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Abstract

In this paper, we study dynamic behavior of an overlapping generations model under three different expectations: perfect foresight,
myopic expectations and adaptive expectations. We show that economic transition under myopic or adaptive expectations is very
different from that under perfect foresight. When agents are perfectly foresighted, dynamics is simple, with a unique steady state
that is globally attracting. However, cycles and chaotic motion can appear under myopic and adaptive expectations. We study the
possibility of Li–Yorke chaos under myopic expectations and entropic chaos under adaptive expectations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

One problem in an overlapping generations (OLG) model with capital accumulation is how agents form future
expectations when making inter-temporal decisions. Traditional models usually assume that agents are perfectly fore-
sighted. It is well-known that complex dynamics can easily arise in OLG models with perfect foresight. Galor and
Ryder (1989) showed that in a standard OLG model with capital accumulation and perfect foresight, multiple equilibria
may exist. Their study provided a sufficient condition for a unique, non-trivial steady state equilibrium by calculating
the third order derivatives of the utility and production functions.2

In reality, however, the requirement of perfect expectation does not seem reasonable. Agents are more likely to
construct their expectations based on current or past information, or simply nothing. We say that agents are myopic if
their expectations are formed arbitrarily. That is, they neither take the future into consideration nor learn something from
the past. Studies by Benhabib and Day (1982) and Michel and de la Croix (2000) exhibited that when agents are myopic,
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complex dynamics can arise in the OLG models. By introducing credit into a standard OLG model without capital
accumulation, Benhabib and Day showed that a constant credit expansion rate can generate “erratic” dynamics in prices
and credit real value. Michel and de la Croix provided an OLG model with capital accumulation and found that only when
the myopic dynamics is monotonic can a study of the myopic dynamics characterize the perfect foresight dynamics.
They gave a sufficient condition for the uniqueness of the non-trivial steady state by calculating the second order
derivatives of the utility and production functions. If the myopic dynamics is not monotonic (for example, if the inter-
temporal elasticity of substitution is high), then cyclical oscillations will emerge and chaotic dynamics can appear under
myopic expectations. In this situation, the economic transitions under myopic and perfect foresight are very different.

Besides myopic expectations, some studies assume a learning process whereby agents develop their expectations
(adaptive expectations); see Chiarella (1988), Hommes (1994, 2002), Brock and Hommes (1997), Grandmont (1985,
1998), and Chiarella and He (2003). Grandmont (1985) used an OLG model without capital accumulation, but with
elastic labor supply, to show that chaotic motion can arise when the curvature of a utility function is large due to
strong income effects. By considering adaptive expectations of the real interest rate in an OLG model with capital
accumulation, Longo and Valori (2001) studied the local properties around the steady states. Besides providing a
uniqueness condition of the non-trivial steady state, they also showed that under certain conditions, period-doubling
(saddle-node, Neimark–Hopf) bifurcation will occur and the dynamics will become complicated.

Following the literature of expectation formation in OLG models, we consider three different types of real interest
rate expectations: perfect foresight, myopic expectations and adaptive expectations, in an OLG model with capital
accumulation. Differing from previous studies, we focus on the global stability of equilibria and the possibility of chaotic
dynamics. Our results indicate that economic dynamics is very different under different expectation formations of the
real interest rate. We find that economic dynamics is simple under perfect foresight and can be rather complex under
the other two types of expectation formations. Furthermore, we show that the inter-temporal elasticity of substitution
is an important determinant to the complexity of economic dynamics under myopic expectations. Under adaptive
expectations, besides the inter-temporal elasticity of substitution, the complexity of dynamics also depends on the total
factor productivity and the learning process.

In an environment with perfect and myopic expectations, the economy can be represented by a one-dimensional
(1D) dynamical system (a first order difference equation in capital per capita). Under perfect foresight, the dynamics is
simple with a unique, non-trivial equilibrium that is a global attractor. However, under myopic expectations, economic
dynamics becomes quite complex when the inter-temporal elasticity of substitution is high. The bifurcation diagram
shown by Michel and de la Croix indicated that cycles and chaotic dynamics might emerge when the inter-temporal
elasticity of substitution is sufficiently high, but they only provided numerical results without any rigorous proof. To
complement the analysis of Michel and de la Croix, we provide another simple way to prove the uniqueness and
stability of the non-trivial equilibrium under perfect foresight and prove the presence of chaotic dynamics in the sense
of Li and Yorke when the inter-temporal elasticity of substitution is sufficiently high under myopic expectations.

When agents have adaptive expectations of the real interest rate, we obtain a second order difference equation in
capital per capita to represent a two-dimensional (2D) dynamical system of the economy. Because it is much more
difficult to study a 2D dynamical system than a 1D dynamical system, we apply a recent method developed by Juang
et al. (2005) and Li and Malkin (2006) to approximate a 2D dynamical system by using a 1D dynamical system
and identify the existence of entropic chaos (positive topological entropy) when both the inter-temporal elasticity of
substitution and the total factor productivity are sufficiently high and when agents rely heavily on current information
to form their expectations.

The remainder of this paper is organized as follows. The next section develops an OLG model with capital accumu-
lation and shows that dynamics under perfect foresight is always simple. Section 3 modifies the model by assuming
that agents have myopic expectations and shows that chaotic dynamics can appear. An OLG model with adaptive
expectations is analyzed in Section 4. The final section concludes our study. Proofs of a proposition and theorems are
given in the Appendices. Note that appendices are available on JEBO website (will not apear in har copy).

2. The model

We consider an infinite-horizon, discrete time OLG model. Agents live for two periods, each period covering
approximately 30 years, corresponding to young agents and old agents. The population grows at the rate of n. Each
agent is endowed with one unit of time in each period. Young agents use all the time for work to earn the real wage
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rates (wt) for consumptions (c1t) and savings (st).When young agents become old, they spend all the time for leisure
and consume (c2t+1) their savings from the previous period. We consider a CES utility function:

U(c1t , c2t+1) =

⎧⎪⎨
⎪⎩

c
1−(1/σ)
1t − 1

1 − (1/σ)
+ β

c
1−(1/σ)
2t+1 − 1

1 − (1/σ)
, if σ �= 1,

log c1t + β log c2t+1, if σ = 1,

(1)

where σ > 0 is the inter-temporal elasticity of substitution and β ∈ (0, 1) is the discount factor. In this paper, we assume
that σ �= 1 so that the expectation of the real interest rate can affect the saving decisions of agents.

The budget constraints for young and old agents are

c1t + st ≤ wt, (2)

c2t+1 ≤ Re
t+1st, (3)

where Re
t+1 represents the expected real interest rate. Hence, the young generation will maximize Eq. (1) subject to

Eqs. (2) and (3), together with

c1t ≥ 0 and c2t+1 ≥ 0.

The optimal saving decision given by the young agents is

st(wt, R
e
t+1) = wt

1 + β−σ(Re
t+1)1−σ

.

We use the Cobb–Douglas production function:

Yt = AKα
t L1−α

t , A > 0, α ∈ (0, 1),

where Kt is capital and Lt is labor used for production in period t. The parameters A and α represent the total factor
productivity and capital share, respectively.

The factor prices are

wt = A(1 − α)kα
t , (4)

Rt = Aαkα−1
t , (5)

where Rt represents the real interest rate and kt is the per capita capital. The capital market clearing condition implies
that kt+1 = (1/(1 + n))st . Hence, given the initial condition, the equilibrium is composed by the sequence {kt}t≥0 that
satisfies

kt+1 = 1

1 + n
st(wt, R

e
t+1) = wt

(1 + n)[1 + β−σ(Re
t+1)1−σ]

. (6)

First, we study the economy where agents are perfectly foresighted. That is,

Re
t+1 = Rt+1.

Then Eq. (6) can be written as

kt+1 = 1

1 + n
st(wt, Rt+1) = wt

(1 + n)(1 + β−σR1−σ
t+1 )

. (7)

Using Eqs. (4) and (5) to substitute factor prices in Eq. (7), the dynamics of capital per capita can be represented as
the following difference equation:

A(1 − α)kα
t − (1 + n)kt+1[1 + β−1(αβA)1−σk

(α−1)(1−σ)
t+1 ] = 0. (8)

In the following theorem, we show that the model under perfect foresight has simple dynamics. Although this result
has been shown in de la Croix and Michel (2002, pp. 45 and 46), we give another simple and explicit proof. While
they obtained the result with an implicit function, we prove it by explicit calculations.
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Fig. 1. The graphs of the diagonal line and the systems kt �→ kt+1 under perfect foresight (dashed) and under myopic expectations (solid) with (i)
σ = 1.45, (ii) σ = 5 and (iii) σ = 75, and A = 10, α = 0.34, β = 0.99530 and n = 1.02330 − 1.

Proposition 1. The dynamics kt �→ kt+1 in Eq. (8) has a unique steady state, and it is globally stable in (0, ∞).

Proof. See Appendix A in supplementary material. �
From the proof of Proposition 1, we can express kt+1 as a function of kt (that is, kt+1 = g−1(kt), where g−1

represents the inverse of the function g). The graphs of g−1 with σ = 1.45, 5 and 75 are drawn by the dashed curves
in Fig. 1(i)–(iii), respectively. Notice that the function g−1 is monotonic and the dynamics is simple. There is a unique
and stable positive steady state as demonstrated by Proposition 1. The curve will be stretched upward with an increase
in σ, and the value of the positive steady state will increase. However, changing σ will not affect the stability of the
non-trivial steady state.

3. Myopic expectations

Following Michel and de la Croix, we assume that when agents are myopic, they expect that the real interest rate in
the next period will be the same as the one in the current period. That is,

Re
t+1 = Rt. (9)

Combining Eqs. (6) and (9), we get that given the initial value of k0, the myopic expectation equilibrium consists of
the sequence {kt}t≥0 that satisfies

kt+1 = 1

1 + n
st(wt, Rt) = wt

(1 + n)(1 + β−σR1−σ
t )

.

Therefore, the dynamics of the economy can be expressed as the following equation:

kt+1 = fσ(kt), (10)

where fσ : (0, ∞) → (0, ∞) is a one-parameter family of functions defined by

fσ(x) = A(1 − α)xα

(1 + n)[1 + β−1(αβA)1−σx(1−α)(σ−1)]
(11)

with parameter σ. The economic dynamics kt �→ kt+1 in Eq. (10) is equivalent to the dynamics x �→ fσ(x). For
iterations, we denote the identity function by f 0

σ and inductively define f t
σ = fσ ◦ f t−1

σ for positive integer t. Thus
every equilibrium path {kt}t≥0 of Eq. (10) corresponds to the trajectory {f t

σ(x)}t≥0 of Eq. (11) with x = k0.
The function kt+1 = fσ(kt) with σ = 1.45, 5 and 75 are represented by the solid curves in Fig. 1(i)–(iii), respectively.

Fig. 1(i) shows that the function fσ is monotonic and the economy will converge to a positive steady state when σ is
small (σ = 1.45).3 In this case, the myopic dynamics can be used to approximate the economic behavior under perfect

3 A sufficient condition for the monotonicity of the function fσ is that α > (1 − α)(σ − 1). Hence, given the value of α, the function fσ is
monotonic if σ < (1 + (α/(1 − α))) and vice versa.
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Fig. 2. The bifurcation diagram on σ for Eq. (10) with A = 10, α = 0.34, β = 0.99530, and n = 1.02330 − 1.

foresight. However, Fig. 1(ii) and (iii) shows that the function fσ becomes non-monotonic when σ is large enough
(σ = 5 and 75). Furthermore, as σ increases, the curve will be stretched upward, the positive steady state will become
larger, and the dynamics of the function fσ will become complicated. Hence, even if the positive steady states of the
functions g−1 and fσ are the same, the dynamics will be different because of the non-monotonicity of the function fσ .
The bifurcation diagram with varying σ shown in Fig. 2 indicates that an increase in σ will induce cycles and chaotic
motion.

In the following theorem, we show that the dynamical system under myopic expectations exhibits chaotic motion
according to Li and Yorke (1975). But first, we give the definition of Li–Yorke chaos.

Definition 1. Let h : I → I be a map, where I is an interval. We say that h has Li–Yorke chaos on I if

1. h has periodic points of all periods; here by a periodic point p of period t, we mean that ht(p) = p and hi(p) �= p

for 0 < i < t;
2. there exists an uncountable set S ⊂ I such that

(i) if x, y ∈ S with x �= y then

lim sup
t→∞

|ht(x) − ht(y)| > 0 and lim inf
t→∞ |ht(x) − ht(y)| = 0;

(ii) if x ∈ S and y ∈ I is periodic then

lim sup
t→∞

|ht(x) − ht(y)| > 0.

The Li–Yorke Theorem (Theorem 1) says that for a continuous map h on an interval, if there is a point p such that

h3(p) < p < h(p) < h2(p),

then h exhibits Li–Yorke chaos. The existence of such an initial point p for the system fσ in Eq. (11) is shown in
Fig. 3(i).

Fig. 3(ii) indicates that for any parameter σ, the function fσ attains the same value at a particular point. Here, we
point out that, in fact, x∗ = (αβA)1/1−α; that is, for any σ1, σ2 > 0, we have that fσ1 (x∗) = fσ2 (x∗). This fact will play
a role in the proof of the following theorem, which gives a sufficient condition of the existence of Li–Yorke chaos
under myopic expectations.



H.-J. Chen et al. / Journal of Economic Behavior & Organization 67 (2008) 48–56 53

Fig. 3. (i) The graphs of y = f75(x) and y = x, and the first three iterates of an initial point under f75; (ii) the graphs of fσ (x) with σ = 5, 15, 75
and A = 10, α = 0.34, β = 0.99530 and n = 1.02330 − 1.

Theorem 1. Let A > 0, 0 < α < 1, β > 0 and n > ((1 − α)/α) − 1 satisfy β1+α < ((1 − α)/α(1 + n))1+α <

β(1 + β)α. If σ is sufficiently large, then Eq. (10) exhibits Li–Yorke chaos.

Proof. See Appendix B in supplementary material. �

If the function fσ is monotonic, then we can use myopic dynamics to approximate the dynamic transition under
perfect foresight. However, if the function fσ of the myopic dynamics is non-monotonic, cycles will start to emerge
as σ increases as shown in Fig. 2. Theorem 1 provides a sufficient condition for the presence of chaos in the sense of
Li and Yorke, and it indicates that the inter-temporal elasticity of substitution plays an important role in determining
the existence of complex dynamics. When σ is large enough, the system gets into the region of Li–Yorke chaos.
The numerical example given by de la Croix and Michel (p. 50) with parameter values A = 20, β = 0.3, α = 1

3 and
n = 1.02530 − 1 satisfies the condition in Theorem 1 and will display Li–Yorke chaos.

We give a simple criterion for the existence of Li–Yorke chaos in the 1D dynamical system in this section. In the
next section, we study an OLG model with adaptive expectations and find that economic transition can be represented
by a 2D dynamical system. However, the existence of periodic points of period three implies that Li–Yorke chaos
works only in 1D dynamical systems but not for higher-dimensional dynamical systems. Hence, we consider entropic
chaos in the 2D dynamical system in the next section. Note that in 1D dynamical systems, the existence of Li–Yorke
chaos also implies the presence of entropic chaos. We consider Li–Yorke chaos instead of entropic chaos in the 1D
dynamical system because it is more convenient to verify and easier for us to use an approximation method to identify
the existence of entropic chaos in the 2D dynamical system in the next section. It is well-known that for 1D dynamical
systems, the topological entropy is positive if and only if there exists a periodic point of period that is not the powers
of 2. One may also use the criterion for entropic chaos in 1D dynamical systems, but this will cause the analysis to be
more complex than our current analysis when we approximate the 2D dynamical system by the 1D dynamical system.
For this reason, we study Li–Yorke chaos and entropic chaos under myopic and adaptive expectations, respectively.

4. Adaptive expectations

Following Longo and Valori, we consider a first order autoregressive adaptive expectation of the real interest rate.
That is, Re

t+1 is constructed based on current and past information with decreasing weights. With λ ∈ (0, 1), Re
t+1 is

represented by

Re
t+1 =

∞∑
i=0

λ(1 − λ)iRt−i = (1 − λ)Re
t + λRt. (12)
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Fig. 4. The bifurcation diagram on σ for Eq. (13) with A = 15, λ = 0.9, α = 0.34, β = 0.99530 and n = 1.02330 − 1.

Eq. (12) shows that Re
t+1 can be represented by Re

t and Rt with weights (1 − λ) and λ, respectively. An increase in
λ indicates that agents rely more and more heavily on the current information (Rt) when forming their expectations.
Notice that when λ = 1, agents have myopic expectations. Substituting Eq. (12) into Eq. (6), the dynamics of the
economy can be expressed as the sequence {kt}t≥0 that satisfies of the following difference equation for all t ≥ 0:

A(1 − α)kα
t+1 = kt+2(1 + n)

⎧⎨
⎩1 + β−σ

[
λαAkα−1

t+1 + (1 − λ)βσ/1−σ

(
A(1 − α)kα

t

(1 + n)kt+1
− 1

)1/1−σ
]1−σ

⎫⎬
⎭ . (13)

Eq. (13) implies that under adaptive expectations, the economic transition can be represented by the following 2D
dynamical system:

Fσ,λ(kt, kt+1) = (kt+1, gσ,λ(kt, kt+1)), (14)

where gσ,λ(kt, kt+1) = (A(1 − α)kα
t+1/((1 + n){1 + β−σ)[λαAkα−1

t+1 + (1 − λ)βσ/1−σ

((A(1 − α)kα
t /(1 + n)kt+1) − 1)1/1−σ]

1−σ}), and σ, λ are considered as parameters. Thus the Jacobian matrix of the
two-dimensional system in Eq. (14) is

DFσ,λ(kt, kt+1) =
⎡
⎣ 0 1

∂gσ,λ

∂kt

(kt, kt+1)
∂gσ,λ

∂kt+1
(kt, kt+1)

⎤
⎦ .

First, we give a local stability analysis of a steady state for the 2D dynamical system (Eq. (14)) by using the 1D
dynamical system (Eq. (10)) to approximate this system. Considering λ = 1, we have gσ,1(kt, kt+1) = fσ(kt+1); hence
the matrix DFσ,1(kt, kt+1) has two eigenvalues: 0 and f ′

σ(kt+1). In the 1D dynamical system kt+1 �→ fσ(kt+1), the
value of f ′

σ at a steady state (x̄) passes through −1 as σ increases. Hence, fσ has a period-doubling bifurcation
at some σ0 > 0; see Fig. 1. As σincreases, the map fσ undergoes a successive period-doubling bifurcation; see
Fig. 2. For the dynamics of the 2D dynamical system Fσ,λ, the continuity of the system in λ implies that there is
a steady state near (x̄, x̄) on the diagonal line for λ close to 1. As the parameter σ increases, the continuity of the
derivative gives us that DFσ,λ at the steady state has one eigenvalue passing through −1 and the other one passing
through 0 while both of them remain real valued. This indicates that the steady state gives up its stability to an
asymptotically stable periodic orbit of period 2. As the parameter σ increases further, the system undergoes a successive
period-doubling bifurcation. Fig. 4 presents the bifurcation diagram of Eq. (13) with varying σ. Moreover, because
eigenvalues will pass through −1 and 0 instead of 1, the scenario of Hopf bifurcation is not observed in our numerical
computation.

We give more remarks in Figs. 4 and 5. Fig. 4 shows that deterministic cycles and complex motion will occur with
an increase of σ. The parameter λ in Eq. (12) is the weight for adaptive expectations. Fig. 5 presents the bifurcation
diagram with varying values of λ. If λ is small enough, there will be a unique and stable positive steady state. Hence,
the adaptive expectations have a stabilizing effect on the local stability of the steady state. As λ increases, agents will
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Fig. 5. The bifurcation diagram on λ for Eq. (13) with A = 15, σ = 75, α = 0.23, β = 0.99530, and n = 1.02330 − 1.

put a higher weight on the current real interest rate when forming their expectations, and complex dynamics starts to
emerge when λ is large. When λ = 1, the system reduces to the one-dimensional model with myopic dynamics.

We give a rigorous proof for the existence of such chaotic dynamics by using the 1D dynamical system (Eq. (10))
under myopic expectations to approximate the 2D dynamical system (Eq. (13)) under adaptive expectations. First, we
recall the definitions of topological entropy and entropic chaos; refer to Robinson (1999).

Definition 2. Let g : X → X be a continuous map on a space X with metric d. For n ∈N and ε > 0, a set S ⊂ X

is called an (n, ε)-separated set for g if for every pair of points x, y ∈ S with x �= y, there exists an integer k with
0 ≤ k < n such that d(gk(x), gk(y)) > ε. The topological entropy of g is defined to be

htop(g|X) = lim
ε→0,ε>0

lim sup
n→∞

log(max{#(S) : S ⊂ X is an (n, ε) − separated set for g})
n

,

where #(S) is the cardinality of elements of S.
We say that g has entropic chaos on X if htop(g|X) > 0.

Topological entropy has played a fundamental role in the theory of chaos. Its concept is a mathematical formulation
of exponential divergence of nearby initial conditions. It describes the total exponential complexity of the orbit structure
with a single number in a rough but expressive way. The topological entropy is positive for chaotic systems and is zero
for non-chaotic systems.

In the following theorem, we give a sufficient condition for the existence of entropic chaos under adaptive expec-
tations.

Theorem 2. Let 0 < α < 1, n > ((1 − α)/α) − 1, and β > 0 with β1+α < ((1 − α)/α(1 + n))1+α < β(1 + β)α. If σ

and A are sufficiently large, then for all λ < 1 n ear 1, Eq. (13) exhibits entropic chaos.

Proof. See Appendix C in supplementary material. �
Theorem 2 provides a sufficient condition for the presence of entropic chaos under adaptive expectations. In fact, it

shows that chaotic motion of the dynamical system under adaptive expectations is inherited from the chaotic behavior
of the dynamical system under myopic expectations. This result differs from findings in the cobweb models where
adaptive expectations may generate chaos while myopic expectations only cause simple dynamics (see Chiarella, 1988;
Hommes, 1994). Furthermore, our study shows that the presence of entropic chaos in an OLG model under adaptive
expectations requires that the inter-temporal elasticity of substitution and the total factor productivity are sufficiently
high and the expectations heavily depend on the current information.

5. Conclusion

In this paper, we study economic transition in an OLG model with capital accumulation under three different types
of expectations: perfect foresight, myopic expectations and adaptive expectations. We show that only simple dynamics
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occurs under perfect foresight. However, the dynamics may become complex under myopic and adaptive expectations.
Under myopic expectations, our results indicate that cycles will emerge as the inter-temporal elasticity of substitution
increases and chaotic dynamics can occur when the inter-temporal elasticity of substitution is large enough. Under
adaptive expectations, the inter-temporal elasticity of substitution and the weight of past information when forming
expectations are important to determine the complexity of economic dynamics. By analyzing dynamics of different
expectations in an OLG model with capital accumulation, our work highlights the importance of the expectation
formation when constructing inter-temporal macroeconomic models. A study of different expectations in an optimal
growth model would be an important future work.
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