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Abstract

This paper develops a cash-in-advance model for persistent habits of consumption. With a binding cash-
in-advance constraint, the economic transition can be represented by a one-dimensional or two-dimensional
dynamical system, depending on persistent habits of only cash-goods consumption or both cash-goods and
credit-goods consumption, respectively. We verify the existence of entropic chaos and ergodic chaos for the
former case and identify the presence of entropic chaos for the latter.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, economists have realized that rational expectation models can have more than
one equilibrium; they have also encountered the complicated problem of analyzing qualitative
behavior for equilibrium paths. The chaotic equilibrium has the most complicated dynamics
among all kinds of equilibria.2 In this case, a small difference in initial conditions or a slight
perturbation of parameter values may result in an extremely different dynamical process for
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2 There are bubbles, sunspots, cycles, and chaotic equilibria; refer to Barnett et al. (1989) and Benhabib (1992).
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an economy over time. These phenomena have led researchers to investigate the possibility of
endogenous fluctuations in economic models, while traditional macroeconomic models still use
unexpected shocks to explain fluctuations in outputs and prices within the economy.

In the literature on monetary economics, money has been introduced in several models through
a cash-in-advance constraint. Assuming that households can consume cash goods and credit
goods, Michener and Ravikumar (1998) extended the work of Woodford (1994) and provided
examples of chaotic motions in a cash-in-advance environment. The study by Auray et al. (2002)
incorporated habit persistence in a monetary economic model. They showed that under a simple
cash-in-advance economy, habit persistence can cause endogenous oscillations and chaotic
equilibria.

In this paper, we develop a cash-in-advance model with consumptions of both cash goods and
credit goods in the economy, and prove the existence of chaotic dynamics. Different from Michener
and Ravikumar, our model allows that agents have persistent consumption behavior habits. We
join the literature of “catching up with the Joneses” formation by assuming that each individual
compares the current consumption with past average consumption.3 Moreover, households can
consume both cash goods and credit goods in our model while households consume only cash
goods in Auray et al.

For our model with the binding cash-in-advance constraint and households having only the
persistent habit of cash-goods consumption, we derive a one-dimensional dynamical system,
representing the economic transition from a first-order difference in real money balance. We then
verify the existence of chaos in the sense of positive topological entropy (entropic chaos) and the
presence of a unique ergodic invariant measure absolutely continuous with respect to the Lebesgue
measure (ergodic chaos), while the previous studies analyzing the complicated dynamics of
economic models focused on the chaos in the sense of Li and Yorke (1975). On the other hand,
assuming that agents had persistent habits of both cash-goods and credit-goods consumption,
we obtain a second-order difference in real money balance that induces a two-dimensional
dynamical system for the economic model, and we identify the presence of entropic chaos.

The remainder of this paper is organized as follows. In the next section, we develop a cash-in-
advance economy with the habit persistence of cash goods and show that this exhibits entropic
chaos as well as ergodic chaos. In the subsequent section, we extend the model by allowing
agents to have persistent habits of both cash-goods consumption and credit-goods consumption,
and show the existence of entropic chaos. The final section presents the conclusion of our study
and suggestions for future projects.

2. The model

We consider an economy with infinitely living identical agents. Following Lucas and Stokey
(1987), we assume that agents consume cash goods (ct) and credit goods (dt). We use pt to denote
the common price of these two goods and Mt to denote the nominal money balance in period
t. Households are composed of shoppers and workers. The details of the trading scenario and
the sequence of events are described in Lucas and Stokey and in Michener and Ravikumar. In
period t, individuals use the real money balance Mt/pt brought forward from the previous period

3 For studies applying habit formation to growth models, see Alvarez-Cuadrado et al. (2004) and Ryder and Heal (1973).
For papers exploiting habit persistence in asset pricing models to resolve equity premium puzzles and to explain several
asset pricing phenomena, see Abel (1990) and Campbell and Cochrane (1999).
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t − 1 to buy cash goods. Hence, agents face the following cash-in-advance constraint of the cash
goods:

ct ≤ Mt

pt

. (1)

Households are endowed with constant ν in every period. Cash goods and credit goods are
produced by the production function, Yt = f (ν) = ν. Assuming that both cash goods and credit
goods will perish after one period, we have

ct + dt ≤ ν. (2)

In period t, the government injects money into the economy by giving a nominal lump-sum
transfer Tt to households. We assume that the nominal money supply M̄ grows at the rate of θ, that
is, M̄t+1 = (1 + θ)M̄t . Thus, Tt = M̄t+1 − M̄t . Households allocate the transfer, the real money
balance carried from the last period, and the value of output on the cash goods, the credit goods
and the money balance they plan to carry to the next period. Therefore, the budget constraint for
households can be written as

ct + dt + Mt+1

pt

≤ ν + Mt

pt

+ Tt

pt

. (3)

Agents have the persistent habit of cash-goods consumption and will compare their current
consumption of cash goods with the average cash-goods consumption of the previous period. This
preference is separable in cash goods and credit goods, and is represented as

∞∑
t=0

ηtU(V (ct, c̄t−1), G(dt)), (4)

where η ∈ (0, 1) is the discount factor, and c̄t−1 is the average consumption of cash goods in
period t − 1. We make the following assumptions about the utility function:

Assumption 1. The utility function is strictly increasing in ct and dt . That is,

∂U

∂ct

(V (ct, c̄t−1), G(dt)) > 0

and
∂U

∂dt

(V (ct, c̄t−1), G(dt)) > 0.

Assumption 2. The utility function is twice differentiable and strictly concave in ct and dt . That
is,

∂2U

∂c2
t

(V (ct, c̄t−1), G(dt)) < 0

and

∂2U

∂d2
t

(V (ct, c̄t−1), G(dt)) < 0.

Assumption 3. The utility function is decreasing in c̄t−1. That is,

∂U

∂c̄t−1
(V (ct, c̄t−1), G(dt)) ≤ 0.
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Assumption 1 demonstrates that by holding past average cash-goods consumption constant,
an increase in current consumption will not reduce the utility. Assumption 2 indicates that the
marginal utility of the cash/credit-goods consumption decreases with an increase in the cash/credit-
goods consumption. Assumption 3 states that by holding current consumptions unchanged, an
increase in the past average consumption of cash goods will not enlarge the utility.

In order to study the dynamics of the economy over time, we set the real balance mt = Mt/pt .
Money market clearing implies that M̄t = Mt . Given the growth rate of money supply, the per-
fect foresight equilibrium comprises the sequences of prices, transfers, and individual decisions
{ct, dt, mt} such that (i) the household maximization problem will be solved for {ct, dt, mt} by
maximizing the utility function subject to Eqs. (1) and (3) and the non-negativity constraints of
ct , dt and mt ; (ii) the equilibrium in the goods market implies that Eq. (2) holds with equality;
and (iii) money market clears.

Using λt and μt to represent the associated Kuhn-Tucker multipliers of the constraints Eqs.
(1) and (3), respectively, the first-order conditions are

∂U

∂V
(V (ct, c̄t−1), G(dt))

∂V

∂ct

(ct, c̄t−1) = (λt + μt)pt, (5)

∂U

∂G
(V (ct, c̄t−1), G(dt))

dG

ddt

(dt) = μtpt, (6)

η(λt+1 + μt+1) = μt. (7)

Notice that constraints bind at household’s optimal decisions due to the monotonicity of the utility
function. Combining Eqs. (5)–(7) and the clearing condition of the goods market, we get

∂U

∂V
(V (ct+1, c̄t), G(ν − ct+1))

∂V

∂ct+1
(ct+1, c̄t)

= 1 + θ

η

mt

mt+1

∂U

∂G
(V (c, c̄t−1), G(ν − ct))

dG

ddt

(ν − ct). (8)

Unlike Michener and Ravikumar who needed the unbinding cash-in-advance constraint to
generate chaos, here we focus on the case when the cash-in-advance constraint always binds
and will show the existence of chaos. We consider a separable utility function that satisfies
Assumptions 1–3:

U(V (ct, c̄t−1), G(dt)) = V (ct, c̄t−1) + κG(dt), (9)

where

V (ct, c̄t−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

1 − ρ

⎡
⎣
(

ct

c̄
ξ
t−1

)1−ρ

− 1

⎤
⎦ , if ρ �= 1,

log

(
ct

c̄
ξ
t−1

)
, if ρ = 1,

(10)

and

G(dt) =

⎧⎪⎨
⎪⎩

d
1−γ
t − 1

1 − γ
, if γ �= 1,

log(dt), if γ = 1,

(11)
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with ρ > 0, ξ ≥ 0 and γ > 0. The parameter value κ > 0 measures, given the same utility, how
many units of cash goods are needed to substitute for one unit of credit goods. The parameter
ξ measures the degree of habit persistence of cash-goods consumption. As indicated by Abel,
if ξ = 0 then households do not compare their current cash-goods consumptions with their past
average cash-goods consumption within the economy and Eq. (4) is the time-separable utility
function as usual.

Because the dynamics of the real money balance will disappear provided ρ = 1, we make the
following assumption in order to avoid this situation.

Assumption 4. ρ �= 1.

One-dimensional dynamical systems
Using the utility function form in Eq. (9), we derive a first-order difference equation for the

real money balance from Eq. (8):

mt+1 =
{

κ(1 + θ)

η
m

1+ξ(1−ρ)
t (ν − mt)

−γ

}1/(1−ρ)

. (12)

For the rest of this section, we study the dynamical behavior of Eq. (12). Without loss of
generality, we assume that ν = 1. For simplicity, let ω = (κ(1 + θ)/η)1/(1−ρ), α = (1/1 − ρ) + ξ,
β = −(γ/1 − ρ), and x = mt . For searching chaotic behavior, we focus on the case when α > 0
and β > 0. Then the dynamics of Eq. (12) with mt �→ mt+1 is equivalent to the dynamics of the
family of functions x �→ fω,α,β(x), where fω,α,β : I → R

+ is defined by

fω,α,β(x) = ωxα(1 − x)β, (13)

where ω, α, and β are positive real parameters, and I = R+ if β is an even integer and I = [0, 1]
if β is not even. The restriction of the domain I depending on β is necessary in order to focus
our interests on the points whose images are still positive. For simplicity, we write f = fω,α,β,
denote the identity function by f 0, and inductively define fn = f ◦ fn−1 for positive integer n.
The restriction of f on a subset J of I is denoted by f |J .

For the case when β is not an even integer, Chen and Li (2006) proved that under certain
conditions the family Eq. (13) has chaotic dynamics in the sense of Li and Yorke, Devaney
(1989), and Smale (1965). In this section, we study the case when β is even and will prove that
Eq. (13) has entropic chaos and ergodic chaos.

First, we recall the definition of topological entropy and entropic chaos; refer to Robinson
(1999).

Definition 1. Let g : X → X be a continuous map on the space X with metric d. For n ∈ N and
ε > 0, a set S ⊂ X is called an (n, ε)-separated set for g if for every pair of points x, y ∈ S with
x �= y, there exists an integer k with 0 ≤ k < n such that d(gk(x), gk(y)) > ε. The topological
entropy of g is defined to be

htop(g|X) = lim
ε→0,ε>0

lim sup
n→∞

log(max{#(S) : S ⊂ X is an (n, ε)-separated set for g})
n

,

where #(S) is the cardinality of elements of S.
We say that g has entropic chaos on X if htop(g|X) > 0.

Topological entropy has played a fundamental role in the theory of chaos. Its concept is a
mathematical formulation of exponential divergence of nearby initial conditions. It describes the
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total exponential complexity of the orbit structure with a single number in a rough but expressive
way. The topological entropy is positive for chaotic systems and is zero for non-chaotic systems.

It is also possible to define a measure theoretic entropy hμ(g) for an invariant measure μ.
Then the Variational Principle says that topological entropy is the supremum of metric theo-
retic entropies; more precisely, if g : X → X is a homeomorphism of a compact metric space
(X, d) then htop(g) = sup{hμ(g) : μ is an f -invariant Borel probability measures on X}; refer to
Theorem 4.5.3 of Katok and Hasselblatt (1995).

Back to the family Eq. (13); f has critical points at 0, α/(α + β) and 1. Consider the case when
α < 1 or α = 1 and ω > 1. Then f has three fixed points, namely, 0, q, p, with 0 < q < 1 < p;
see Fig. 1(a). We prove the existence of entropic chaos.

Theorem 1. Let f = fω,α,β be the family Eq. (13) with 0 < α ≤ 1 and β > 0 even. Then we
have the following properties:

1. if f (α/(α + β)) = 1, then htop(f |[0, 1]) ≥ log(2) and hence f has entropic chaos on [0, 1];
2. if f (α/(α + β)) > 1, then htop(f |Λ) ≥ log(2) and hence f has entropic chaos on Λ, where

Λ = {x : fn(x) ∈ [0, 1] for all n ≥ 0}; and
3. if f (α/(α + β)) ≥ p, then htop(f |Λ) ≥ log(3) and hence f has entropic chaos on Λ, where

Λ = {x : fn(x) ∈ [0, p] for all n ≥ 0}.

Proof. We prove item 1 by adapting the method of Robinson for the first part and the method
of Katok and Hasselblatt for the second part. Let I1 = [0, α

α+β
] and I2 = [ α

α+β
, 1]. Then

f−1([0, 1]) ∩ [0, 1] = [0, 1] = I1 ∪ I2. For n ≥ 1 and for i0, i1, . . . , in−1 ∈ {1, 2}, let

Ii0,i1,...,in−1 =
n−1⋂
k=0

f−k(Iik ) = {x ∈ [0, 1] : f k(x) ∈ Iik for 0 ≤ k ≤ n − 1}.

Let S0 = [0, 1] and for n ≥ 1, let

Sn =
n⋂

k=0

f−k([0, 1]) =
n−1⋂
k=0

f−k(I1 ∪ I2) =
⋃

i0,i1,...,in−1∈{1,2}
Ii0,i1,...,in−1 .

Then Sn = [0, 1] for all n ≥ 0. Moreover, we claim for all n ≥ 1, the following properties:

(a) if i0, i1, . . . , in−2 ∈ {1, 2}, then Ii0,i1,...,in−2 = Ii0,i1,...,in−2,1 ∪ Ii0,i1,...,in−2,2 is the union of two
nonempty closed intervals with disjoint interiors;

(b) if i0, i1, . . . , in−1, i
′
0, i

′
1, . . . , i

′
n−1 ∈ {1, 2} with (i0, i1, . . . , in−1) �= (i′0, i

′
1, . . . , i

′
n−1), then

int(Ii0,i1,...,in−1 ) ∩ int(Ii′0,i
′
1,...,i

′
n−1

) = Ø and so Sn is the union of 2n closed intervals with
pairwise disjoint interiors; and

(c) the map f takes the component Ii0,i1,...,in−1 of Sn homeomorphically onto the component
Ii1,...,in−1 of Sn−1.

The claim is true by induction on n. For n = 1, then S1 = [0, 1] ∩ f−1([0, 1]) = I1 ∪ I2 is
the union of two nonempty closed intervals with disjoint interiors. The map f is monotoni-
cally increasing on I1 and hence f maps I1 homeomorphically onto [0, 1] = S0. Similarly, f
is monotonically decreasing on I2 and hence f also maps I2 homeomorphically onto [0, 1] = S0.
The set S1 = I1 ∪ I2 = [0, 1]. Assume the claim is true for n and we verify it for n + 1. Let
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Ii0,...,in−1 be a component of Sn. Then f (Ii0,...,in−1 ) = Ii1,...,in−1 is a component of Sn−1, and
Ii1,...,in−1 = Ii1,...,in−1,1 ∪ Ii1,...,in−1,2. Therefore,

Ii0,...,in−1 = f−1(Sn) ∩ Ii0,...,in−1 = f−1(Sn ∩ Ii1,...,in−a ) ∩ Ii0

= [f−1(Ii1,...,in−1,1) ∪ f−1(Ii1,...,in−1,2)] ∩ Ii0

is the union of two nonempty closed intervals with pairwise disjoint interiors, so (a) holds. Since
there are 2n choices of the index for Ii0,...,in−1 , the set Sn+1 is the union of 2n+1 intervals, so (b)
holds. The map f is monotone on the component Ii0,...,in−1,j of Sn+1, so it maps homeomorphically
onto Ii1,...,in−1,j of Sn, so (c) holds. This completes the verification of the claim.

For n ≥ 2, let Σ1
n be the one-sided sequence space {i = (i0, i1, . . .) : ik ∈

{1, 2, . . . , n} for all k ≥ 0} with the metric d(i, j) =∑∞
k=0 δ(ik, jk)/3k, where δ(s, t) is zero if

s = t and is one if s �= t. The shift map σ on Σ1
n is defined by σ(i) = j where jk = ik+1 for all

k ≥ 0. Let Σ̄1
2 be the space obtained from Σ1

2 by identifying (i0, i1, . . .) and (j0, j1, . . .) if there
exists n ≥ 0 such that ik = jk for 0 ≤ k ≤ n − 1, in = 1, jn = 2 and ik = 2 and jk = 1 for all
k > n. Define g : [0, 1] → Σ̄1

2 by g(x) = (i0, i1, . . .) where f k(x) ∈ Iik for all k ≥ 0.
We prove that g is a semi-conjugacy from f on [0, 1] to σ on Σ̄1

2. First we check the condition
that g ◦ f = σ ◦ g. Let x ∈ [0, 1], (i0, i1, . . .) = g(x) and (j0, j1, . . .) = g(f (x)). Then f k+1(x) ∈
Iik+1 and f k+1(x) = f k(f (x)) ∈ Ijk

. Hence, ik+1 = jk so g(f (x)) = σ(g(x)). Next we check that
g is surjective. Let (i0, i1, . . .) ∈ Σ̄1

2. By the above claim, {Ii0,...,in}∞n=0 is a nested sequence of
nonempty closed intervals. Thus, there exists x0 ∈ ⋂∞

n=0 Ii0,...,in = ⋂∞
k=0 f−k(Iik ). Therefore,

f k(x0) ∈ Iik for all k ≥ 0 and hence g(x0) = (i0, i1, . . .). Last we must check that g is continuous.
Let x ∈ [0, 1] and (i0, i1, . . .) = g(x). Let ε > 0. Pick an integer n such that 3−n < ε. Consider the
interval Ii0,...,in . Take δ > 0 so small that if y ∈ [0, 1] with |y − x| < δ, then y ∈ Ii0,...,in . For y ∈
[0, 1] with |y − x| < δ, let (j0, j1, . . .) = g(y). Then jk = sk for 0 ≤ k ≤ n. Thus, d(g(x), g(y)) ≤∑∞

k=n+1 3−k = 2−13−n < ε. This proves the continuity of g. We conclude that g is a semi-
conjugacy from f to σ.

The space Σ̄1
2 is obtained from Σ1

2 by identifying two sequences if they are itineraries of the
same point in S. Thus, the shift map σ on Σ1

2 and f |[0, 1] both naturally project to the shift
map σ on Σ̄1

2. Notice that the semi-conjugacy ḡ : Σ1
2 → Σ̄1

2 is injective outside a countable set,
namely, the itineraries of points in the backward orbits of turning points. Notice further that by the
Variational Principle it suffices to consider non-atomic measures, since purely atomic measures
have zero entropy. Consider a non-atomic σ-invariant measure ς on Σ1

2 and pull it back via
the semi-conjugacy ḡ to a measure ḡ∗ς on Σ̄1

2. Thus, ḡ establishes a bijective corresponding
between ς and ḡ∗ς so the measure theoretic entropies coincide. By the Variational Principle, we
have htop(σ|Σ̄1

2) = supζ hζ(σ|Σ̄1
2) ≥ supς hḡ∗ς(σ|Σ̄1

2) = supς hς(σ|Σ1
2) = htop(σ|Σ1

2). Since g

is a semi-conjugacy from f |[0, 1] to σ|Σ̄1
2, htop(f |[0, 1]) ≥ htop(σ|Σ̄1

2) = htop(σ|Σ1
2) = log(2).

We have finished the proof of item 1.
We prove item 2 by making a slight modification from the proof of item 1. Sincef (α/(α + β)) >

1, there exists p1, p2 such that 0 < p1 < p2 < 1 and f (p1) = f (p2) = 1. Let I1 = [0, p1]
and I2 = [p2, 1]. Then f−1([0, 1]) ∩ [0, 1] = I1 ∪ I2. For n ≥ 1 and i0, . . . , in−1 ∈ {1, 2}, let
Ii0,...,in−1 = ⋂n−1

k=0 f−k(Iik ). Let S0 = [0, 1] and for n ≥ 1, let Sn = ⋃i0,...,in−1∈{1,2} Ii0,...,in−1 .
Then � = ⋂∞

n=0 Sn. Moreover, for all n ≥ 1, we have

(a) if i0, . . . , in−2 ∈ {1, 2}, then Ii0,...,in−2 ∩ Sn = ∪j∈{1,2}Ii0,...,in−2,j is the union of three
nonempty closed intervals with pairwise disjoint interiors, which are subsets of Ii0,...,in−2 ;
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(b) the set Sn is the union of 2n closed intervals; and
(c) the map f takes the component Ii0,...,in−1 ofSn homeomorphically onto the component Ii1,...,in−1

of Sn−1.

Define g : Λ → Σ1
2 by g(x) = (i0, i1, . . .) where f k(x) ∈ Iik for all k ≥ 0. Then g is a semi-

conjugacy from f on Λ to σ on Σ1
2. Therefore, we have htop(f |Λ) ≥ htop(σ|Σ1

2) ≥ log(2).
We prove item 3 by using the same argument as above. Since f (α/(α + β)) ≥ p, there exists

p1, p2 such that 0 < p1 ≤ p2 < 1 and f (p1) = f (p2) = p. Note that p1 = p2 if and only if
f (α/(α + β)) = p. Let I1 = [0, p1], I2 = [p2, 1] and I3 = [1, p]. Then f−1([0, p]) ∩ [0, p] =
I1 ∪ I2 ∪ I3. For n ≥ 1 and i0, . . . , in−1 ∈ {1, 2, 3}, let Ii0,...,in−1 = ⋂n−1

k=0 f−k(Iik ). Let S0 =
[0, p] and for n ≥ 1, let Sn = ⋃i0,...,in−1∈{1,2,3} Ii0,...,in−1 . Then Λ = ⋂∞

n=0 Sn. Moreover, for all
n ≥ 1, we have

(a) if i0, . . . , in−2 ∈ {1, 2, 3}, then Ii0,...,in−2 ∩ Sn = ∪j∈{1,2,3}Ii0,...,in−2,j is the union of three
nonempty closed interval with pairwise disjoint interiors, which are subsets of Ii0,...,in−2 ;

(b) the set Sn is the union of 3n closed intervals; and
(c) the map f takes the component Ii0,...,in−1 ofSn homeomorphically onto the component Ii1,...,in−1

of Sn−1.

Let Σ̄1
3 be the space obtained from Σ1

3 by identifying (i0, i1, . . .) and (j0, j1, . . .) if there exists
n ≥ 0 such that ik = jk for 0 ≤ k ≤ n − 1, in = 2, jn = 3 and ik = 3 and jk = 2 for all k > n or
if p = q and there exists n ≥ 0 such that ik = jk for 0 ≤ k ≤ n − 1, in = 1, jn = 2 and ik = 2
and jk = 1 for all k > n.

Define g : Λ → Σ̄1
3 by g(x) = (i0, i1, . . .) where f k(x) ∈ Iik for all k ≥ 0. Then g is a semi-

conjugacy from f on Λ to σ on Σ̄1
3. By using the Variational Principle as in the proof of item 1,

we have htop(f |Λ) ≥ htop(σ|Σ̄1
3) = htop(σ|Σ1

3) ≥ log(3). �

Next, we consider the family Eq. (13) with α > 1; see Fig. 1(b). Suppose that f (α/(α + β)) ≥
α/(α + β). Then f has four fixed points, namely, 0, r, q, p with 0 < r < α/(α + β) < q < 1 < p.
Moreover, r has a preimage in (q, 1), namely, r+ with f (r+) = r. We prove that the topological
entropy is positive.

Fig. 1. The graphs of (a) f10,1,2 and (b) f35,3,2.
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Theorem 2. Let f = fω,α,β be the family Eq. (13) with α > 1 and β > 0 even. Then we have the
following properties:

1. if f (α/(α + β)) ≥ r+, then htop(f |Λ) ≥ log(2) and hence f has entropic chaos on Λ, where
Λ = {x : fn(x) ∈ [r, r+] for all n ≥ 0}; and

2. if f (α/(α + β)) ≥ p, then htop(f |Λ) ≥ log(3) and hence f has entropic chaos on Λ, where
Λ = {x : fn(x) ∈ [r, p] for all n ≥ 0}.

Proof. First we prove item 1. Since f is monotonically increasing on [r, α
α+β

] and is monotoni-
cally decreasing on [ α

α+β
, r+], the assumption f (α/(α + β)) ≥ r+ implies that [r, r+] ∩ f ([r, r+])

consists of two nonempty closed intervals, say I1 and I2, such that f (I1) = f (I2) = [r, r+]. By
using the same argument as in the proof of Theorem 1, the desired result follows.

Next, we prove item 2. Since f is monotone on [r, α+β
β

], [ α
α+β

, 1] and [1, p], respectively,
the assumption f (α/(α + β)) ≥ p implies that [r, p] ∩ f ([r, p]) consists of three empty closed
intervals, say I1, I2 and I3, such that f (I1) = f (I2) = f (I3) = [r, p]. Again, by using the same
argument as in the proof of Theorem 1, we have the desired result. �

Next, we give the definitions of ergodic invariant measure and ergodic chaos; refer to Robinson.

Definition 2. Let I be a bounded closed interval and g : I → I be a continuous map. A measure
ς is said to be g-invariant if ς(g−1(A)) = ς(A) for all measurable set A. A g-invariant measure
ς is said to be ergodic if ς(I\A) = 0 for any measurable set A with g(A) = A and ς(A) > 0. We
say such a map g has ergodic chaos on I if there exists a unique ergodic g-invariant measure that
is absolutely continuous with respect to the Lebesgue measure.

The concept of ergodicity indicates that almost all orbits are dense in the support of the
measure because for any set of positive measure A, the orbit of A has full measure. Alternatively,
the Birkhoff Ergodic Theorem [refer to Theorem 4.1.2 of Katok and Hasselblatt] implies that if
g has an ergodic invariant measure ς on I, then for any ς-integrable real-valued function ϕ on I,
limn→∞

∑n−1
i=0 ϕ(gi(x)) = ∫

I
ϕ(x) dς(x) holds for ς-almost all x ∈ I. That is, ergodicity reveals

that for any integrable function, the time average along almost all orbits is equal to the space
average of the function. A dynamical system may have many ergodic invariant measures. The one
that is absolutely continuous with respect to the Lebesgue measure is the most interesting and
important.

In Boldrin et al. (2001), it is shown that the family Eq. (13) with α = 1 exhibits ergodic chaos
under certain conditions. Here, we prove the existence of ergodic chaos for Eq. (13) with integers
α > 1 and β ≥ 1.

Theorem 3. Let f = fω,α,β be the family Eq. (13) with α > 1 and β ≥ 1 both integers, and
f (α/(α + β)) > α/(α + β). Let 0 < r < q < r+ < 1 be as mentioned above. If f (α/(α + β)) ≤
r+, f ′(q) < −1 and f k(α/(α + β)) = q for some k ≥ 2, then f has ergodic chaos on [r, r+].

Proof. By Proposition 1 of Boldrin et al. [originally due to Misiurewicz (1980)], it is sufficient
to show that the Schwarzian derivative of f is negative, that is, Sf (x) ≡ f ′′′(x)

f ′(x) − 3
2 (f ′′(x)

f ′(x) )2 < 0

for all x ∈ [r, r+]\{0, 1, α
α+β

}. For convenience, let A = (−1)βω(α + β) and a1 = α/(α + β),
and let ai be 0 for 2 ≤ i ≤ α and be 1 for α + 1 ≤ i ≤ α + β − 1. Then f ′(x) = A

∏
i(x − ai),

f ′′(x) = A
∑

j

∏
i�=j(x − ai), and f ′′′(x) = A

∑
j

∑
k �=j

∏
i�=j,k(x − ai). Here both the product
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and the summation are taken over all integers between 1 and α + β − 1. Thus,

Sf (x) =
∑

j

∑
k �=j

1
(x−aj)(x−ak) − 3

2 (
∑

j
1

x−aj
)2

= −
∑

j

( 1
x−aj

)2 − 1
2 (
∑

j
1

x−aj
)2 < 0 for x �= aj.

This completes the proof of the theorem. �

At the end of this section, we conclude the result of simple dynamics.

Theorem 4. Let f = fω,α,β be the family Eq. (13) with α > 0, β > 0 and 0 < ω <

((α + β)α+β−1/(αα−1ββ)). Let J be the interval [0, p) if β is an even integer and be [0, 1] if
β is not even. Then for every x ∈ J , fn(x) converges to zero as n tends to infinity.

Proof. Since f (α/(α + β)) is the unique local maximum of f on J, the assumption implies that
f (x) < x for all x �= 0 in J. Fix x ∈ J not equal to 0. Then {fn(x)}∞n=0 is a strictly decreasing
sequence bounded below by 0, and hence there exists x̄ ≥ 0 in J such that limn→∞ fn(x) = x̄.
By the continuity of f, we have f (x̄) = f (limn→∞ fn(x)) = limn→∞ fn+1(x) = x̄, that is, x̄

is a fixed point of f. Since 0 is the unique fixed point of f on J, x̄ = 0, so the desired result
follows. �

Note that since ω = ((1 + θ)/η)1/1−ρ, the above condition 0 < ω < ((α + β)α+β−1/(αα−1ββ))
is equivalent to θ > −1 + η((α + β)α+β−1/(αα−1ββ))1−ρ > 0 (respectively 0 < θ < −1 +
η((α + β)α+β−1/(αα−1ββ))1−ρ) if ρ > 0 (respectively 0 < ρ < 1). Therefore, with the persis-
tence of the cash goods habit, the dynamics of our model will eliminate chaotic behavior and
become simple convergence when the money supply growth rate is sufficiently large (respec-
tively small) provided ρ > 1 (respectively 0 < ρ < 1). This result of bifurcating at the critical
value ρ = 1 is different from the earlier ones. Woodford argued that an increase of money supply
growth can eliminate multiple equilibria. Matsuyama (1991) demonstrated that a high money
supply growth rate can cause instability in the price levels and showed the result is also robust
with respect to different settings of a money-in-the-utility model. The numerical examination by
Michener and Ravikumar demonstrated that the multiplicity of equilibria cannot be eliminated,
regardless of whether the money supply growth rate is high or low in a cash-in-advance economy.

3. Habit persistence in both cash-goods and credit-goods

In this section, we assume that agents have persistent habits for both cash-goods and credit-
goods consumptions. With a slight modification of Eq. (4), the preference is now represented
as

∞∑
t=0

ηtU(V (ct, c̄t−1), G(dt, d̄t−1)),

where d̄t−1 is the average consumption of credit goods in period t − 1. Note that here G is a
function of two variables instead of one variable, as in Eq. (4). In an analogy to Assumption 3, we
assume that an increase in the past average consumption of credit goods will magnify the utility
while keeping current consumptions fixed.
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Assumption 5. The utility function is decreasing in d̄t−1. That is,

∂U

∂d̄t−1
(V (ct, c̄t−1), G(dt, d̄t−1)) ≤ 0.

The specific function form of G(dt, d̄t−1) is given as

G(dt, d̄t−1) =
⎧⎨
⎩

(dt − τd̄t−1)1−γ − 1

1 − γ
, if γ �= 1,

log(dt − τd̄t−1), if γ = 1.

(14)

The parameter τ ∈ (0, 1) indicates the degree of habit persistence of average credit-goods con-
sumption. We assume γ �= 1.

Here the setting of the persistent habit of credit-goods consumption in Eq. (14) is different
from that of cash-goods consumption in Eq. (11) in order to simplify the analysis of the economic
dynamics with habit persistence for both goods. Both forms have been used to describe the
persistence of consumption habit in the previous studies. The former function form was adopted
by de la Croix (1996) and Auray et al. while the latter one was utilized by Abel.
Two-dimensional dynamical systems

Given the utility function of G(dt, d̄t−1) as in Eq. (14), we find that Eq. (8) reduces to

mt+2 =
{

κ(1 + θ)

η
m

1+ξ(1−ρ)
t+1 [(1 − τ)ν − mt+1 + τmt]

−γ

}(1/1−ρ)

. (15)

Hence, the economic dynamics is represented by a second-order difference equation.
For the dynamics of Eq. (15), without loss of generality, we assume that ν = 1. For describing

chaotic behaviors, we assume 1/(1 − ρ) + ξ = −(γ/(1 − ρ)) = 1. Let ω = (κ(1 + θ)/η)(1/1−ρ),
x = mt , and y = mt+1. Then the dynamics of Eq. (15) with (mt, mt+1) �→ (mt+1, mt+2) is equiv-
alent to the dynamics of the family of maps (x, y) �→ Fω,τ(x, y), where

Fω,τ(x, y) = (y, ωy(1 − y) + τωy(x − 1)). (16)

Numerical simulations indicate that the dynamics of Fω,τ vary from simple to chaotic as param-
eters change; see Fig. 2.

First, following the pioneer article of Smale in the theory of chaotic dynamical systems, we
show that Fω,τ has entropic chaos due to the existence of a so-called Smale horseshoe; see Fig. 3.

Fig. 2. The x-coordinate orbit diagram of Fω,0.05(x, y) in ω.
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Fig. 3. The set [0, 1] × [0, 1] and its image F6,0.5([0, 1] × [0, 1]) form a “horseshoe”.

Theorem 5. Let Fω,τ be the family Eq. (16) with ω > 4 and 0 < τ < 1 − (2/
√

ω). Then
htop(Fω,τ |Λ) ≥ log(2) and hence Fω,τ has entropic chaos on Λ, where

Λ = {(x, y) : Fn
ω,τ(x, y) ∈ [0, 1] × [0, 1] for all n ∈ Z}.

Proof. Let S = [0, 1] × [0, 1] be the unit square, and let g(y) = ωy(1 − y) − τωy for y ∈ [0, 1].
Then g([0, 1]) is the bottom boundary of the image Fω,τ(S); refer to Fig. 3. The maximum of
g on [0, 1] is g((1 − τ)/2) = ω((1 − τ)/2)2, which is greater than 1 since 0 < τ < 1 − (2/

√
ω).

Thus, Fω,τ(S) ∩ S has two vertical strips, namely, V1 on the left and V2 on the right. Similarly,
F−1

ω,τ(S) ∩ S has two horizontal strips, namely, H1 on the bottom and H2 on the top. We have
Fω,τ(Hk) = Vk for k = 1, 2.

For simplicity, we write F for Fω,τ . For integers m ≤ 0 and n ≥ 0, let Sn
m = ⋂n

i=m Fi(S). Then
S1

0 = V1 ∪ V2 is a union of two vertical strips in S. As in the one dimensional case, for n ≥ 1,

Sn
0 = F (Sn−1

0 ) ∩ S = [F (Sn−1
0 ) ∩ V1] ∪ [F (Sn−1

0 ∩ V2)] = F (Sn−1
0 ∩ H1) ∪ F (Sn−1

0 ∩ H2).

In particular, for n = 2, S2
0 = F (S1

0 ∩ H1) ∪ F (S1
0 ∩ H2) = F ([V1 ∪ V2] ∩ H1) ∪ F ([V1 ∪ V2] ∩

H2) is the union of 22 vertical strips in S1
0 . By induction, Sn

0 is the union of 2n vertical strips.
Taking n → ∞, we have S∞

0 = ⋂∞
n=1 Sn

0 is the union of infinitely many vertical strips or segments
(occurring while the widths of strips converges to zero as n → ∞). If z ∈ S∞

0 , then z ∈ Fi(S)
and F−i(z) ∈ S for all i ≥ 0. Thus, S∞

0 is the set of points whose backward iterates stay in S.
Considering the sets S0

m, we have S0
−1 = H1 ∪ H2 is the union of two horizontal strips in S.

Then S0
−2 is the union of four horizontal strips in S0

−1. Continuing by induction, we have that for

m ≤ 0, S0
m is the union of 2−m horizontal strips and S0−∞ = ⋂0

m=−∞ S0
m is the union of infinitely

many horizontal strips or segments (occurring while the heights of strips converges to zero as
m → −∞). If z ∈ S0−∞, then z ∈ F−i(S) and Fi(z) ∈ S for all i ≥ 0. Thus, S0−∞ is the set of
points whose forward iterates stay in S.

By the definition of Λ, we have that Λ = S∞
0 ∩ S0−∞ is the intersection of infinitely many

vertical strips (or segments) and infinitely many horizontal strips (or segments), and Λ is the set
of points such that both the forward and backward iterates stay in S.

Let Σ2
2 = {i = (. . . , i−1, i0, i1, . . .) : ik ∈ {1, 2} for all k ∈ Z} be the two-sided sequence space

with the metric d(i, j) =∑∞
k=−∞

δ(ik,jk)
4|k| , where δ(s, t) is 0 if s = t and is 1 if s �= t. The shift map

σ on Σ2
2 is defined by σ(i) = j where jk = ik+1 for all k ∈ Z. Let Σ̄2

2 be the space obtained form
Σ2

2 by identifying (. . . , i−1, i0, i1, . . .) and (. . . , j−1, j0, j1, . . .) if ik = jm = 1 for all k ∈ Z and
all m ≤ 1, that is, by identifying two sequences if they are itineraries of the same point in S. Define
h : Λ → Σ̄2

2 by h(z) = (. . . , i−1, i0, i1, . . .) where Fk(z) ∈ Hik for all k ∈ Z. We prove that h is
a semi-conjugacy from F |Λ to σ|Σ̄2

2.
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First we prove that σ ◦ h = h ◦ F on Λ. Let h(z) = (. . . , i−1, i0, i1, . . .) and h(F (z)) =
(. . . , j−1, j0, j1, . . .). Then Fk+1(z) ∈ Hik+1 but also Fk+1(z) = Fk(F (z)) ∈ Hjk

. Thus, ik+1 =
jk and σ(h(z)) = h(F (z)).

Next we prove the continuity of h. Let h(z) = (. . . , i−1, i0, i1, . . .). A neighborhood of
(. . . , i−1, i0, i1, . . .) is given by U = {(. . . , j−1, j0, j1, . . .) : jk = ik for − k0 ≤ k ≤ k0}. With
k0 fixed, the continuity of F insures that there is a δ > 0 such that if w ∈ Λ with |w − z| ≤ δ, then
Fk(w) ∈ Hik for −k0 ≤ k ≤ k0. Thus, if w ∈ Λ with |w − z| ≤ δ then h(w) ∈ U.

Last we check that h is surjective. We apply induction on n to show that
⋂n

k=1 Fk(Hi−k
) is a

vertical strip for all strings of symbols (. . . , i−1, i0, i1, . . .) ∈ Σ̄2
2. Let (. . . , i−1, i0, i1, . . .) ∈ Σ̄2

2.
For n = 1, this set is just F (Hi−1 ) = Vi−1 , which is a vertical strip. Then

n⋂
k=1

Fk(Hi−k
) = F

(
n⋂

k=2

Fk−1(Hi−k
)

)
∩ F (Hi−1 )

is a vertical strip. Letting n go to infinity,
⋂∞

k=1 Fk(Hi−k
) is a vertical strip or segment. Similarly,⋂0

k=−∞ Fk(Hi−k
) is a horizontal strip or segment. Thus,

⋂∞
k=−∞ Fk(Hi−k

) is nonempty; say z is
in this intersection. Therefore, h(z) = (. . . , i−1, i0, i1, . . .) and h is surjective. This completes the
proof that h is a semi-conjugacy from F |Λ to σ|Σ̄2

2.
By using the Variational Principle as in the proof of Theorem 1, we have that htop(F |Λ) ≥

htop(σ|Σ̄2
2) = htop(σ|Σ2

2) = log(2). The proof of the theorem is complete. �
Using the method of Yokoo (2000), we show the existence of entropic chaos for the family Eq.

(16) with ω slightly less than 4.

Theorem 6. Let Fω,τ be the family Eq. (16) with 3.7 ≤ ω < 4 and τ > 0 sufficiently small. Then
there exists a set Λ ⊂ (0, 1) × (0, 1) such that Fω,τ(Λ) = Λ and Fω,τ has entropic chaos on Λ.

Proof. Let g(y) = ωy(1 − y), a = g2( 1
2 ) and b = g(1/2). Since 3.7 ≤ ω < 4, we have 0 < a <

(ω − 1)/ω < b < 1, g((ω − 1)/ω) = (ω − 1)/ω, and g([a, b]) = [a, b]. Let p = (ω−1
ω

, ω−1
ω

),
then Fω,0(p) = p.

We first claim that there exist a compact region M ⊂ (0, 1) × (0, 1) and a number τ0 > 0 such
that for every τ ∈ (0, τ0), the following assertions hold:

(a) Fω,τ(M) ⊂ int(M) and p ∈ int(M);
(b) Fω,τ |M : M → M is a C1-diffeomorphism onto its image; and
(c) the Jacobian matrix evaluated at p, DpFω,τ , has two real eigenvalues υ1(τ) and υ2(τ) with

0 < |υ1(τ)| < 1 < |υ2(τ)| and |υ1(τ)υ2(τ)| < 1.

The proof of the claim is as follows. Given a1 ∈ (0, a), there exists b1 ∈ (b, 1) such that g(b1) >

a1. Then g([a1, b1]) ⊂ (a1, b1). Similarly, given a2 ∈ (0, a1), there exists b2 ∈ (b1, 1) such that
g(b2) > a2. Then [a1, b1] ⊂ (a2, b2) and g([a2, b2]) ⊂ (a2, b2). Let M = [a2, b2] × [a1, b1], then
M ⊂ (0, 1) × (0, 1) and Fω,0(M) = [a1, b1] × g([a1, b1]) ⊂ (a2, b2) × (a1, b1) = int(M). Since
the map (x, y) �→ y(x − 1) is continuous on the compact set M, we have that for any sufficiently
small τ > 0, Fω,τ(M) ⊂ int(M), so item 1 follows. It is easy to see that Fω,τ is one to one on M.
On the other hand, the Jacobian matrix of Fω,τ at point z = (x, y) is given by

DzFω,τ =
[

0 1

τωy ω − 2ωy + τ(x − 1)

]
. (17)
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Hence, we have det(DzFω,τ) = −τωy < 0 for all z = (x, y) ∈ M and τ > 0. Therefore, item 2
follows. Let υ1(τ) and υ2(τ) with |υ1(τ)| ≤ |υ2(τ)| be the two eigenvalues of Eq. (17) evaluated at
p = (ω−1

ω
, ω−1

ω
). Then limτ→0 υ1(τ) = 0 and limτ→0 υ2(τ) = 2 − ω ≥ −1.7. By the continuity

of υi(τ) with i = 1, 2 with respect to τ and by |υ1(τ)υ2(τ)| = det |DpFω,τ | > 0 for τ > 0, item 3
follows.

The rest of the proof involves basic terminologies in the theory of dynamical systems; refer
to Katok and Hasselblatt and Robinson for definitions. Since 3.7 ≤ ω < 4, g2( 1

2 ) < (1/ω), and
hence there exists y0 ∈ ( 1

2 , ω−1
ω

) such that g2(y0) = 1/ω and g3(y0) = (ω − 1)/ω. Moreover,
there exists a sequence {y−i}∞i=1 such that g(y−i) = y−i+1 in the interval ( 1

2 , g2( 1
2 )) for all i ≥ 1

and limi→∞ y−i = (ω − 1)/ω. Therefore, y0 is a transverse homoclinic point with respect to the
fixed point (ω − 1)/ω for g. Let q = (y0, g(y0)), then q ∈ M is a transverse homoclinic point with
respect to the fixed point p for Fω,0. Let �s be the horizontal line segment in M passing through
p, that is, �s = {(x, y) ∈ M : y = (ω − 1)/ω}. Since every point in �s is mapped onto p by Fω,0,
�s is a part of the stable manifold of p for Fω,0. Let �u = {(x, y) ∈ M : y = g(x)}, an arc on the
graph of g. Since each point on �u has a backward orbit converging to p, �u is a part of the unstable
manifold of p for Fω,0. Clearly, �s and �u have a transverse intersection at F2

ω,0(q) ∈ M.
By the perturbation argument of invariant manifolds [see Appendices 1 and 4 of Palis and

Takens (1993)], for τ > 0 small, the C1 diffeomorphism Fω,τ |M has a saddle point pτ ∈ M near
p. The stable and unstable manifolds of p for Fω,τ , Ws(pτ, Fω,τ) and Wu(pτ, Fω,τ), contain arcs
�s
τ and �u

τ which are C1 close to �s and �u, respectively. Since transverse intersections are persistent
in the C1 sense, �s

τ and �u
τ have a transverse intersection qτ ∈ M near q. Thus, for all sufficiently

small τ > 0, the diffeomorphism Fω,τ |M has a transverse homoclinic point for the hyperbolic
fixed point pτ .

By the Transverse Homoclinic Point Theorem [see Theorem VIII.4.5 of Robinson], there
exist k ∈ N and a set Λ1 ⊂ M such that f k(Λ1) = Λ1 and Fk

ω,τ |Λ1 is topologically conjugate
to the shift map σ|Σ2

2. Let Λ = ⋃∞
i=−∞ Fi

ω,τ(Λ1); then Λ ⊂ M ⊂ (0, 1) × (0, 1), Fω,τ(Λ) = Λ

and htop(Fω,τ |Λ) = 1
k
htop(Fk

ω,τ |Λ1) = 1
k
htop(σ|Σ2

2) = 1
k

log(2) > 0. The proof of the theorem is
complete. �

Theorems 5 and 6 demonstrate that under certain conditions, chaos will emerge when house-
holds have persistent habits of both cash-goods and credit-goods. Similar to the case when agents
have the persistent habit of only the cash goods, the money supply growth rate also plays a
significant role in determining the possibility of chaotic motion.

4. Conclusions

In this paper, we have shown the existence of chaotic behavior in a monetary economy with habit
persistence in consumption of cash goods and credit goods, and focusing on entropic and ergodic
chaos. The economic transition can be represented by a one-dimensional or two-dimensional
dynamical system depending on the persistent habit of only cash-goods consumption or both
cash-goods and credit-goods consumptions, respectively. We investigated the presence of chaotic
motion under these two situations when the cash-in-advance constraint was always binding. We
also showed that the money supply growth rate is an important determinant of the possibility of
chaotic motion.

The dynamics of a cash-in-advance model become complicated when agents have persistent
habits of both goods; thus future studies of the model are warranted. Some of the parameter
values were restricted to simplify the two-dimensional dynamical system in the model. It would
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be interesting to examine the possibility of chaotic dynamics when these restricted parameters
are relaxed. Our two-dynamical system can be regarded as a perturbation of the one-dimensional
dynamical system y �→ ωy(1 − y). Following the monograph of Palis and Takens, the striking
phenomena caused by unfolding a homoclinic tangency may be further investigated; also refer to
Li (2003).

Our results show that endogenous fluctuations of the real money balance are easily generated
in a cash-in-advance economy with habit persistence. Because the economic performance over
time will be very different, depending on whether the dynamical system is stochastic or chaotic,
econometric studies to detect what the time series data stands for is an important task for the
future. Our model here is a step forward in seeking the most appropriate dynamical systems.
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