
Table 2. Nonetheless, only 85.23% (225 cases) of the 264 
conditions were in the interval of .045–.055. In particular, 
there are 8, 13, and 7 cases in Tables 1–3, respectively, with 
large deviation not inside the prescribed range. Hence, the 
corresponding percentage of the simulated Type I error 
rates that is within the range of .045–.055 in Tables 1–3 
is as low as 68.18% (60 out of the 88 conditions). More-
over, for the 28 cases outside the range of .045–.055, only 
a single value, .0445 (Condition 15 in Table 3), fell below 
.045. It appears that the WLS method tends to give less pre-
cise and positively biased Type I error for comparatively 
small sample sizes. On the contrary, the Welch procedure 
yielded a range of .0447 to .0555 with 98.49% (260/264) 
between .045 and .055. Incidentally, it is noteworthy from 
Tables 1–3 that Condition 35 in Table 2 is the only case of 
the Welch test to incur a large deviation (.0051) not within 
the bound of .005. The remarkably accurate results of the 
Welch procedure presented here are consistent with the 
findings in Overton (2001, p. 224). Hence, it is clear that 
the Welch procedure has the important advantage over the 
WLS test of accurate control of Type I error rate, especially 
for small samples. Moreover, since the considered distri-

independent normal distribution N(0, σ2
X1) and N(0, σ2

X2), 
respectively. These values in turn determine the respective 
mean responses for generating N1 and N2 values of normal 
outcomes Y1 and Y2 for the two underlying regression mod-
els with error variance σ1

2 and σ2
2, as defined in Equation 1. 

Then the two test statistics Tω and V are computed. Accord-
ingly, the simulated Type I error rate is the proportion of 
the 10,000 replicates, whose values of |Tω| and |V | exceed 
the critical values tdfw,.025 and t̂n,.025 for the WLS and Welch 
procedures, respectively. As in Overton (2001, p. 223), the 
three harmonic group sample size means are 20, 50, and 
100, and the ratio of sample sizes varies from 1:1 to 1:2 
to 1:5. The resulting sample sizes (N1, N2) combinations 
are (20, 20), (15, 30), and (12, 60) for the harmonic mean 
of 20; (50, 50), (38, 75), and (30, 150) for the harmonic 
mean of 50; and (100, 100), (75, 150), and (60, 300) for 
the harmonic mean of 100. For each of the three harmonic 
means of 20, 50, and 100, a total of 88 model settings are 
summarized in three tables, according to the combined con-
figurations of sample size allocation (N1 and N2), predictor 
standard deviation (SD) ratio (σX1/σX2), and error SD ratio 
(σ1/σ2). Overall, the numerical results are summarized in 
a total of nine tables. Although the results fit in with the 
general conclusions of Overton, some important and dis-
tinctive situations could still be of practical interest, in the 
sense that the two contending procedures have the more 
obvious potential of yielding different conclusions. Space 
limitations preclude reporting results for all situations. To 
exemplify the critical and subtle discrepancy between the 
two approaches, only the tables in which the harmonic 
mean sample size is 20 are presented. Tables 1–3 contain 
the simulated Type I error rates for sample sizes (N1, N2) 5 
(20, 20), (15, 30), and (12, 60), respectively. The full set of 
simulation results is available upon request.

It was noted in Overton (2001) that the Type I error rates 
of the WLS test ranged from .044 to .060, and 91% of the 
264 condition error rates were in the narrow .045–.055 
range. According to our simulations, the simulated Type I 

Table 1 
Simulated Type I Error Rates of WLS and Welch Procedures  

When Sample Sizes N1 5 20 and N2 5 20 (α 5 .05)

Difference Difference
Condition  σX1/σX2  σ1/σ2  WLS  Welch  WLS 2 .05  Welch 2 .05

  1 1/1 1/1 .0532 .0526 .0032 .0026
  2 1/1 1/2 .0528 .0513 .0028 .0013
  3 1/1 1/4 .0523 .0465 .0023 2.0035
  4 1/1 1/8 .0552 .0485 .0052 2.0015
  5 1/2 1/1 .0491 .0466 2.0009 2.0034
  6 1/2 1/2 .0500 .0491 .0000 2.0009
  7 1/2 1/4 .0513 .0482 .0013 2.0018
  8 1/2 1/8 .0542 .0494 .0042 2.0006
  9 1/2 2/1 .0561 .0504 .0061 .0004
10 1/2 4/1 .0570 .0489 .0070 2.0011
11 1/2 8/1 .0565 .0492 .0065 2.0008
12 1/4 1/1 .0574 .0511 .0074 .0011
13 1/4 1/2 .0529 .0504 .0029 .0004
14 1/4 1/4 .0531 .0529 .0031 .0029
15 1/4 1/8 .0505 .0482 .0005 2.0018
16 1/4 2/1 .0580 .0502 .0080 .0002
17 1/4 4/1 .0591 .0519 .0091 .0019
18  1/4  8/1  .0589  .0495  .0089  2.0005

Table 2 
Simulated Type I Error Rates of WLS and Welch Procedures  

When Sample Sizes N1 5 15 and N2 5 30 (α 5 .05)

Difference Difference
Condition  σX1/σX2  σ1/σ2  WLS  Welch  WLS 2 .05  Welch 2 .05

  1 1/1 1/1 .0501 .0495 .0001 2.0005
  2 1/1 1/2 .0512 .0510 .0012 .0010
  3 1/1 1/4 .0510 .0478 .0010 2.0022
  4 1/1 1/8 .0537 .0478 .0037 2.0022
  5 1/1 2/1 .0553 .0521 .0053 .0021
  6 1/1 4/1 .0567 .0509 .0067 .0009
  7 1/1 8/1 .0588 .0517 .0088 .0017
  8 1/2 1/1 .0558 .0521 .0058 .0021
  9 1/2 1/2 .0512 .0506 .0012 .0006
10 1/2 1/4 .0488 .0490 2.0012 2.0010
11 1/2 1/8 .0522 .0485 .0022 2.0015
12 1/2 2/1 .0569 .0509 .0069 .0009
13 1/2 4/1 .0546 .0487 .0046 2.0013
14 1/2 8/1 .0563 .0501 .0063 .0001
15 2/1 1/1 .0468 .0471 2.0032 2.0029
16 2/1 1/2 .0505 .0470 .0005 2.0030
17 2/1 1/4 .0534 .0487 .0034 2.0013
18 2/1 1/8 .0552 .0494 .0052 2.0006
19 2/1 2/1 .0532 .0529 .0032 .0029
20 2/1 4/1 .0535 .0497 .0035 2.0003
21 2/1 8/1 .0586 .0536 .0086 .0036
22 1/4 1/1 .0588 .0532 .0088 .0032
23 1/4 1/2 .0523 .0494 .0023 2.0006
24 1/4 1/4 .0475 .0471 2.0025 2.0029
25 1/4 1/8 .0484 .0486 2.0016 2.0014
26 1/4 2/1 .0519 .0466 .0019 2.0034
27 1/4 4/1 .0593 .0533 .0093 .0033
28 1/4 8/1 .0573 .0508 .0073 .0008
29 4/1 1/1 .0543 .0513 .0043 .0013
30 4/1 1/2 .0532 .0479 .0032 2.0021
31 4/1 1/4 .0606 .0530 .0106 .0030
32 4/1 1/8 .0549 .0495 .0049 2.0005
33 4/1 2/1 .0461 .0460 2.0039 2.0040
34 4/1 4/1 .0499 .0496 2.0001 2.0004
35  4/1  8/1  .0581  .0551  .0081  .0051
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accuracy of their respective approximate critical values. 
Therefore, it should be taken into consideration that the 
simulated power of the WLS test may be attained at the 
cost of an inordinate or unstable Type I error rate in the 
same conditions.

From a practical standpoint of providing a generally 
useful and versatile solution without specifically confin-
ing itself to any particular settings, the failure to give an 
accurate Type I error rate is one obvious limitation of the 
WLS test. Although not all study designs are planned with 
moderate or small sample sizes, it is understandable that 
some intrinsically original or special research would ac-
commodate larger numbers of participants with difficulty. 
In this respect, it is essential for researchers to have a reli-
able procedure for detecting the moderating effects over 
all sample size situations one might encounter in applied 
work. The soundness of Welch’s approach and its primi-
tive form have received critical acclaims from numerous 
researchers. The newly recognized trait of WLS enhances 
the incredible versatility of Welch’s methodology. More 
importantly, the overall adequate performance in Type I 
error rates for detecting interaction effects fortifies the 
distinct advantage of the Welch procedure over the WLS 
method. As suggested by a referee, we also investigated 
the behavior of the Welch procedure under imperfect 
conditions. Accordingly, Monte Carlo simulations have 
been performed for the MMR analysis with two types of 
nonnormal errors—namely, gamma and uniform distri-
butions. Since this issue is not the primary focus of the 
present article, the details are not given here. However, the 
performance seems completely acceptable regarding the 
robustness of the Welch procedure against mild departures 
from normal error assumption. Finally, the computational 
aspect for assessing moderating effects in the context of 
an MMR example will be described in the next section.

Example
In addition to the statistical performance in Type I 

error rate and power, Overton (2001) emphasized the 
practical importance of computational requirement 

butions in Equations 7 and 4 for the WLS and Welch tests 
are approximations, care needs to be taken in interpreting 
the implications of their results in the simulated power of 
Overton. It is important to note that the magnitude of em-
pirical power of both procedures depends mostly on the 

Table 3 
Simulated Type I Error Rates of WLS and Welch Procedures 

When Sample Sizes N1 5 12 and N2 5 60 (α 5 .05)

Difference Difference
Condition  σX1/σX2  σ1/σ2  WLS  Welch  WLS 2 .05  Welch 2 .05

  1 1/1 1/1 .0528 .0529 .0028 .0029
  2 1/1 1/2 .0486 .0512 2.0014 .0012
  3 1/1 1/4 .0468 .0486 2.0032 2.0014
  4 1/1 1/8 .0505 .0498 .0005 2.0002
  5 1/1 2/1 .0564 .0519 .0064 .0019
  6 1/1 4/1 .0542 .0504 .0042 .0004
  7 1/1 8/1 .0566 .0504 .0066 .0004
  8 1/2 1/1 .0517 .0480 .0017 2.0020
  9 1/2 1/2 .0514 .0515 .0014 .0015
10 1/2 1/4 .0474 .0518 2.0026 .0018
11 1/2 1/8 .0488 .0505 2.0012 .0005
12 1/2 2/1 .0543 .0488 .0043 2.0012
13 1/2 4/1 .0532 .0482 .0032 2.0018
14 1/2 8/1 .0561 .0500 .0061 .0000
15 2/1 1/1 .0445 .0484 2.0055 2.0016
16 2/1 1/2 .0526 .0548 .0026 .0048
17 2/1 1/4 .0506 .0496 .0006 2.0004
18 2/1 1/8 .0493 .0466 2.0007 2.0034
19 2/1 2/1 .0510 .0512 .0010 .0012
20 2/1 4/1 .0523 .0483 .0023 2.0017
21 2/1 8/1 .0566 .0512 .0066 .0012
22 1/4 1/1 .0589 .0540 .0089 .0040
23 1/4 1/2 .0548 .0511 .0048 .0011
24 1/4 1/4 .0483 .0492 2.0017 2.0008
25 1/4 1/8 .0452 .0471 2.0048 2.0029
26 1/4 2/1 .0524 .0481 .0024 2.0019
27 1/4 4/1 .0544 .0488 .0044 2.0012
28 1/4 8/1 .0585 .0528 .0085 .0028
29 4/1 1/1 .0459 .0487 2.0041 2.0013
30 4/1 1/2 .0515 .0508 .0015 .0008
31 4/1 1/4 .0508 .0489 .0008 2.0011
32 4/1 1/8 .0550 .0523 .0050 .0023
33 4/1 2/1 .0453 .0493 2.0047 2.0007
34 4/1 4/1 .0531 .0534 .0031 .0034
35  4/1  8/1  .0549  .0511  .0049  .0011

Table 4 
The Hypothetical Values of Response Variable Y and Predictor Variable X

Y  X  Y  X  Y  X  Y  X  Y  X

Group 1 (Z 5 1)

0.8427 20.6411 0.7367 20.4710 1.3724 20.0829 1.0208 20.9724 1.0173 1.9320
20.2700 20.5577 21.1647 0.5300 21.5785 20.7436 20.5066 20.0115 20.3525 0.5926

0.5504  0.1367 1.7815 2.0942

Group 2 (Z 5 0)

20.6221 5.8494 0.0773 24.6409 7.2835 4.0269 24.8243 2.3101 28.1438 25.7033
8.1696 1.0393 0.3258 3.3170 211.5477 25.2614 23.7603 20.3760 11.9974 7.8449

210.0975 25.0683 21.3754 21.4049 29.6727 24.3949 218.7952 23.3753 4.8187 23.8163
17.8028 5.2447 1.5166 21.7987 218.1552 0.2492 16.7311 20.5163 26.6831 20.6478
4.1600 24.0378 220.5484 24.2237 23.4620 25.1611 5.8139 11.1631 22.2820 7.1399

25.3675 1.6372 3.1738 4.3391 2.8675 23.2008 20.0571 22.4078 25.4507 1.3559
25.1712 4.8134 17.2321 2.4378 22.5326 0.3754 211.2807 23.6007 20.4768 2.7956
29.5239 25.8884 25.5169 22.3669 11.5640 3.7946 4.0643 1.2667 12.5105 1.5345
11.6301 3.3982 21.6980 22.0588 29.9924 20.7673 4.4596 7.6824 10.2650 3.2056

27.4692 0.3997 24.5522 4.5721 23.7881 23.0503 10.4150 8.9247 5.1856 4.9535
20.6495 24.8053 24.6085 3.9554 1.7367 20.4456 6.5870 2.2837 25.1916 20.4220
25.2506  20.1328  10.1324  0.4992  25.8459  0.7123  1.3268  3.2873  23.5859  23.8313
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error variance for evaluating regression slope differences 
across groups. In addition to the existing attempts, the 
WLS procedure of Overton (2001) provides an attractive 
alternative to mitigate the impact of violating the assump-
tion of homogeneous error variance on conclusions of 
testing the hypotheses regarding the interaction between 
a dichotomous moderator variable and a continuous pre-
dictor variable. For pedagogic reasons, one must have a 
thorough understanding of the fundamental details of the 
methodology, and how the technique improves upon ex-
isting approaches for MMR analysis, before the theoreti-
cal idea can finally be considered appropriate for making 
sound application. This article elucidates the similarities 
and differences between the Welch and WLS methods 
through rigorous analytical presentations and numerical 
assessments. In particular, it shows how the Welch statis-
tics have exactly the same or similar expressions as do the 
WLS-based MMR statistics. Therefore, from the meth-
odological point of view, Welch’s procedure exhorts the 
same tactic as the WLS method for tackling the problem of 
error variance heterogeneity; in other words, the prevail-
ing Welch approach implicitly possesses the same tempt-
ing property that distinguishes the WLS method from 
other available techniques. However, the resulting test-
ing procedures differ in their adjustments of the degrees 
of freedom for respective distributional approximations. 
Furthermore, the primitive Welch approaches for compar-
ing means of two and more groups under heterogeneity 
of variance have been widely discussed in standard texts 
of statistical methods in psychology and business (see, 
e.g., Berenson, Krehbiel, & Levine, 2006; Howell, 2007). 
Although there is some concern about the application of 
the Welch procedure for four or more groups (DeShon & 
Alexander, 1996), this research has been confined to the 
case of two groups. With the underlying WLS character-
istic, accurate performance and computational ease, it is 
prudent to recommend the extended Welch’s approximate 
t procedure for detecting the moderated effects of dichoto-
mous moderators in MMR.
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Appendix A 
The Subgroup OLS Analysis

Let Y1 and Y2 be N1 3 1 and N2 3 1 column vectors of Y1is and Y2js. Denote XD1 5 [1N1, X1] and XD2 5 
[1N2, X2], where 1N1 and 1N2 are N1 3 1 and N2 3 1 column vectors of 1s, and X1 and X2 are the N1 3 1 and 
N2 3 1 column vectors of X1is and X2js. Then, the matrix formulations of the two models in Equation 1 are Y1 5 
XD1β1 1 ε1 and Y2 5 XD2β2 1 ε2, respectively, where β1 5 [β10, β11]T and β2 5 [β20, β21]T. Consequently, the 
separate OLS estimators are
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Also, the variance and covariance matrices are

	 Cov(β̂1) 5 σ1
2(XT

D1XD1)21 and Cov(β̂2) 5 σ2
2(XT

D2XD2)21,	 (A2)

respectively.

Appendix B 
Welch’s Z Procedure

One of the alternative methods suggested in Welch (1938, p. 360) for the Behrens–Fisher problem is the Z sta-
tistic (see Fenstad, 1983; Best & Rayner, 1987; and Paul, Best, & Rayner, 1992, for further details). Although it 
was not explicitly stated, the notion of the Z test for use in the Behrens–Fisher situation can be easily generalized 
for the comparison of regression coefficients as well. Following Welch’s (1938) derivation, and that of Paul et al. 
(1992), the extended Z statistic has the form
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It follows from Welch (1938) under the null hypothesis H0: β11 5 β21 that the distribution of Z can be approxi-
mated by a scalar multiplier of t distribution

	 Z  c·t( f *),	 (B2)
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Appendix C 
The WLS Procedures

Consider the matrix formulation of the model in Equation 2,

	 Y 5 XDβ 1 ε,	 (C1)

where β 5 [β20, β21, δ0, δ1]T is the 4 3 1 column vector of regression coefficients; Y and ε are the respective 
column vectors of Yk and εk, k 5 1, . . . , N; and XD 5 [1N, X, Z, ZX] is the N 3 4 design matrix with 1N, X, Z, 
and ZX, which are the column vectors of all 1s, Xks, Zks, and Zk

 Xks, respectively. Under the variance hetero-
geneity assumption, the variance–covariance matrix of ε is Cov(ε) 5 Diag{σ2

2IN2
, σ1

2IN1
}, an N 3 N diagonal 

matrix, where IN1
 and IN2

 are the identity matrixes of dimensions N1 and N2, respectively. The WLS approach 
modified the ordinary least squares method by applying an appropriate weight matrix to the model in Equa-
tion C1 as follows:

	 Y* 5 X *
Dβ 1 ε*,	

where Y* 5 WY, X *
D 5 WXD, ε* 5 Wε, and the weight matrix W 5 Diag{W2, W1} is the N 3 N diagonal 

matrix with the first N2 and the last N1 diagonal elements equal to w2 and w1, where W2 5 w2IN2
 and W1 5 

w1IN1
. Let Var(ε*

k) 5 σ2
w, then σ2

w 5 w2
2σ2

2 for k 5 1, . . . , N2 and σ2
w 5 w1

2σ1
2 for k 5 N2 1 1, . . . , N2 1 N1. 

The subsequent WLS analysis follows that of the regular OLS linear regression. Hence, the WLS estimator 
β̂W 5 [ ˆβW20, ˆβW21, ˆδW0, ˆδW1]T of β can be readily obtained as

	 β̂W 5 (X *
D

TX *
D)21X *

D
TY* 5 (XT

DW2XD)21XT
DW2Y.	 (C2)

The variance–covariance matrix of β̂ W is VW 5 Cov(β̂ W) 5 σ2
w(X *

D
TX *

D)21 and the corresponding natural 
estimator is

	 V̂W 5 ̂σ2
w(XT

DW2XD)21,	 (C3)

where ̂σ2
w 5 SSEW/(N 2 4) and the error sum of squares

	 SSEW 5 (Y* 2 X *
Dβ̂W)T(Y* 2 X *

Dβ̂W) 5 (Y 2 XD
ˆβ̂W)TW2(Y 2 XD

ˆβ̂W).	

It follows that the hypothesis of H0: δ1 5 0 or H0: β11 5 β21 is therefore tested with the partial t statistic
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where ˆδW1 is the WLS estimator of δ1 and V̂( ˆδW1) is the estimated variance of ˆδW1 and is the (4, 4) element 
of V̂W. The null hypothesis is rejected at the significance level α if |TW| . tdfw,α/2, where dfw 5 N 2 4. Although 
the prescribed results are sufficient for the purpose of numerical computation for the selected weight matrix, it 
is not obvious from the general expressions exactly what the particular estimator ̂δW1 and the associated vari-
ance estimator V̂( ˆδW1) turn out to be. The following detailed presentation and illustration define the analytic 
results for the WLS approach and provide the connections of WLS with other related procedures.

Note that the overall response Y and the design matrix XD can be expressed as
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where
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Although the Welch statistics of V in Equation 3 and Z just described in Equation B1 are equally efficient in 
terms of asymptotic relative efficiency, it is important to note that the finite sample comparisons of Best and 
Rayner (1987) and Paul et al. (1992) recommended the statistic V over the statistic Z for testing the hypothesis 
of equality of two normal means. In the case of comparison of regression coefficients, it is conceivable that the 
test procedure V in Equation 4 should possess the same advantage over the Z method in Equation B2.
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Appendix C (Continued)

where 0N23 2 is an N2 3 2 matrix of 0s. It follows from the block diagonal property of W and the unique constant 
multiple of identity for the two weight matrices of W1 and W2 that
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Hence, the WLS estimator of Equation C2 can be written as
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where β̂1 and β̂2 are the separate OLS estimators of β1 and β2 given in Equation A1. Moreover, the estimated 
variance and covariance matrix is
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(C6)

Let β̂W 5 [ ˆβW20, ˆβW21, ˆδW0, ˆδW1]T with ˆδW0 5 ˆβW10 2 ˆβW20, ˆδW1 5 ˆβW11 2 ˆβW21. It is clear from Equa-
tion C5 that the WLS estimators of (β10, β11) and (β20, β21) are identical to the separate OLS result of Equa-
tion A1 described in Appendix A. More importantly, the WLS estimator ˆδW1 of δ1 5 β21 2 β11 coincides the 
difference of the two OLS estimators regardless of the relative weights:
	 ˆδW1 5 ̂β11 2 ̂β21.	 (C7)

However, it follows from Equation C6 that the estimated variance of ̂δW1 is
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and the explicit formulation of V̂(ˆδW1) ultimately depends on the designated weights of w1 and w2.
To neutralize the variance heterogeneity, a natural choice of weights (w1, w2) is the square root of the inverse 

of respective unbiased variance estimator (m1, m2), where
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Thus, it can be shown with the weights defined in Equation C9 that SSEW and ˆσ2
W in Equation C3 are greatly 

simplified as SSEW 5 m1
2SSE1 1 m2

2SSE2 5 N 2 4 and ̂σ2
W 5 1, respectively. Moreover, the resulting estimated 

variance V̂m of ̂δW1 obtained by Equation C8 is
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Then, more informatively, it can be readily seen from Equations C7 and C10 that the test TW for the inference 
of the coefficient parameter of δ1 given in Equation C4 can be expressed as
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Consequently, the WLS-based partial F test statistic (MWLS) described in Overton (2001), denoted by our nota-
tion Fm here, can be expressed as Fm 5 T 2

m, which in turn follows approximately an F distribution with degrees 
of freedom 1 and dfw under the null hypothesis H0: δ1 5 0.

Alternatively, the relative weights based on an unbiased estimator for the reciprocal of respective variance 
can be considered
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Appendix D 
The SAS Program for OLS, WLS, and Welch Procedures

DATA BRM;INPUT Y X @@;
*REQUIRED USER SPECIFICATIONS PORTION;
*SPECIFY THE NUMBER OF CASES FOR THE DEFINITION OF MODERATOR Z;
IF _N_ < 13 THEN Z=1;ELSE Z=0;XZ=X*Z;
*SPECIFY THE DATA IN TERMS OF PAIRED-VALUES OF Y AND X SEQUENTIALLY;
DATALINES;
  0.8427	 -0.6411	 0.7367	 -0.4710	 1.3724	 -0.0829	 1.0208	 -0.9724	 1.0173	 1.9320	 -0.2700	
-0.5577	 -1.1647	 0.5300	 -1.5785	 -0.7436	 -0.5066	 -0.0115	 -0.3525	 0.5926	 0.5504	 0.1367	
1.7815	 2.0942	 20.6221	 5.8494	 0.0773	 -4.6409	 7.2835	 4.0269	 -4.8243	 2.3101	 -8.1438	
-5.7033	 8.1696	 1.0393	 0.3258	 3.3170	 -11.5477	 -5.2614	 -3.7603	 -0.3760	 11.9974	 7.8449	
-10.0975	 -5.0683	 -1.3754	 -1.4049	 -9.6727	 -4.3949	 -18.7952	 -3.3753	 4.8187	 -3.8163	 17.8028	
5.2447	 1.5166	 -1.7987	 -18.1552	 0.2492	 16.7311	 -0.5163	 -6.6831	 -0.6478	 4.1600	 -4.0378	
-20.5484	 -4.2237	 -3.4620	 -5.1611	 5.8139	 11.1631	 -2.2820	 7.1399	 -5.3675	 1.6372	 3.1738	
4.3391	 2.8675	 -3.2008	 -0.0571	 -2.4078	 -5.4507	 1.3559	 -5.1712	 4.8134	 17.2321	 2.4378	
-2.5326	 0.3754	 -11.2807	 -3.6007	 -0.4768	 2.7956	 -9.5239	 -5.8884	 -5.5169	 -2.3669	 11.5640	
3.7946	 4.0643	 1.2667	 12.5105	 1.5345	 11.6301	 3.3982	 -1.6980	 -2.0588	 -9.9924	 -0.7673	
4.4596	 7.6824	 10.2650	 3.2056	 -7.4692	 0.3997	 -4.5522	 4.5721	 -3.7881	 -3.0503	 10.4150	
8.9247	 5.1856	 4.9535	 -0.6495	 -4.8053	 -4.6085	 3.9554	 1.7367	 -0.4456	 6.5870	 2.2837	
-5.1916	 -0.4220	 -5.2506	 -0.1328	 10.1324	 0.4992	 -5.8459	 0.7123	 1.3268	 3.2873	 -3.5859	
-3.8313
;
*END OF REQUIRED USER SPECIFICATIONS;
PROC SORT;BY Z;
PROC REG DATA=BRM NOPRINT TABLEOUT OUTEST=W;MODEL Y=X/MSE;BY Z;
DATA W1(KEEP=Z DF MSE BETAH);SET W;IF _TYPE_='PARMS';RENAME
_EDF_=DF _MSE_=MSE X=BETAH;
DATA W2(KEEP=Z STDERR);SET W;IF _TYPE_='STDERR';RENAME X=STDERR;
DATA W3;MERGE W1 W2;WLSW=(DF-2)/(DF*MSE);
*OLS;
PROC REG DATA=BRM;MODEL Y= X Z XZ;
*WLS;
DATA WLS;MERGE BRM W3;BY Z;
PROC REG DATA=WLS;MODEL Y=X Z XZ;WEIGHT WLSW;

Appendix C (Continued)

In this situation, the obtained estimator of δ1 remains as ̂δW1 5 ̂β11 2 ̂β21, as given above in Equation C7. Again, 
it is equivalent to the difference of the two OLS estimators. Furthermore, it can be shown with the relative 
weights in Equation C12 that SSEW 5 ω1

2SSE1 1 ω2
2SSE2 5 N 2 8, ˆσ2

w 5 (N 2 8)/(N 2 4) and the estimated 
variance ̂Vω of ̂δW1 is
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Hence, the corresponding test statistic for H0: δ1 5 0 is denoted by
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In contrast, the particular results for OLS regression analysis of the models in Equation 2 or C1 can be viewed as 
a special case of WLS analysis by setting w1 5 w2 5 1. Hence, it can be immediately obtained from Equations C5 
and C6 that the OLS estimator ̂βO 5 ̂βW and the estimated variance and covariance matrix
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where ̂σ2
O 5 SSEO/(N 2 4) and SSEO 5 SSE1 1 SSE2. Certainly, ̂VO and V̂W are markedly different. Specifically, 

the OLS-based test for H0: δ1 5 0 is of the form
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Appendix E 
The R Program for OLS, WLS, and Welch Procedures

welch=function () 
{
#REQUIRED USER SPECIFICATIONS PORTION
#SPECIFY THE FIRST GROUP OF DATA IN TERMS OF PAIRED-VALUES OF Y AND X 
SEQUENTIALLY
yx1=c(0.8427, -0.6411, 0.7367, -0.4710, 1.3724, -0.0829, 1.0208, -0.9724, 1.0173, 1.9320, 
-0.2700, -0.5577, -1.1647, 0.5300, -1.5785, -0.7436, -0.5066, -0.0115, -0.3525, 0.5926, 
0.5504, 0.1367, 1.7815, 2.0942)
#SPECIFY THE SECOND GROUP OF DATA IN TERMS OF PAIRED-VALUES OF Y
AND X SEQUENTIALLY
yx2=c(20.6221, 5.8494, 0.0773, -4.6409, 7.2835, 4.0269, -4.8243, 2.3101, -8.1438, -5.7033, 
8.1696, 1.0393, 0.3258, 3.3170, -11.5477, -5.2614, -3.7603, -0.3760, 11.9974, 7.8449, 
-10.0975, -5.0683, -1.3754, -1.4049, -9.6727, -4.3949, -18.7952, -3.3753, 4.8187, -3.8163, 
17.8028, 5.2447, 1.5166, -1.7987, -18.1552, 0.2492, 16.7311, -0.5163, -6.6831, -0.6478, 
4.1600, -4.0378, -20.5484, -4.2237, -3.4620, -5.1611, 5.8139, 11.1631, -2.2820, 7.1399, 
-5.3675, 1.6372, 3.1738, 4.3391, 2.8675, -3.2008, -0.0571, -2.4078, -5.4507, 1.3559, 
-5.1712, 4.8134, 17.2321, 2.4378, -2.5326, 0.3754, -11.2807, -3.6007, -0.4768, 2.7956, 
-9.5239, -5.8884, -5.5169, -2.3669, 11.5640, 3.7946, 4.0643, 1.2667, 12.5105, 1.5345, 
11.6301, 3.3982, -1.6980, -2.0588, -9.9924, -0.7673, 4.4596, 7.6824, 10.2650, 3.2056, 
-7.4692, 0.3997, -4.5522, 4.5721, -3.7881, -3.0503, 10.4150, 8.9247, 5.1856, 4.9535, 
-0.6495, -4.8053, -4.6085, 3.9554, 1.7367, -0.4456, 6.5870, 2.2837, -5.1916, -0.4220, 
-5.2506, -0.1328, 10.1324, 0.4992, -5.8459, 0.7123, 1.3268, 3.2873, -3.5859, -3.8313)

#END OF REQUIRED USER SPECIFICATION

mxy1=matrix(yx1,length(yx1)/2,2,byrow=TRUE)
mxy2=matrix(yx2,length(yx2)/2,2,byrow=TRUE)
x1=mxy1[,2]
y1=mxy1[,1]
x2=mxy2[,2]
y2=mxy2[,1]
n1=length(x1)
n2=length(x2)
z1=rep(1,n1)
z2=rep(0,n2)
y=c(y1,y2)
x=c(x1,x2)
z=c(z1,z2)
#OLS
summary_ols=summary(lm(y~1+x+z+x:z))
print('OLS')
print(summary_ols$coefficients)
summary1=summary(lm(y1~1+x1))
betah1=summary1$coefficients[2,1]
stderr1=summary1$coefficients[2,2]
df1=summary1$df[2]
mse1=summary1$sigma^2
summary2=summary(lm(y2~1+x2))
betah2=summary2$coefficients[2,1]

Appendix D (Continued)

*WELCH;
DATA WELCH(KEEP=DF1 DF2 STDERR1 STDERR2 BETAH1 BETAH2 WELCH_T
WELCH_DF WELCH_PVALUE); 
SET W3;IF Z=1;DF1=DF;STDERR1=STDERR;BETAH1=BETAH; 
SET W3;IF Z=0;DF2=DF;STDERR2=STDERR;BETAH2=BETAH;
WELCHVAR=STDERR1**2+STDERR2**2;APS1=(STDERR1**2)/WELCHVAR;
WELCH_T=(BETAH1-BETAH2)/SQRT(WELCHVAR);
WELCH_DF=1/((APS1**2)/DF1+((1-APS1)**2)/DF2);
WELCH_PVALUE=2*(1-PROBT(ABS(WELCH_T),WELCH_DF));
PROC PRINT;
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Appendix E (Continued)

stderr2=summary2$coefficients[2,2]
df2=summary2$df[2]
mse2=summary2$sigma^2
#WLS
wlsw=c(rep((df1-2)/(df1*mse1),n1),rep((df2-2)/(df2*mse2),n2))
summary_wls=summary(lm(y~1+x+z+x:z,weights=wlsw))
print('WLS')
print(summary_wls$coefficients)
#WELCH
welchvar=stderr1^2+stderr2^2
aps1=(stderr1^2)/welchvar
welch_t=(betah1-betah2)/sqrt(welchvar)
welch_df=1/((aps1^2)/df1+((1-aps1)^2)/df2)
welch_pvalue=2*(1-pt(abs(welch_t),welch_df))
print('Welch Procedure')
print(c('Welch_t','Welch_df ','Welch_pvalue'))
print(c(welch_t,welch_df,welch_pvalue))
}

(Manuscript received March 27, 2008; 
revision accepted for publication August 29, 2008.)
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