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Abstract Since there is no analytic solution for arithmetic average options until
present, developing an efficient numerical algorithm becomes a promising alternative.
One of the most famous numerical algorithms is introduced by Hull and White (J Deriv
1:21-31, 1993). Motivated by the common idea of reducing the nonlinearity error in
the adaptive mesh model in Figlewski and Gao (J Financ Econ 53:313-351, 1999) and
the adaptive quadrature method, we propose an adaptive placement method to replace
the logarithmically equally-spaced placement rule in the Hull and White’s model by
placing more representative average prices in the highly nonlinear area of the option
value as the function of the arithmetic average stock price. The basic idea of this method
is to design a recursive algorithm to limit the error of the linear interpolation between
each pair of adjacent representative average prices. Numerical experiments verify the
superior performance of this method for reducing the interpolation error and hence
improving the convergence rate. To show that the adaptive placement method can
improve any numerical algorithm with the techniques of augmented state variables
and the piece-wise linear interpolation approximation, we also demonstrate how to
integrate the adaptive placement method into the GARCH option pricing algorithm
in Ritchken and Trevor (J Finance 54:377-402, 1999). Similarly great improvement
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of the convergence rate suggests the potential applications of this novel method to a
broad class of numerical pricing algorithms for exotic options and complex underlying
processes.

Keywords Arithmetic average options - Interpolation error - Equally-spaced
placement - Adaptive placement

JEL Classification G13

Asian options are path dependent securities whose payoffs depend on the average of
the underlying prices during the option life. They were originally issued in 1987 by
Bankers Trust Tokyo on crude oil contracts and hence with the name “Asian” option.
The averaging method can be either the arithmetic or geometric average. In addition,
a further categorization of these options relies on either the price of the underlying
asset at maturity or the strike price being replaced by the average price.

In practice, Asian options are appropriate to meet the hedging needs of users of
commodities, energies, or foreign currencies who will be exposed to average prices
during a future period. Meanwhile, since the volatility for the average of the underlying
prices is inclined to be lower than the volatility for the underling prices, Asian options
tend to be less expensive than corresponding vanilla options and are therefore more
attractive for some investors. In addition, Asian options are also useful in thinly-
traded markets to prevent price manipulation. To this date, more and more financial
instruments include the average feature, for example, structure notes issued by many
international banks, the contracts of convertible bonds in Taiwan, etc. Therefore, an
efficient pricing model is indispensable for financial institutions to manage these sorts
of products.

However, the average feature complicates the evaluation of Asian options. If the
underlying price process follows the geometric Brownian motion, the analytical pri-
cing formula for geometric average options is feasible since the product of lognor-
mally distributed prices remains to follow the lognormal distribution. Based upon
this observation, Kemna and Vorst (1990) propose an analytical solution for Euro-
pean geometric average options. Unfortunately, it is still analytically intractable to
price arithmetic average options due to the lack of proper mathematical representation
for the sum of lognormal random variables. Thus many researches were devoted to
deal with the distribution of the sum of lognormal random variables and derive the
approximate pricing formulae for arithmetic average options. Several works along this
direction include the fast Fourier transformation in Carverhill and Clewlow (1990), the
Edgeworth series expansion in Turnbull and Wakeman (1991), the reciprocal Gamma
distribution in Milevsky and Posner (1998), the Laplace transform inversion in Geman
and Yor (1993), etc.

The tree-based model is also a possible alternative to value arithmetic average
options by introducing the arithmetic average price as a path-dependent state variable.
The naive pricing method on the tree-based model, which tracks all possible arithmetic
average prices reaching each node, is able to derive exact option values for arithme-
tic average options without any interpolation approximation. It is worth noting that
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although exact option values from the naive pricing method are free of interpolation
errors, they are still susceptible to the discretization error, which is a trait of the tree-
based model. While the time step becomes infinitesimal in length, exact option values
will converge to diffusion limit option values.

Unfortunately, the naive pricing method is intractable due to the exponential growth
of the number of possible arithmetic average prices with respect to the number of
time steps in the tree-based model. To deal with this problem, Dai and Lyuu (2002)
develop a trinomial-tree model to generate exact arithmetic average option values by
reducing the complexity of recording all possible arithmetic average prices. Although
the computational complexity of their model is proven to be sub-exponential with
respect to the number of time steps, it is still intractable to price arithmetic average
options via this model when the number of time steps is large.

In contrast, instead of keeping track of all possible arithmetic average prices,
Hull and White (1993) introduce representative average prices to be logarithmically
equally-spaced placed between the maximum and minimum arithmetic average prices
for each node.! In addition, the piece-wise linear interpolation is adopted to approxi-
mate the corresponding option values for nonexistent average prices during the phase
of backward induction. As a consequence, the interpolation error emerges and pricing
results might not converge to exact option values unless the number of representative
average prices for each node is large enough and well collocated with the number of
time steps in the tree-based model, see Forsyth et al. (2002). On the other hand, Lin
and Ritchken (2006) propose an option pricing algorithm on the tree-based model with
an augmented path-dependent state variable. Without the need of a large number of
representative values of the path-dependent state variable at each node, they suggest
tracking only the conditional expectation of the path-dependent state variable for each
node. The success of their algorithm to generate convergent option values is mostly due
to employing the conditional expectation of the path-dependent state variable which
is strongly related with the option value under some requisite conditions.”

Along with the line of Hull and White (1993), Neave and Turnbull (1994) suggest
using the conditional frequency distribution to adjust the number of representative
average prices at each node. In addition, Cho and Lee (1997) replace the uniform
allocation of the number of representative average prices in the Hull and White’s model
with the distribution of the number of possible geometric average prices. Klassen
(2001) and Forsyth et al. (2002) propose revised versions of the algorithm of Hull and
White. In their setting, a set of representative average prices at each node is considered,
and the grid space for the logarithmically arithmetic average prices is suggested to be
a function of the time to maturity, the number of time steps, and the volatility of the
stock price process.

U In fact, taking the maximum and minimum arithmetic average prices of each node into account is a
revised version of the Hull and White’s model. In their original paper, the representative average prices are
the same for all nodes at each point in time, and they are logarithmically equally-spaced distributed between
the maximum and minimum arithmetic average prices for that point in time.

2 As long as the transition probabilities of the tree model and the evolution process of the path-dependent
state variable are linear in the path-dependent state variable, they prove that the results generated by this
algorithm can converge to diffusion limit option values when the time step becomes infinitesimal in length.
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The aforementioned works are dedicated to reducing the interpolation error by de-
vising more efficient non-uniform allocation rules to replace the uniform allocation
rule in Hull and White (1993). The difference between the uniform and non-uniform
allocations is shown in Fig. 1, where the numbers of representative average prices
are M and M (i, j) for node(i, j) in the uniform and non-uniform allocation rules,
respectively. With the uniform allocation rule being replaced, however, the logarith-
mically equally-spaced placement rule in Hull and White (1993) is still retained in
these works.

In this paper, the interpolation error is minimized in a novel way. Aiming at simul-
taneously guaranteeing the convergence of the interpolation error and improving the
efficiency of the Hull and White’s model, the adaptive placement method is developed
to replace the logarithmically equally-spaced placement rule. Our method argues that
more representative average values are needed in the area around which the option
value as a function of the arithmetic average prices is with higher degree of curvature,
and fewer representative average values are placed where the option value function is
with lower degree of curvature. To achieve this goal, the adaptive placement method
is actually designed to govern the error of the linear interpolation between each pair of
adjacent representative average prices under a limit criterion. In Fig. 1, the logarith-
mically equally-spaced placement rule and our adaptive placement rule are illustrated
as well.

On the other hand, instead of considering the range between the maximum and
minimum arithmetic average prices at each node, more compact ranges for the arith-
metic average price at each node are derived in Aingworth et al. (2000) and Dai et al.
(2002) for European and American arithmetic average options, respectively. Both these
methods are proven to reduce the linear interpolation error effectively. Nevertheless,
the numerical results in this paper demonstrate that the ideas of the algorithms of
Aingworth et al. (2000) and Dai et al. (2002) are implicitly incorporated in our adap-
tive placement method as natural byproducts.

In addition, there are another two kinds of methods with different points of view to
deal with arithmetic average options. First, Chalasani et al. (1998) and Chalasani et al.
(1999) introduce the concept of “nodelet” that the paths reaching a node is partitioned
such that each nodelet represents the paths with the same geometric average price from
time zero to that node. During the phase of backward induction, the Hull and White’s
algorithm is applied nodelet by nodelet to finding the upper bound of the value of
the arithmetic average option. Meanwhile, together with the technique of the iterative
expectation and the Jensen’s inequality, the lower bound for the arithmetic average
option can be derived as well. Second, in a recent work of Costabile et al. (2006),
a recursive algorithm based on the binomial tree is proposed to choose representative
average prices among all possible arithmetic average prices for each node. Their results
show that employing this algorithm together with the piece-wise linear interpolation
for option values of nonexistent average prices can produce sufficiently accurate values
for arithmetic average options. Our numerical results show that the adaptive placement
method can generate more accurate arithmetic average option values than these two
kinds of methods without difficulty under a moderate average number of representative
average prices per node.

@ Springer



Adaptive placement method 87
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Fig. 1 The illustration of the uniform and non-uniform allocations and logarithmically equally-spaced
and our adaptive placement rules. Hull and White (1993) adopt the uniform allocation, i.e. the numbers of
representative average prices for all nodes are the same to be a constant integer M. Many modifications
of the Hull and White’s model focus on devising more efficient non-uniform allocation rules, i.e. they
adjust the number of representative average prices for node(i, j), M (i, j), depending on the probability
reaching the underlying node, the time to maturity of the underlying node, the number of time steps, and
the volatility of the underlying process. Nevertheless, in the Hull and White’s model and its modifications,
it is still common that M (or M (i, j)) representative average prices at each node are distributed following
the logarithmically equally-spaced placement rule. In contrast, our adaptive placement model places repre-
sentative average prices proportional to the degree of curvature so that the linear interpolation error can be
minimized effectively and an efficient non-uniform allocation of representative average prices over the tree
is achieved automatically
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In fact, the adaptive placement method can be extended to all numerical algo-
rithms with the techniques of augmenting state variables and applying the piece-wise
linear interpolation in the backward induction. The GARCH option pricing models in
Ritchken and Trevor (1999) and Cakici and Topyan (2000) are typical examples for
this kind of algorithm. In order to demonstrate the generality of our adaptive placement
method, we also apply the adaptive placement method to the Cakici and
Topyan’s GARCH option pricing model. The numerical results still exhibit the im-
pressive efficiency improvement for the adaptive placement method to deal with the
GARCH option pricing problem.

This paper is organized as follows. Section 1 describes the arithmetic average
options and the famous Hull and White’s model. Our adaptive placement method will
be elaborated in Sect. 2. In Sect. 3, extensive numerical experiments for pricing arith-
metic average options are conducted to verify the superior performance of our adaptive
placement method to existing methods. In addition, we examine the performance of
our adaptive placement method for the GARCH option pricing problem in Sect. 4.
Section 5 offers the conclusion.

1 Arithmetic average options and the Hull and White’s model

In this paper, a non-dividend-paying underlying asset in the risk neutral world is
considered and its price is assumed to follow the geometric Brownian motion

ds,
Tt =rdt +odZ;,

t

where S; denotes the stock price at time ¢, r is the risk free rate, o is the volatility of
the asset price, and Z; is the Wiener process in the risk neutral world. Suppose that the
stock price is sampled at the time points tp = 0 < #] < --- < ty = T during the life
of the arithmetic average options. The arithmetic average price from time #; to time ¢
is defined as

/

l—i-_l ZSti, where t; <t < f141.
i=0

A(r) =
Here we focus on the pricing of the fixed-strike-price arithmetic average call whose
payoff at time 7 is max (A (#) — X, 0), where X is the strike price. The extension to other
types of Asian options is straightforward. Furthermore, the stock price is assumed to
be sampled periodically, and therefore #; = i At with At =T/N.

In the field of option pricing, the binomial-tree model introduced by Cox et al.
(1979) is viewed as a useful tool to deal with European-style as well as American-
style options. This model divides the time horizon of an option into N discrete time
steps and discretizes the stock prices at each time step. In Fig. 2 , it is shown that the
stock price at time step 0 is So (at node(0, 0)), and the stock price can either move
up to Sou (at node(1, 0)) with probability p = (¢"»" — d)/(u — d) or down to Spd
(at node(1, 1)) with probability 1 — p at the first time step, where u = eVl and
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Amax (i7 j)

Fig. 2 The paths corresponding to the maximum and minimum arithmetic average prices for node(i, j).
The stock price today is denoted by Sp, and the stock price can either move up to Sou or down to Spd at
the first step. Likewise, each stock price can either move up or move down at subsequent time steps. The
node(i, j) stands for the node at time point i with j cumulative down movements and Sou’~/d/ is the
corresponding stock price. Apax (i, j) and A, (i, j) correspond to the maximum and minimum arithmetic
average prices among all possible paths from node(0, 0) to node(i, j)

d = e~V are the magnitudes of the upward and downward movements. Similarly,
each stock price can either move up or move down at subsequent time steps.

One of the most famous binomial-tree-based models to price arithmetic average
options efficiently is proposed by Hull and White (1993). In their model, to avoid
tracking all possible arithmetic average prices of each node, only the maximum and
the minimum arithmetic average prices among all traversed paths for each node are
calculated, which is illustrated in Fig. 2. For node(i, j) with the stock price Sou' =/ dJ
for0 < j <i < N, the maximum arithmetic average price is contributed by a price
path starting with i — j consecutive up movements followed by j consecutive down

movements, whose value can be derived by A, (i, j) = (So%_;+I +So-utI-d-

1—dj )/ (i 4+ 1). Likewise, the value of the corresponding minimum arithmetic average
price can be calculated from a price path starting with j consecutive down movements

followed by i — j consecutive up movements: A,,;, (I, j) = (So% +So-d/u-
526+ 1),

Once equipped with the knowledge about the maximum and minimum arithmetic
average prices for each node, representative average prices are arrayed logarithmically
equally-spaced from the maximum to the minimum arithmetic average prices for each
node via the following formula.’

3 In this paper, for the ease of the comparisons between the Hull and White’s model and other examined
methods, we do not follow the original setting of introducing a fixed parameter & to represent the minimal
movement of the average price in Hull and White (1993). Instead we set the number of representative average
prices for each node to be M, which corresponds to the value of & being In((Apmax (i, j)/(Amin(, j))/
(M — 1) for each node.
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node(i +1, j)
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A +1,j+1k,) Cli+1,j+Lk,)

A+ j+1L,M)=A, (i+1j+1) CG+1j+1,M)

Fig. 3 Calculate the continuation value for each representative average price at node(i, j). Each rectangle
represents the data structure for each node on the binomial tree, in which the first row is the stock price for
that node, and the following rows contain the pairs of representative average prices and their corresponding
option values. For each representative average price A(i, j, k) at node(i, j), it is necessary to calculate
the evolutions of the arithmetic average price A, and Ay first and then to derive the corresponding option
values Cy, and C; by the piece-wise linear interpolation approximation in Eq. 1. Finally, the continuation
value for A(i, j, k) is C(i, j k) = e "2 (p - Cy + (1 — p) - Cy)

M—-1

. M—k . .
A, j, k) = exp(mln(Amax(l, )+ In(Auin @, J))), fork=1,..., M.

After building the tree and the table of representative average prices for each node,
we decide the payoff of each representative average price of the nodes at maturity
first. Next, the option value is derived via the backward induction procedure from
node(i + 1, j) and node(i + 1, j 4+ 1) to node(i, j), which is illustrated in Fig. 3.
For A(i, j, k), the evolutions of the arithmetic average price at the next point in time
are A, = ((i + DAG, j, k) + Sou'™' = d7) /(i +2) and Ag = ((i + DAG, j, k) +
Soui+l—(j+l)d(j+l))/(i +2).
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For any average price A € [A], Az], where A1 and A; stand for any pair of adjacent
representative average prices in the table of representative average prices at some node,
the corresponding option value for A can be approximated from the linear interpolation
method,

A—Ap A— A

c=c "2 ¢, 221
VA A, A, A

(H
where C1 and C; are corresponding option values for A; and A;. Suppose A, is inside
therange [A(i + 1, j, k), A(i + 1, j, ky, — 1)]. The corresponding option value C,, for
A, can be approximated by setting C; = C(i + 1, j, k,), Co = C({ + 1, j, k, — 1),
Al =A>G+1,j,ky), Ao =C(i+1,j,k, —1),and A = A, in Eq. 1. Similarly, the
corresponding option value Cy for Ay € [AG+ 1, j+ 1,kg), AG+ 1, j+1,kqg—1)]
can be approximated following the same rule.
Finally, the continuation value for A(i, j, k) is

Cli, j,k)=e " (p-Cy+(1—p)-Cy. 2)

If the feature of early exercise is taken into account, the option value corresponding
to A(i, j, k) becomes

max(C(, j, k), A(i, j, k) — X). 3)

Following the above procedure for all A(Z, j, k) backward over the binomial tree, the
value of C (0, 0, 1) will be the arithmetic average option price derived by the Hull and
White’s model.

2 Our model

The goal of our adaptive placement method is to intelligently reduce the interpolation
error for pricing arithmetic average options in a tree-based model. Motivated by the
common idea of dealing with the nonlinearity error in the Figlewski and Gao’s (1999)
adaptive mesh model and the adaptive quadrature method,* our method differs from
the Hull and White’s method in the sense that more representative average prices are
placed in the range where the option value function is with higher degree of curvature
and fewer are placed in the range where the option value function is with lower degree
of curvature.

The details of our adaptive placement method are explained as follows. For the
linear interpolation approximation in Eq. 1, by the mean-value theorem, the linear
interpolation error caused from the nonlinearity of the option value functionin [A, A>]
can be expressed as

c"®)

T (A— Ay - (A= Aj), for some number £ between A; and Aj. 4)

4 See Sect. 4.6 in Faires and Burden (2003) for reference.
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Our adaptive placement method is designed to examine whether the error of the linear
interpolation between each pair of adjacent representative average prices in Eq. 4 is
below some pre-specified limit. If the error of the linear interpolation inside the range
of [A1, A;] is not negligible, i.e. C” (&) is too large or the distance between A; and
A» is too far, we divide [A, A>] into finer subsets by inserting an extra representative
average price in between and then repeat the same procedure of examining the error of
the linear interpolation for each subset. Once the value of the error term between any
pair of adjacent representative average prices is smaller than the pre-specified limit,
termed the second order error criterion in our method, this examining-and-dividing
process is stopped.

In practice, another constant termed the precision criterion is also defined to
represent the threshold of negligible refinement for both average prices and option
values in our method. The above examining-and-dividing process is also terminated
when the difference between adjacent representative average prices or their correspon-
ding option values is smaller than this minimum criterion. The purpose of introducing
the precision criterion is to prevent possibly infinite dividing caused from the non-
differentiable point during the examining-and-dividing process.

Within each examination of the linear interpolation error, we approximate C” (£) in
Eq. 4 by the second order numerical differentiation. For any pair of adjacent represen-
tative average prices Aj and A, the midpoint A = (A + A>)/2 is employed together
to approximate the error term of the linear interpolation for this range. The approxima-
tion for Eq. 4 in our adaptive placement method is described in the following pseudo
code.

Function Error Term of the Linear Interpolation
A1+Ar

/* Given the pairs of the arithmetic average price and its corresponding option value (A, Cp), (—5—= = A, Cy),
and (A,, C,), approximate the error term (C”(£)/2!)(A — A1)(A — Ap) */

input: A1, C1, A, Cy, Ap, Cy
real: C_double_prime

if (Abs(C1 — Cp) or Abs(A| — Ap) < precision criterion)
Error Term of the Linear Interpolation := 0;
else {
/IC" (£) is approximated by the second order numerical differentiation
C_double_prime:= (C1 — C4)/(A] — A) — (Ca — C2)/(A — A2))/(0.5 x (A} — A2);
Error Term of the Linear Interpolation := (C_double_prime/2!) x (A — Ay) x (A — Ap);
}

End

The procedures for the tree-building and the backward induction of our adaptive
placement method are described as follows. During the phase of building the stock
price tree, all possible arithmetic average prices for the nodes at the first four points in
time are recorded since there are only a few possible arithmetic average prices for those
nodes.> For other nodes, only the maximum and minimum arithmetic average prices
for each node are recorded as representative average prices initially. In addition, if the
strike price is within the range between the maximum and minimum arithmetic average
prices, it is inserted into the table of representative average prices. This is because the

5 Inour settings, the first four points in time are #(, ¢, 2, and #3. For the binomial tree model, the number
of possible arithmetic average prices reaching each node at the first four points in time is not larger than
three.
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linear interpolation approximation performs poorly near the highly curved area of the
option value function, and the area with the highest degree of curvature is usually
near where the arithmetic average price equals the strike price. The results in our
preliminary study show that this small change does help reducing the interpolation
error for pricing arithmetic average options.

In our model, the tables of representative average prices for all nodes are mainly
constructed during the phase of backward induction. For each node, the goal of adap-
tively placing representative average prices is to let the range between each pair
of adjacent representative average prices be small enough such that the linear in-
terpolation error throughout the range is smaller than the second order error crite-
rion. To be more explicit, during the backward induction phase, for any node(i, j),
the linear interpolation error for each pair of adjacent representative average prices
[AG, j, k), AG, j, k + 1)1 is examined. If the approximate error term of the linear
interpolation for (A(i, j, k), C(i, j, k)),(A = (A(, j, k)+AG, j,k+1))/2,Ca), and
(AG, j,k+1),Ca, j, k+ l))7 is smaller than the second order error criterion, the
linear interpolation error for the range [A(i, j, k), A(i, j, k + 1)] is considered to be
small enough and no further processing will be conducted. Otherwise, the pair (A, Cy4)
is inserted into the table of representative average prices of node(i, j), and the subsets
[A(, j, k), Al and [A, A(i, j, k + 1)] are examined separately to check whether the
linear interpolation errors inside them are small enough. The above examining-and-
dividing process is repeated until the approximate error of the linear interpolation for
every pair of adjacent representative average prices is less than the second order error
criterion.

We take an example to illustrate the examining-and-dividing process step by step.
Suppose So = X = 50, N = 40, T = 1 year, r = 10%, o0 = 80%, and both
the second order error criterion and the precision criterion are 0.5. For pricing a
European arithmetic average call, the examining-and-dividing process of node(37, 25)
is sketched in Fig. 4. Inside the black frame for each step, there are three pairs of
representative average prices and the corresponding call values, and we also report
the linear interpolation error when taking these three pairs of representative average
prices and option values as the inputs to the Function Error Term of the Linear
Interpolation.

For the initial table of representative average prices of node(37, 25), the maxi-
mum and minimum arithmetic average prices are 83.4062 and 12.3309, and the strike
price 50 is inserted as a representative average price since 50 is within the range
[12.3309, 83.4062]. The call values for these three average prices computed by the
Hull and White’s model in Sect. 1 are 28.1577, 0, and 0, respectively. In addition, the

6 Here we abuse the notations A (i, j,k)yand C(i, j, k) slightly, which are borrowed from the aforementioned
Hull and White’s model. Different from the previous setting in which & is an index number from 1 to a
constant number M, k is from 1 to M (i, j) in our adaptive placement method. In fact, after building the
stock prices tree, if the strike price is inserted into the table of representative average prices, the number
of representative average prices M (i, j) equals 3. Otherwise, the number of representative average prices
M(i, j)is 2.

7 We derive the corresponding option values C(i, j, k), C4, and C(i, j, k + 1) following the Hull and
White’s algorithm, i.e. via Egs. 2 and 3.
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Initial table for node(37,25) (M(37,25)=3) Step 1. (M(37,25)=4) Step 2. (M(37,25)=4)
Average  Call Average _ Call__ Interpolation error Average _ Call __Interpolation error
83.4062 281577 83.4062  28.1577 834062 28.1577
50.0000  0.0000 66.7031 13.2048 0.8740 | (inserted) 750546 20. 3.2452E-15| (not inserted)
12,3309 0.0000 50.0000 _0.0000 66.7031 13,
123309 0.0000 50.0000  0.0000
12,3309 0.0000
Step 3. (M(37,25)=5) Step 4. (M(37,25)=5) Step 5. (M(37,25)=6)
Average  Call Interpolation error Average  Call  Interpolation error Average  Call Interpolation error
83.4062  28.1577 83.4062  28.1577 83.4062  28.1577

66.7031 132048 66.7031 667031 13.2048
583515  5.7284 0.8740 | (inserted) 62.5273 3.7088E-15|(not inserted) | 58.3515  5.7284
50.0000__0.0000 58.3515 54.1758  2.1788 0.6853 | (inserted)
12.3309 0.0000 50.0000  0.0000 50.0000__ 0.0000

12.3309  0.0000 12.3309  0.0000

Step 6. (M(37,25)=6) Step 7. (M(37,25)=6) Step 8. (M(37,25)=6)
Average Call  Interpolation error Average Call Interpolation error Average Call  Interpolation error
83.4062 28.1577 83.4062 28.1577 83.4062 28.1577
66.7031 13.2048 66.7031  13.2048 66.7031  13.2048
58.3515 583515 5.7284 583515 5.7284
56.2637 9.4341E-02|(not inserted) 54.1758 2.1788 l 54.1758 2.1788
54.1758 52.0879  0.7221 0.3673 |(not inserted) | 50.0000  0.0000
50.0000  0.0000 50.0000__0.0000 31.1655  0.0000 0.0000 |(not inserted)
12.3309 0.0000 12,3309 0.0000 12.3309 0.0000
Final table for node(37,25) (M(37,25)=6) Call value
Average  Call 0
834062 28.1577 55
667031 13.2048 2
583515 5.7284 s
54.1758  2.1788 0
50.0000  0.0000 5
12.3309 0.0000 0
0 10 20 30 40 50 6 70 8 9

Average stock price

Fig. 4 The numerical example for the examining-and-dividing process. The values of parameters in this
example are S = X =50, N =40, 7 = 1,r = 10%, 0 = 80%, and the second order error criterion
and the precision criterion are both 0.5. The examining-and-dividing process for node(37, 25) is illustrated
step by step in this figure. Each table stands for a one-step change of the table of representative average
prices and their corresponding call values for node(37, 25). Inside the black frame for each step, there
are three pairs of representative average prices and the corresponding call values, and we also report the
linear interpolation error when taking these three pairs of representative average prices and option values
as the inputs to the Function Error Term of the Linear Interpolation. Once the approximate linear interpolation
error is larger than the second order error criterion 0.5, the pair of the representative average price and
the call value in boldface will be inserted into the table of representative average prices of node (37, 25),
and the number of representative average price for that node, M (37, 25), is increased by one. In the final
table, the approximate linear interpolation error for any pair of adjacent representative prices is bounded
above by the second order error criterion. In addition, the option value as the function of the average price
is plotted as well. It is apparent that the above examining-and-dividing process will place representative
average prices proportional to the degree of the curvature of the option value as a function of the arithmetic
average price

number of representative average prices for node(37,25) is M (37, 25), which is set
to be three after the tree-building procedure.

When the backward induction procedure progresses tonode(37, 25), the examining-
and-dividing process of our adaptive placement method is described as follows. In
step 1, the pairs of (83.4062, 28.1577), ((83.4062 + 50)/2 =66.7031, 13.2048), and
(50,0) are as the inputs to the Function Error Term of the Linear Interpolation to
approximate the linear interpolation error for the range between 83.4062 and 50. Be-
cause the approximate linear interpolation error 0.8740 is larger than the second order
error criterion 0.5, the pair of the average price 66.7031 and the corresponding call
value 13.2048 should be inserted into the table of representative average prices. In
the meanwhile, the number of representative average prices for this node, M (37, 25),
increases by one to become four.
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In step 2, the approximate linear interpolation error in the range between 83.4062
and 66.7031 is 3.2452E—15, which is smaller than the second order error criterion 0.5.
Therefore, we do not insert the pair of the average price 75.0546(=(83.4062 + 66.7031)
/2) and the corresponding option value 20.6813 since the linear interpolation works
pretty well in the range between 83.4062 and 66.7031. Thus, the value of M (37, 25)
remains to be four. For steps 3 to 8, once the approximate linear interpolation error for
the three pairs of representative average prices and call values in the black frame is
larger than the second order error criterion 0.5, the pair of the representative average
price and the call value in boldface is inserted into the table of representative average
prices of node(37, 25), and the number of representative average price for that node,
M (37, 25), is increased by one. As a consequence, the approximate linear interpola-
tion error for any pair of adjacent representative prices in the final table is bounded
above by the second order error criterion.

In addition, the option value as the function of the average price is also plotted
in Fig. 4. It is apparent that the above examining-and-dividing process will balance
the distribution of placed representative average prices so that it is proportional to the
degree of the curvature of the option value as a function of the arithmetic average price.
Since the performance of the piece-wise linear interpolation is poor around where the
option value function is with high degree of curvature, our algorithm places more
representative average prices in these areas to reduce the error of the piece-wise linear
interpolation. On the other hand, due to the satisfactory performance of the piece-
wise linear interpolation for dealing with the option value function with low degree of
curvature, our algorithm argues that less representative average prices placed in those
areas will be sufficient.

As to the nodes at the first four points in time, this examining-and-dividing process
is not necessary, and only the corresponding option values for all possible arithmetic
average prices of each node should be calculated. Finally, C(0, 0, 1) stands for the
value of the arithmetic average option.

3 Numerical results

This section provides extensive numerical results to study the characteristic and the
performance of our adaptive placement model. First, we take European as well as
American arithmetic average calls as examples to show the different characteristics
between our method and the classic Hull and White’s model. After that, the perfor-
mance comparison is conducted among our method, the Hull and White’s model, and
some methods proved to be efficient on pricing arithmetic average options, including
Aingworth et al. (2000), Dai et al. (2002), Chalasani et al. (1998), Chalasani et al.
(1999), and Costabile et al. (2006). The numerical results suggest that our adaptive
placement method is significantly superior to these methods in terms of the accuracy,
convergence rate, and computational time.

3.1 Comparisons with the Hull and White’s model

In this subsection, we present the comparison between the adaptive placement rule
and the logarithmically equally-spaced placement rule in the Hull and White’s model
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() The distribution of representative average prices for node(40, 20) at maturity

European Call Adaptive placement method European Call Hull and White's model
(American Call) (American Call)
50 50
40 40
30 30
20 20
10 10
0 L P L L ) 0 L L L )
0 20 40 60 80 100 0 20 40 60 80 100
Average stock price Average stock price

(b) The distribution of representative average prices for node(34, 13) (European arithmetic average call)

Adaptive placement method Hull and White's model
European Call European Call
50 50
40 40
30 30
20 20
10 10
0 L L L L s 0 L s s s )
0 20 40 60 80 100 0 20 40 60 80 100
Average stock price Average stock price

(c) The distribution of representative average prices for node(34, 13) (American arithmetic average call)

Adaptive placement method . Hull and White's model
American Call American Call
50 50
40 40
30 30
20 20
10 10
0 L L L L s 0 L L L L s
0 20 40 60 80 100 0 20 40 60 80 100
Average stock price Average stock price

Fig. 5 Comparisons of the distributions of representative average prices in the adaptive placement method
and the Hull and White’s model. For the readability of this figure, the values of parameters are specified
as: So = X =50, N =40,T = 1,r = 10%, 0 = 30%, the second order error criterion is 0.01, and
the precision criterion is 0.001. In addition, the number of representative average prices in the Hull and
White’s model is 20. According to the results in parts (a) and (b), it is apparent that our adaptive placement
method places more representative average prices in the area with higher degree of curvature, but the Hull
and White’s model always places representative average prices logarithmically equally-spaced between
the maximum and minimum arithmetic average prices. Furthermore, according to the results in parts (b)
and (c), different distributions of representative average prices are employed for American and European
arithmetic average options in the adaptive placement method, whereas in the Hull and White’s model,
the same distribution of representative average prices is used for both American and European arithmetic
average options
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in Fig. 5. The numerical settings for Fig. 5 are specified as: So = X = 50, N = 40,
T =1,r = 10%, 0 = 30%, the second order error criterion is 0.01, and the precision
criterion is 0.001. In addition, the number of representative average prices in the Hull
and White’s model is 20.

In Fig. 5a, for some node at maturity with the strike price between the maxi-
mum and minimum arithmetic average prices, it is easily found that there is no linear
interpolation error for both linear segments of the payoff function,® and therefore it
is not necessary to insert any representative average price in our adaptive placement
method. However, the Hull and White’s model still employs 20 representative average
prices for each node at maturity. For each linear segment, our method provides the
interpolated results as accurate as those in the Hull and White’s model, but around the
kink, our method strictly outperforms the Hull and White’s model unless the strike
price happens to be one of the representative average prices in the Hull and White’s
model.

In Fig. 5b, it is clear that the logarithmically equally-spaced placement rule in the
Hull and White’s model places too many representative average prices in the area with
low degree of curvature, but only a few representative average prices are needed in
our adaptive placement method to derive interpolated results with sufficient accuracy
in this area. On the contrary, to deal with the area with high degree of curvature, the
Hull and White’s model is inclined to generate unexpected large pricing errors, since
it disregards the significant magnitude of the nonlinearity error in this area.

In addition, it is our finding that in Fig. 5b, c, under the same value of the second
order error criterion, the American-style arithmetic average options will need more
representative average prices than the European-style ones, while there is no difference
for the Hull and White’s model to deal with the American and European arithmetic
average options. This is because more representative average prices are needed to
tackle the area around the early exercise boundary for American arithmetic average
option in our model. The more detailed analysis is illustrated in Fig. 6.

Figure 6 shows the relation among the continuation value, the exercise value, the
American arithmetic average call value, and the distribution of representative average
prices in our adaptive placement method for pricing American arithmetic average
calls. If the feature of early exercise is not taken into consideration, representative
average prices are mainly placed around the kink, near which the degree of curvature
is high. However, for American arithmetic average calls, the degree of curvature is also
significant near the early exercise threshold, which is the intersection of the exercise
value and the continuation value. Therefore, it needs extra representative average
prices to limit the linear interpolation error for adjacent representative average prices
near this area. To our knowledge, the adaptive placement method is the first model
that automatically employs different placement distributions for pricing American and
European arithmetic average options.

8 If the strike price is not within the range between the maximum and minimum arithmetic average prices
for some node at maturity, there are only two representative average prices for this node, and the option
payoff is a perfectly linear function. Thus it is not necessary to insert any representative average price
between the maximum and minimum arithmetic average prices.
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Option value ———  American arithmetic average call

A Exercise value

— — — Continuation value

» Average stock price

X Early exercise
threshold

Fig.6 Thedistribution of representative average prices for American arithmetic average calls in the adaptive
placement method. The dash and dotted lines represent the continuation value and the exercise value, the solid
line is the option value of the American arithmetic average call, and the diamonds stand for the representative
average prices in our adaptive placement method. Due to the characteristic of early exercise, the option
value of the American arithmetic average call is replaced by the exercise value when the average stock
price exceeds the early exercise threshold. This replacement causes a kink near this threshold. Therefore
our adaptive placement method needs more representative average prices for American arithmetic average
calls than for European arithmetic average calls

3.2 Performance comparisons in terms of the interpolation error
and the convergence rate

This section is dedicated to compare the performance of examined methods in terms
of the magnitude of the interpolation error and the rate of convergence with respect
to the number of representative average prices per node. In addition, the effect of
the linear extrapolation based on the results of our adaptive placement method is
also analyzed. The European and American arithmetic average calls are used as the
illustrative examples and the results are listed in Table 1. The values of parameters in
our numerical example are as follows: Sy is 50, X is 50, T is 1 year, r is 10%, o is
80%,” and N is 40.

3.2.1 Analysis of the interpolation error

Panels 1 and 2 in Table 1 report the values of European and American arithmetic
average calls, respectively. In addition to the aforementioned parameters for the

9 It is well known that the performance of some numerical methods will deteriorate with the increasing of
the value of o. Therefore, a large value of ¢ is examined here to ensure that our adaptive placement method
still works well in this situation.
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Adaptive placement method 101

binomial-tree option pricing model, there are two more parameters in our adaptive
placement method: the second order error criterion and the precision criterion. The
precision criterion is fixed to be 0.00001 and the second order error criterion is ad-
justed so that the average number of representative average prices per node in our
adaptive placement method can be comparable with the number of representative
average prices per node employed in the other methods. For the adaptive placement
method, the average number of representative average prices per node is defined as the
total number of representative average prices of all nodes divided by the number of all
nodes in the binomial tree. For each reported option value, the corresponding relative
error ((option value — benchmark)/benchmark) is listed in the underlying parentheses.
The benchmarks are derived from the Hull and White’s model with the number of re-
presentative average prices to be 10000 and the strike price inserted as a representative
average price if it is between the maximum and minimum arithmetic average prices
for each node.

The reported values of the MAE (maximum absolute error) and RMSE (root—
mean—square error) for the relative errors of all examined methods in Table 1 clearly
demonstrate that the adaptive placement method outperforms the other methods and
produces smaller interpolation errors under the same number of representative average
prices. More specifically, for European arithmetic average calls, the relative error is
0.1659% when the average number of representative average prices per node is 10.1,
and the relative error is 0.0006% when the average number of representative average
prices per node is 100.4. However, the corresponding relative errors in the Hull and
White’s model are 19.9707% and 0.1792% for the number of representative average
prices being 10 and 100, respectively.

As to the American arithmetic average calls, since more representative average
prices are needed near the intersection of the early exercise value and the continuation
value, larger values of the second order error criterions than those for European
arithmetic average calls are employed to let the average numbers of representative
average prices be about 10, 20,...,100. Similar as the results for European arithmetic
average calls, our adaptive placement method generates the most accurate option
values. With the same number of representative average prices per node, the relative
errors of the option values of our method is about 1.5-3% of the magnitude compared
with those of the Hull and White’s model.

3.2.2 Illustration of the convergence rates with respect to the number
of representative average prices

In order to obtain a better understanding of the rates of convergence, an analysis on
the relative error and the number of representative average prices is performed. Plots
of In(|relative error|) in relation to the number of representative average prices for
the European and American arithmetic average calls are in Fig. 7a, b. In the figure,
a steeper slope represents a better convergence rate, and the lower the line is loca-
ted, the smaller relative error that the underlying method generates under the same
number of representative average prices per node. In addition to the methods based
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on the piece-wise linear interpolation in Table 1, the results of applying the quadratic
interpolation.'? are also reported in Fig. 7a, b.

It is apparent that the Hull and White’s model results in the poorest performance.
Although the relative error decreases significantly when the algorithms of Aingworth
et al. (2000) and Dai et al. (2002) are applied, our adaptive placement method out-
performs them in terms of both providing a better convergence rate and generating
smaller relative error with the same number of representative average prices per node.
For the quadratic interpolation method, although it exhibits better performance of
convergence rates than the Hull and White’s model, the AMO algorithm, and the DHL
algorithm, our adaptive placement method generally performs better than the method
of quadratic interpolation as shown in Fig. 7a, b. Furthermore, there is a vital short-
coming for the quadratic interpolation that the option value exhibits the oscillatory
convergence to the exact option value. This polynomial wiggle problem limits the
application of the quadratic interpolation because it is never sure that placing more
representative average prices will generate a more accurate result. Therefore, studying
the relative error with respect to the number of representative average prices for the
quadratic interpolation method becomes meaningless.

3.2.3 The effect of incorporating the AMO and DHL algorithms

For European fixed-strike-price arithmetic average calls, Aingworth et al. (2000) sug-
gestthattherange [Ain (i, j), Amax (i, j)] canbe curtailed to [min(A,;, (@, j), (N+1)
X/ + 1), min(Ayqx (i, j), (N + 1)X/(@@ + 1))] and whenever the average price is
above the new upper bound, there is a closed-form formula to derive the correspon-
ding expected option value without suffering any interpolation error. For American
arithmetic average options, Dai et al. (2002) suggest a two-phase backward induction
method to tighten the range of representative average prices for each node. During
the first backward induction, the value of Z(i, J) for each node is determined accor-
ding to the critical early exercise boundary for the arithmetic average price. While
the second backward induction is processed, [Ain (i, j), Amax (i, j)] is replaced by
[min(Ain (i, j), AG, j)), min(Apuax(i, j), A(i, j))] and once the average price is
higher than the new upper bound, the exact option value will be the exercise value.
In both Fig. 7 and Table 1, it is obvious that the algorithms of AMO and DHL
improve significantly the convergence rate of the interpolation error of the Hull and
White’s model, whereas the improvement is minor when combining the AMO and
DHL algorithms with our adaptive placement method. Specifically, the average change
of the relative error from incorporating the AMO and DHL algorithms into our adap-
tive placement method is merely 0.0003% and 0.0009% for European and American
arithmetic average options. The reason behind this phenomenon is analyzed as follows.
The common idea of the AMO and DHL algorithms is to derive the option values for

10 1n this paper, for any average price A, we use the closest three A(i, j, k)’s for the quadratic interpola-
tion. More specifically, suppose the average price A is between A(i, j, k — 1) and A(i, j, k) and is closer
to A(i, j,k — 1) than A(i, j, k), we choose the (A(i, j,k —2),C(, j, k — 2)), (AG, j,k—1),C(, J,
k — 1)) and (A(, j, k), C(i, j, k)) for the quadratic interpolation. Otherwise, (A(i, j,k — 1), C(, j,
k—1)), (A, j, k), C(, j, k) and (A(i, j,k + 1), C(, j, k + 1)) are used for the quadratic interpola-
tion.
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(a) In(IRelative errorl)
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Fig. 7 a The rates of convergence of different methods of pricing European arithmetic average calls. The
values of parameters in our numerical example are as follows: Sy is 50, X is 50, T is 1 year, r is 10%, o is
80%, and N is 40. It is obvious that our adaptive placement method converges faster than the other methods
with respect to the number of representative average prices. In addition, the convergence rate of the Hull and
White’s model can be improved when the AMO algorithm is applied. However, the effect of incorporating
the AMO algorithm into our adaptive placement method seems very small. b The rates of convergence of
different methods of pricing American arithmetic average calls. The numerical settings for this figure are
as follows: So = X =50, T = 1,r = 10%, 0 = 80%, and N = 40. It is obvious that our adaptive
placement method converges faster than the other methods with respect to the number of representative
average prices. We also observe that the DHL algorithm does improve the convergence rates of the Hull and
White’s model, whereas this algorithm almost does not affect the results of our adaptive placement method.
Due to the polynomial wiggle problem, the convergence rate of the quadratic interpolation method is so
unstable that employing more representative average prices could sometimes derive worse results for the
arithmetic average calls
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the arithmetic average prices higher than some threshold without incurring any inter-
polation error and meanwhile concentrate the resource of representative average prices
on a smaller range to further reduce the interpolation error. However, for the region
above the threshold, the interpolation error is in fact very small. It can be observed in
Table 1 that under the same value of the second order error criterion, incorporating the
AMO or DHL algorithm to tighten the range of the maximum and minimum arithmetic
average prices does not save much for the average number of representative average
prices per node in our adaptive placement method. This is because our adaptive pla-
cement method already places fewer representative average prices in the region above
the threshold, and automatically concentrates on dealing with the region below the
threshold. According to the results that introducing the AMO and DHL algorithms
neither improve the performance nor save the average number of representative ave-
rage prices per node in our adaptive placement method, it is believed that although
our adaptive placement method does not figure out the threshold directly, the concept
of the AMO and DHL algorithm is already nested in our adaptive placement method.

3.2.4 Extrapolation with respect to the second order error criterion

According to the description of the adaptive placement method in Sect. 2, one may be
interested in a question whether our adaptive placement method can generate theore-
tically the exact option values for arithmetic average options when the second order
error criterion approaches zero. Based upon the results for European and American
arithmetic average calls of our adaptive placement method in Table 1, the illustrations
of the option value in relation to the value of the second order error criterion for
the European and American arithmetic average calls are in Fig. 8a, b, respectively.
Meanwhile, the regressions of the option values on the second order error criterion
are performed as well.

It is worth noting that the values of R? for the regressions for the European and
American arithmetic average calls are 0.99992 and 0.999468, respectively. The extre-
mely high R? indicates that the option values and the second order error criterion are
in a perfectly linear relation for our adaptive placement method. This fact gives us an
opportunity to derive very accurate approximations for the exact option values by the
linear extrapolation under the scenario in which the second order error criterion is
zero. Hence, the values of the intercept terms can stand for the linearly extrapolated
approximation of exact option values and they are 9.684022 and 11.150269 for the
European and American arithmetic average calls respectively, which are very close to
the benchmarks 9.684010 and 11.149997 in Table 1.

3.3 Analysis of the performance under the same computational time

The analysis in the above subsection shows that the adaptive placement method reduces
the interpolation error effectively in the sense that it is able to derive a more accurate
result under the same number of representative average prices per node. However, our
adaptive placement method costs inevitably more computational time conditional on
the same number of representative average prices per node. Here we provide another
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(a) Option value European arithmetic average call
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(b) Option value American arithmetic average call
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Fig. 8 a The linear regression of the option values of European arithmetic average calls on the second
order error criterion. Based upon the option values for European arithmetic average calls of our adaptive
placement method in Table 1, the regression of the option values on the second order error criterion is
performed. The value of R% is extremely high such that the option values and the second order error
criterion are in a perfectly linear relation for our adaptive placement method. In addition, the intercept term
is 9.684010, which is the approximate exact option value in the case of the second order error criterion
being zero. b The linear regression of the option values of American arithmetic average calls on the second
order error criterion. For the results of American arithmetic average call prices of our adaptive placement
method in Table 1, the regression of the option values on the second order error criterion is performed.
The extremely high value of R? means that the option values and the second order error criterion are in a
perfectly linear relation for our adaptive placement method. In addition, the intercept term is 11.150269,
which stands for the approximate exact option value in the case of the second order error criterion being
Zero

measure to demonstrate the superiority of our adaptive placement method by analyzing
the computational time and the performance of reducing the interpolation error for each
method. Suppose we focus on spending about 4 s to produce the value for an arithmetic
average option. The relative errors generated by each method are shown in Table 2.
It is obvious that our adaptive placement method still exhibits the smallest relative
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Table 2 The analysis of the relative error under the same computational time

Relative error % Number of Computational
representative time

average prices

Panel 1: European arithmetic average calls under about 4 s computational time

Adaptive placement method 0.0104 30.5* 4.0
Adaptive placement method (AMO) 0.0050 41.4* 3.8
Linear interpolation—Hull and White’s model 0.1792 100.0 42
Linear interpolation (AM O) 0.0159 180.0 4.1
Panel 2: American arithmetic average calls under about 4 s computational time

Adaptive placement method 0.0389 30.0* 4.0
Adaptive placement method (DHL) 0.0257 34.3* 39
Linear interpolation—Hull and White’s model 0.1120 100.0 4.2
Linear interpolation (DHL) 0.0606 80.0 44

The values of parameters used in this table are the same as those in Table 1. Under the condition in which
the computational time for all examined methods is limited to about 4 s, Panels 1 and 2 present the relative
error and the number of representative average prices of each method for European and American arithmetic
average calls, respectively. It is apparent that with the same computational time, our adaptive placement
method outperforms the Hull and White’s model, the AMO algorithm, and the DHL algorithm in terms of
generating smaller relative pricing error

*These values are the average numbers of representative average prices per node

error than other methods with the same computational time in both cases of European
and American arithmetic average calls. Therefore, we can conclude that even taking
both the average number of representative average prices per node and the required
computational time into account, our adaptive placement method still exhibits the
strongest performance among all examined methods.

3.4 Comparisons with the CJV, CJEV, and CMR algorithms

Figure 9a, b compare the results of our adaptive placement method and those of
Chalasani et al. (1998), Chalasani et al. (1999), and Costabile et al. (2006), which
have been proven to be efficient on pricing arithmetic average options. Since the
above three algorithms do not depend on the number of representative average prices
per node, the results of option prices of these three algorithms are all horizontal lines
in Fig. 9a, b. It is obvious that due to the rapid convergence rate of our model, the
prices of arithmetic average options derived by our model are inside the range between
the upper and lower bounds of the CJV and CJEV algorithms as long as the average
number of representative average prices per node is large than 25. Although the CMR
algorithm does outperform the CJV and CJEV algorithms, our adaptive placement
method can generate option prices closer to the benchmark than the CMR algorithm
when the average number of representative average prices per node is large than 40.
The above facts demonstrate that our adaptive placement method can generate more
accurate arithmetic average option prices than these three algorithms without difficulty
under a moderate average number of representative average prices per node.
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(a) Option value European arithmetic average call
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Fig. 9 a The comparisons among our method and the algorithms of Chalasani et al. (1998) and Costabile
et al. (2006) for European arithmetic average calls. The numerical settings for this figure are as follows:
So =50, X =50,T =1,r = 10%, 0 = 80%, and N = 40. For European arithmetic average calls,
about 20 representative average prices per node are enough for our method to derive sufficiently accurate
option values to be inside the upper and lower bounds of CJV (1998). In addition, as long as the average
number of representative average prices per node is larger than 30, our model can generate more accurate
option values than CMR (2006). The above results show that our adaptive placement method can generate
more accurate European arithmetic average option prices than these two methods with small computational
resource. b The comparisons among our method and the algorithms of Chalasani et al. (1999) and Costabile
et al. (2006) for American arithmetic average calls. The values of parameters in our numerical example
are as follows: Sq is 50, X is 50, T is 1 year, r is 10%, o is 80%, and N is 40. The American arithmetic
average call prices of our adaptive placement model will be inside the range between the upper and lower
bounds of CJEV (1999) when the average number of representative average prices per node is larger than
30. Furthermore, for the average number of representative average prices per node larger than 40, the option
values derived by our model are more accurate than that of CMR (2006). These facts demonstrate that our
adaptive placement method can generate sufficiently accurate American arithmetic average option prices
than these two methods with small computational resource
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4 Apply adaptive placement method to pricing GARCH options

The adaptive placement method is in fact a general method for all option pricing algo-
rithms with the techniques of augmenting state variables and applying the piece-wise
linear interpolation in the backward induction. The GARCH option pricing models in
Ritchken and Trevor (1999) and Cakici and Topyan (2000) are typical examples for
this kind of algorithm. In this section, we show that the efficiency improvement for
pricing GARCH options is still impressive when incorporating the adaptive placement
method into the Cakici and Topyan’s model, which is a modification of the Ritchken
and Trevor’s model. In the following subsections, the Ritchken and Trevor’s GARCH
option pricing model will be stated first. After that, several numerical experiments are
conducted to show the performance improvement of the adaptive placement method
over the original GARCH option pricing models.

4.1 Ritchken and Trevor’s and Cakici and Topyan’s models

In Ritchken and Trevor (1999), the stock price is assumed to follow a NGARCH
process, and the logarithmic stock price return between day ¢ and 7 + 1 under the risk
neutral measure is

S,
In ( ;“) = (r — hy/2) + Vhie 41,
t

hit1 = Bo + Bihe + Bahi(er1 — c*)2,

(&)

where r is the constant daily risk free return, s; and &, are the daily conditional
variance and a standard normal random variable given the information at ¢, and the
time step is fixed to be 1 day. In addition, By, B1, and B, are nonnegative GARCH
parameters.

For the option pricing framework in Ritchken and Trevor (1999), a lattice space
for logarithmic stock prices y; = In(S;) is established by introducing a constant gap
between adjacent logarithmic stock prices ¥, = y/+/n. The parameter y is defined as
«/hg, where h is the initial conditional variance, and 7 is a parameter for the lattice
model so that there are 2n + 1 discrete points to approximate the distribution of the
next day’s logarithmic stock price, that is

Vi+l = Ve +Onyy,, for0 =0, 1, £2, ..., £n,

where 7 is a jump parameter to ensure that the probabilities over the 2n 4 1 logarithmic
stock prices are feasible, and it is defined as a positive integer satisfying n — 1 <
Vhi/y < n.Consequently, given the information of y; and /;, the realized value of
&r+1 corresponding to possible y;41’s can be calculated via

€141 = (Onyn — (r — he/2)) /v Is. (6)
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By substituting Eq. 6 into Eq. 5, the evolution of the conditional variance over the
2n 4+ 1 logarithmic stock prices can be represented as

, for0 =0, +1,+2, ..., +n.
@)

Onyn—(r —hi/2) C*)2

hi+1 = Po + Pih: + Boh; ( N
t

The probability for each logarithmic stock price y;1, conditional on the information
of y, and i, is givenas Prob(y,+1 = y; +0ny,) = P(@), for6 =0, £1, %2, ..., +n,
where

PO = > ( ) ) o P!
= \JuJmJd
JusJmsJd

with nonnegative integer j,, j.., and jy satisfyingn = j, + j,, + ja and 0 = j, — jg.
Matching the mean and variance of the logarithmic stock price, the formulae of p,,
Pm» and pg can be derived as follows.

he O —h/DJTn
pu— + ’

2n?y? 2ny
P
P = Ty
e Nt =TT
2n?y? 2ny

Based upon the above lattice model, it is possible to derive the exact values of
GARCH options through a naive pricing method by recording all possible conditional
variances reaching each node. However, due to the exponential growth of the num-
ber of variance paths with respect to the time step N (equivalent to the number of
days to maturity) in the Ritchken and Trevor’s model, the naive pricing method is
intractable even for a small number of N. In Ritchken and Trevor (1999), instead
of keeping track of all possible conditional variances at each node, M interpolated
representative conditional variances are equally-spaced placed from the maximum to
minimum conditional variances reaching each node. Specifically, for node(i, j) with
the logarithmic stock price y(i, j), the table of representative conditional variances
are constructed as follows.

i T
L Js M max\l, ] M — 1 min L J), > , M,

-1
where K4y (i, j) and hy,i, (i, j) denote the maximum and minimum conditional
variances reaching node(i, j).

Once the lattice model for the underlying asset price and the variance table for each
node have been constructed during the lattice-building process, the standard backward
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induction procedure is applied to calculate option values. According to Eq. 7, for each
h(i, j, k), the evolutions of the conditional variance on the next day are

0
WXL @) = Bo + Bihi, j, k) + Bah(i, j. k) ( ¥
for6 =0, +1,+2, ..., +n.

— (= hG.j. 0/ *)2
NAGRo] °)

Suppose that A"¢*'(9) is inside the range [h(i + 1, j +0n, kg), h(i + 1, j + 07,
ko — 1)]. By the linear interpolation method in Eq. 1, the option value Cy for the condi-
tional variance h""¢*! (9) can be approximated as Cop = wyC (i +1, j +6n, ko) + (1 —
we)CG +1, j+0n,kg—1),where wy = (h(i+1, j+0n, kg —1)—h"*(0))/(h(i +
1,j+0n, ke —1)—h(@i +1,j+60n,ky)).

Finally, the continuation value for each A (i, j, k) is

Cl.j.ky=e" D P@©)Co. (8)

O0=—n

If the feature of early exercise is taken into account, taking vanilla put options as
examples, the option value corresponding to A (i, j, k) becomes

max(CG, j, k), X — @), 9)

Following the above procedure for all A (i, j, k)’s backward over the lattice model,
the value of C (0,0, 1) will be the GARCH option price derived by Ritchken and
Trevor (1999).

Cakici and Topyan (2000) argue that each node’s maximum and minimum condi-
tional variances are almost contributed from the maximum and minimum conditional
variances of predecessor nodes. Therefore, they suggest tracking the evolution of the
maximum and minimum conditional variances reaching each node instead of the evolu-
tion of all representative conditional variances at each node during the lattice-building
process. Representative conditional variances are only employed during the backward
induction phase. However, with this modification, it is possible to have some h"¢* (9)
outside therange [h(i +1, j+60n, M), h(i+1, j+6n, 1] during the phase of backward
induction. If this situation occurs, they suggest to use the option price corresponding
to the minimum (or maximum) conditional variance for the option value of "¢ (9).

4.2 Integrate the adaptive placement method in Cakici and Topyan’s model

It is straightforward to integrate the adaptive placement method into the Cakici and
Topyan’s model. First, after the lattice-building process in Cakici and Topyan (2000), if
the initial conditional variance A is between the maximum and minimum conditional
variances for some node, & is inserted into the conditional variance table for that node.
As a consequence, there will be two or three representative conditional variances for
each node after this procedure. Besides, for the nodes at the first four points in time,
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the above rule is not used and we simply record all possible conditional variances for
these nodes during the lattice-building process.

During the backward induction, for each node, the goal of adaptively placing
representative conditional variances is to let the range between each pair of adja-
cent representative conditional variances be small enough such that the linear interpo-
lation error throughout the range is smaller than the second order error criterion.
For any node(i, j), the linear interpolation error for each pair of adjacent repre-
sentative conditional variances [h(i, j, k), h(i, j, k 4+ 1)] is estimated by Function
Error Term of the Linear Interpolation with the inputs of (h(i, j, k), C(i, j, k)),
(h = (h(i, j, k) + h(i, j,.k + 1))/2, Cy), and (h(i, j, k + 1), C@, j, k + 1)1 If
it is smaller than the second order error criterion, the linear interpolation error for
the range [h(i, j, k), h(i, j, k + 1)] is considered to be small enough and no further
processing will be conducted. Otherwise, the pair (i, Cy,) is inserted into the table of
representative conditional variances of node(i, j), and the subsets [A (i, j, k), h] and
[A, h(i, j, k + 1)] are examined separately to check whether the linear interpolation
errors inside them are small enough. The above examining-and-dividing process is
repeated until the linear interpolation error for every pair of adjacent representative
conditional variances is less than the second order error criterion. As to the nodes at
the first four points in time, this adaptive placement process is not necessary, and only
the corresponding option values for all conditional variances of each node are derived
through Eqgs. 8 and 9. After completing the above backward induction procedure, the
GARCH option value is in C (0, 0, 1).

4.3 Analysis of the interpolation error and the convergence rate

Following the numerical example in Ritchken and Trevor (1999), we assume So = 100,
X = 100, the annual risk free rate is 10%, T = 10 days, and N = 10. In addition,
the NGARCH parameters are Sy = 6.575E—06, 81 = 0.9, B> = 0.04, ¢* = 0, and the
initial daily variance hg = 0.0001096, equivalent to an annualized volatility of 20%.
As for the lattice model parameter 7, the case of n = 1 is examined in this paper. It is
straightforward to apply the adaptive placement method to the Ritchken and Trevor’s
and Cakici and Topyan’s models for 7' longer than 10 days and n larger than 1. The
reason of merely considering the case of 7T = 10 days and n = 1 is because we
can employ the naive pricing method, which keeps track of all possible conditional
variances reaching each node, to derive exact GARCH option values without any
interpolation error to be benchmarks for comparison in this case.

The values of European and American GARCH puts is reported in Table 3. In
addition to the aforementioned parameters of the Ritchken and Trevor’s GARCH
option pricing model, in our adaptive placement method, the precision criterion is
fixed to be 1.00E—10, and the examined values of second order error criterion are
1.00E—02, 1.00E—03, ..., 1.00E—10. For the adaptive placement method, the ave-
rage number of representative conditional variances per node is defined as the total

11 We derive the corresponding option values C (i, j, k), Cp, and C(i, j, k + 1) following the Ritchken and
Trevor’s model, i.e. via Eqs. 8 and 9.
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number of representative conditional variances for all nodes divided by the number of
all nodes in the GARCH lattice model. For the Ritchken and Trevor’s and Cakici and
Topyan’s models, the number of representative conditional variances per node is set
to be comparable with the average number of representative conditional variances per
node employed in our adaptive placement method. The corresponding relative error
((option value — benchmark)/benchmark) is listed in the underlying parentheses for
each reported option value. The benchmarks are derived from the naive pricing me-
thod, which is based on the Ritchken and Trevor’s lattice model and tracks all possible
conditional variances reaching each node. The benchmarks are the exact GARCH put
values for T = 10 days and n = 1 without any interpolation error.

The option values derived from the Ritchken and Trevor’s and Cakici and Topyan’s
models are very similar, that is consistent with the result in Cakici and Topyan (2000).
Our adaptive placement method apparently generates the most accurate option values.
For European GARCH puts, when the average number of representative conditional
variances per node is 43.9, the relative pricing error of our adaptive placement method
is about 5% of the magnitude of the counterpart results in the Ritchken and Trevor’s
and Cakici and Topyan’s models. Similarly, for American GARCH puts, in the case
of the average number of representative conditional variances per node to be 37.6, the
relative pricing error of our adaptive placement method is about 1% of the magnitude of
the counterpart results in the Ritchken and Trevor’s and Cakici and Topyan’s models.
Finally, the MAE and RMSE of our adaptive placement method is about one-tenth
magnitude of those of the Ritchken and Trevor’s and Cakici and Topyan’s models,
that clearly demonstrate that our adaptive placement method outperforms the other
methods in terms of producing smaller interpolation errors.

In addition, plots of In(|relative error|) in relation to the number of representative
conditional variances for the European and American GARCH puts are in Fig. 10a, b,
respectively. It is apparent that our adaptive placement method significantly outper-
forms the Ritchken and Trevor’s and Cakici and Topyan’s models in terms of both
providing a better convergence rate and generating smaller relative error with the
same number of representative conditional variances per node. Furthermore, there is
a shortcoming for the Ritchken and Trevor’s and Cakici and Topyan’s models that the
option values do not converge to the exact option value monotonically. Due to this pro-
blem, it is always not sure that employing more representative conditional variances
per node (equivalent to consuming more computational resource) can generate more
accurate GARCH option values.

Based upon the results for European and American GARCH puts of the adaptive
placement method in Table 3, the illustrations of the option value in relation to the
value of the second order error criterion for the European and American GARCH
puts are plotted in Fig. 11a, b, respectively. Meanwhile, the regressions of the option
values on the second order error criterion are performed as well.'? It is worth noting
that the values of R? for the regressions for the European and American GARCH puts
are extremely high, that indicates a perfectly linear relation between the option values

12 Since the results of the adaptive placement method start to converge to the exact option value monoto-
nically when the second order error criterion is smaller than 1.00E—04, Fig. 11a, b are based on the results
of the second order error criterion to be 1.00E—04, 1.00E—05, ..., 1.00E—10.
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Fig. 10 a The rates of convergence of different methods of pricing European GARCH puts. The values
of parameters are So = 100, X = 100, r = 10% annually, 7 = 10 days, N = 10, and the lattice model
parameter n = 1. In addition, the NGARCH parameters are Sy = 6.575E—06, f1 = 0.9, o = 0.04,
¢* = 0, and the initial daily variance ho = 0.0001096. It is obvious that our adaptive placement method
exhibits the highest convergence rate than the other methods. Moreover, our adaptive placement method
can generate option values convergent to the exact option value monotonically when the average number
of representative conditional variances is larger than 40 for this case, whereas the results of Ritchken and
Trevor’s and Cakici and Topyan’s models exhibit the oscillatory convergence to the exact option value.
b The rates of convergence of different methods of pricing American GARCH calls. The numerical settings
for this figure are So = 100, X = 100, r = 10% annually, 7 = 10 days, N = 10, and the lattice model
parameter n = 1. In addition, the NGARCH parameters are By = 6.575E—06, 81 = 0.9, o = 0.04,
¢* = 0, and the initial daily variance hg = 0.0001096. The results indicate that our adaptive placement
method shows the strongest performance than the other methods. Moreover, our adaptive placement method
can generate option values convergent to the exact option value monotonically when the average number of
representative conditional variances is larger than 40 for this case, but the results of Ritchken and Trevor’s
and Cakici and Topyan’s models exhibit the oscillatory convergence to the exact option value. Due to this
irregular convergence, it cannot be sure that employing more representative conditional variances could
derive more accurate results in Ritchken and Trevor’s and Cakici and Topyan’s models
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Option value European GARCH put
1.1978 ¢

1.1978
1.1978
1.1978 +
1.1978

1.1978

11978 —— Adaptive placement method

1.1978 — Linear regression (y = 0.7177096 x + 1.1977462
R-square = 0.9999876)
1.1978
1.1977 - - - - - g
0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
second order error criterion
Option value American GARCH put
1.2203
1.2203 +
1.2203 -
1.2203 +
1.2203
1.2203
1.2203 +
—e— Adaptive placement method
1.2203
—— Linear regression (y = 0.7320698 x + 1.2202427
122027 R-square = 0.9997925)
2202 . . . . . g
0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012

second order error criterion

Fig. 11 a The linear regression of the option values of European GARCH puts on the second order error
criterion. Based upon the option values for European GARCH puts of our adaptive placement method
in Table 3, the regression of the option values on the second order error criterion is performed. Since
the characteristic of monotonic convergence emerges when the second order error criterion is smaller or
equal to 1.00E—04, the regression is based on the option values of the second order error criterion being
1.00E—04, 1.00E—05, ..., 1.00E—10. The value of RZis extremely high such that the option values and
the second order error criterion are in a perfectly linear relation for our adaptive placement method. In
addition, the intercept term is 1.1977462 for the case of the second order error criterion being zero, which
is extremely close to the exact value derived by the naive pricing method. b The linear regression of the
option values of American GARCH puts on the second order error criterion. For the results of American
GARCH put prices of our adaptive placement method in Table 3, the regression of the option values on
the second order error criterion is performed. Since the characteristic of monotonic convergence emerges
when the second order error criterion is smaller or equal to 1.00E—04, the regression is based on the option
values of the second order error criterion being 1.00E—04, 1.00E—05, ..., 1.00E—10. The extremely high
R? indicates that the option values and the second order error criterion are in a perfectly linear relation
for our adaptive placement method. Finally, for the case of the second order error criterion being zero, the
intercept term is 1.2202427, which is very close to the exact value derived by the naive pricing method
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and the second order error criterion in our adaptive placement method. This fact gives
us an opportunity to derive very accurate estimates for the exact option values by the
linear extrapolation under the scenario in which the second order error criterion is
zero. Since the values of the intercept terms represent the extrapolated option values
for the second order error criterion equal to zero, they can be viewed as accurate
estimates for exact option values. In Fig. 11a, b, the values of the intercept terms are
1.1977462 and 1.2202427 for the European and American GARCH puts, which are
extremely close to the benchmarks 1.1977462 and 1.2202429 in Table 3.

5 Conclusion

In this paper, the adaptive placement method is proposed to price arithmetic average
options, in which the error of the linear interpolation between each pair of adjacent
representative average prices is examined such that representative average prices are
placed proportional to the degree of curvature of the option value as the function of
the arithmetic average stock price.

From the numerical experiments, our adaptive placement method shows great su-
periority of reducing the interpolation error over other methods. Even taking the com-
putational time into consideration, the results still suggest that the adaptive placement
method is the most efficient one among examined methods. In addition, due to the fact
that introducing the AMO and DHL algorithms into the adaptive placement method
neither improves the performance nor saves the resource of representative average
prices, we believe that the adaptive placement method already incorporates the idea
of these two algorithms implicitly. According to the comparisons among our adaptive
placement method and the algorithms of CJV, CJEV, and CMR, it is concluded that our
adaptive placement method can outperform these three algorithms without difficulty.
Finally, it is our finding that a pricing model which can guarantee the convergence
of the interpolation error should employ different placement rules of representative
average prices in dealing with the European and American arithmetic average options.

Since the adaptive placement method can apply to any numerical algorithm with
the techniques of augmented state variables and the piece-wise linear interpolation
approximation, we also demonstrate how to integrate the adaptive placement method
into the GARCH option pricing algorithm in Cakici and Topyan (2000). The numerical
results again prove the superior performance of the adaptive placement method over the
original GARCH option pricing algorithms on generating more accurate option values
with less interpolation errors. The great performance improvement for applying the
adaptive placement method on the pricing algorithms for arithmetic average options
and GARCH options suggests the potential applications of this novel method to a
broad class of numerical pricing algorithms for exotic options and complex underlying
processes.
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