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Abstract. Once the structure form of demand and supply is translated into a reduced form, one can
solve the reduced form with a state space model of the Kalman filter method. This paper discusses an
innovation representation that links the structure form with the state space model. For the state space
model, the recursive Expectation Maximization (EM) algorithm is used to estimate the parameters of
a structure form. This research successfully applied the Kalman filter method to the estimation of the
coefficients of simultaneous equations with overidentifying rank restrictions. The empirical monthly
data set came from the medium-size scooter market in Taiwan during 1987 to 1992 period.

1. Introduction

This article deals with the simultaneous equations of multiple time series via state
space model, where the output equations are the linkage between simultaneous
equations and state space model. In particular, this research focuses on solving
simultaneous equations with overidentifying rank restrictions problem by using a
revised expectation maximization (EM) algorithm.

Yang and Chen (1995) did not apply Kalman filter in solving simultaneous
equations due to the difficulty of overcoming the problem of overidentifying rank
restrictions; a linear stuctural form system which is overidentified will give rise
to a set of non-linear parameter restrictions in the reduced form. This then means
that the Kalman filter will not be a correct precedure to apply subject to these
restrictions. However in the case of this demand-supply system the restrictions can
be expressed in a purely linear form and so the precedure proposed here gives full
ML estimates of the reduced form subject to the overidentifying restrictions of
the structure. This research uses Kalman filter in a Demand-Supply simultaneous
model and obtains the coefficients of structure form via EM algorithm. In estimating
the parameters of endogenous variables, this research assumes that the relationship
of the endogenous variables are constant (in order to simplify the model). This
research concentrates on how the exogenous variables influence the endogenous
variables over time. In this paper, a recursive EM algorithm is examined to obtain
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the parameters by the maximum likelihood method. The EM algorithm is basically
to use the forward and backward recursions in finding the expected maximum log
likely function until it converges.

Variables used in most estimation models are non-stationary time series data.
Most time series forecasting models, however, are based on the assumption that
they are stationary or co-integration time series (although the real data used for a
time series are not). In other words, the forecasting by using non-cointegration data
in the stable model has the essential problem which guarantees significant errors.
The state-space model, however, can adapt to the time-varying nature and is very
compatible to the applications of unstable time series.

Boas (1989) discusses why the conventional model failed and how this forecast-
ing problem was tackled by applying the filter technique, a model developed for
predictions in non-stationary situations. Harvey (1985) and Aoki (1987) applied the
state space model by using Kalman filter in economics when analyzing the influence
of GNP of U.S.A. Yang and Chen (1995) presented the general results concerning
simultaneous equations with demand-supply model by using the reduced form to
forecast the multiple inputs and multiple outputs problems. The research revealed
that the traditional approach in econometrics had been to specify a representation
based on economic theory, convert to a reduced form if necessary, impose inden-
tifiability constraints, and then estimate model parameters. However, the previous
paper did not discuss how to impose identifiability constraints of overidentify-
ing rank restrictions and how to estimate the coefficients of the structure form.
Shumway and Stoffer (1982) proposed the EM algorithm for smoothing and fore-
casting; this research revised the algorithm in estimating the coefficients of the
structure form.

This paper is organized as follows: Section 2 briefly outlines the recursive EM
algorithm and its background materials. In section 3, an empirical study character-
izes the supply-demand model of the medium-size scooter motorcycle market in
Taiwan. Section 4 gives the concluding remarks.

2. Innovation Representation in State Space Model

Consider the time-varying Demand-Supply model of the structure form represented
in equation (1).

QD;t = Pt�+ UD;tAt + UC;tCt + �1;t (demand)

QS;t = Pt� + US;tBt + UC;tDt + �2;t (supply)

QD;t = QS;t = Qt (at equilibrium). (1)

In equation (1), QD;t and QS;t represent the quantity of demand and supply at
time t respectively; Pt represents the sales price at time t. UD;t and US;t represent
the vectors of demand and supply function’s exogenous variables at time t, respec-
tively. UC;t represents the joint-exogenous variables vector and appears in both
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demand and supply equations at time t. Additionally, a and b are the price coeffi-
cients and are assumed constant over time. The relaxation of this assumption is an
ongoing research and will be reported soon. At and Bt are the coefficient vectors of
exogenous variables in demand and supply functions respectively at time t. Ct and
Dt are the coefficients vectors of joint-exogenous variables in demand and supply
equations. Error terms of this structure form at time t are expressed as e1;t and e2;t.
Reduced form of equation (1) can be expressed as follows:

Qt = UD;t�1;t + US;t�2;t + UC;t�3;t + ��1;t

Pt = UD;t�4;t + US;t�5;t + UC;t�6;t + ��2;t (2)

with

2
4 �1;t �4;t

�2;t �5;t

�3;t �6;t

3
5 � 1 1

�� ��

�
=

2
4 At 0

0 Bt

Ct Dt

3
5 : (3)

The vectors �1;t, �2;t, �3;t, �4;t, �5;t and �6;t represent the coefficients of
reduced form (equation (2)) at time t. These vectors express how the exogenous
variables (UD;t, US;t, UC;t) influence the endogenous variables (Pt, Qt). and ��2;t
are error terms of the reduced form. From equation (3), two entries of zeros in right
hand side matrix lead to the following relationship:

�2;t � ��5;t = 0

�1;t � ��4;t = 0 (4)

For equation (4) to be solvable, the vector pair of either (�2;t, �5;t) or (�1;t,
�4;t) must have a scalar multiplier relationship. In other words, the scalar values
of � and � can be solved by given (�2;t, �5;t) and (�1;t, �4;t), respectively. Given
either vector pair of (�2;t, �5;t) or (�1;t, �4;t) to solve for scalar � or �, however,
is a problem with overidentifying rank restrictions in general (unless equation are
just identified).

Other relationships can be derived from equation (3) are listed in equation (5):

�1;t � ��4;t = At

�2;t � ��5;t = Bt

�3;t � ��6;t = Ct

�3;t � ��6;t = Dt (5)

Note thatAt,Bt,Ct,Dt, are the coefficients of structure form at time t. In other
words, equation (5) is a linkage between the coefficients of reduced form (equation
(2)) and that of the structure form (equation (1)). Furthermore, from equation (4)
and (5), one can see that if the values of �, �, �2;t, �3;t, �4;t, �6;t, are known then
one can obtain�1;t,�5;t,At,Bt,Ct andDt easily. Therefore, for the parsimonious
principle, one can define the state variables at time t as Xt in equation (6a). Since
�3;t and �6;t relate the joint exogenous variables matrix UC;t they must be in the
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state variables. Additionally, if one includes either (�2;t, �4;t) or (�1;t, �5;t) in the
state variables then one can construct a state vector. For example, Xt can be

Xt = [��
2;t�

�
4;t�

�
3;t�

�
6;t]

� (6a)

Let matrix � be defined with two parameters, �1 and �2, as follows:

� =

2
66666664

0 ID � �1 0 0
Is 0 0 0
0 0 Ic 0
0 ID 0 0
Is � �2 0 0 0
0 0 0 Ic

3
77777775
: (6b)

Xt is a f rank(UD)+rank(US)+2rank(UC)g�1 matrix and� is a f2[ rank(UD)+

rank(US) + rank(UC)]g � f rank(UD) + rank(US) + 2rank(UC)g matrix. Addi-
tionally, ID is a rank(UD)� rank(UD) identity matrix; IS is a rank(US)� rank(US)

identity matrix. IC is a rank(UC) � rank(UC) identity matrix. � is the translation
matrix and is derived from the constraints of equations (4).

Note that

��Xt = [�1�
T
4;t�

T
2;t�

T
3;t�

T
4;t �2�

T
2;t�

T
6;t]

T : (7)

When �1 = �, �2 = 1=�, equation (7) can be rewritten as equation (8).

��Xt = [�T
1;t�

T
2;t�

T
3;t�

T
4;t�

T
5;t�

T
6;t]

T : (8)

Since �1;t;...;�6;t are the coefficients of the reduced form in equation (2), equation
(8) can be thought of as the coefficients of the reduced form. Therefore, by using
� and Xt one can generate all �i;t, and subsequently At, Bt, Ct, Dt in equation
(5) without solving equation (4). To construct the innovation equations, one can
imitate the reduced form pattern and define the output matrix 	t as follows:

	t =

�
UD;t US;t UC;t 0 0 0
0 0 0 UD;t US;t UC;t

�
; t = 1; 2; . . . ; n; (9)

where 	t is a known 2�f2[rank(UD) + rank(US) + rank(UC)]g design matrix
that translates the unobserved stochastic vector, �Xt, into the two observed series
Qt and Pt, i.e. Yt. Again, UD;t, US;t and UC;t in equation (9) are the exogenous
variables shown in equation (1). The parameter n in equation (9) is the number of
observations. Combining equations (6a), (6b), (8) and (9), the output equation can
be expressed as follows:

Yt = 	t�Xt +Wt; t = 1; 2; . . . ; n; (10)

where Wt =

�
W1;t

W2;t

�
, and Yt =

�
Qt

Pt

�
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In equation (10), Qt (Quantity) and Pt (Price) are the endogenous variables.Xt, is
the state variable at time t and contains the elements of �2;t, �4;t, �3;t, �6;t (see
equation (6a)).

The innovation representation can be defined follows:

Xt+1 = �Xt + Vt

Yt = 	t�Xt +Wt; t = 1; 2; . . . ; n: (11)

� is the transition matrix that translates state variable Xt to Xt+1. In equation
(11), Vt and Wt are the error or noise terms and are assumed to be zero-mean
uncorrelated normally distributed noise vectors with covariance matrix S and R.
Having formulated the innovation representation, we now explain the procedure
for estimating the coefficients of structure form.

Procedure for estimating the coefficients of structure form:
Note that, first, the joint log likelihood of the complete data X0, X1; . . ., Xn,

Y1; . . ., Yn can be written in the form of equation (12) (see Appendix A).

logL = �
1
2

ln j�j �
1
2
tr[��1(X0 � �)(X0 � �)T ]:

�
n

2
ln jSj �

1
2
�

1
2
tr[S�1�n

t=1(Xt ��Xt�1)(Xt � �Xt�1)
T ]

�
n

2
ln jRj �

1
2
tr[R�1�n

t=1(Yt �	�Xt)(Yt �	�Xt)
T ]: (12)

Note that trA, or trace of a matrix A, is defined as the scalar sum of diagonal entries
of matrix A. The initial value X0 is assumed to be a normally random vector with
mean vector � and the covariance matrix �. According to Shumway and Stoffer
(1982), when log L is maximized means that the products of joint probabilities
of Vt, Wt in equation (11) are maximized. Since the log likelihood given above
depends on the unobserved state variables, Xt, t = 0, 1,. . .,n, the EM algorithm is
considered to be applied conditionally with the observed series Y1, Y2, . . ., Yn. The
parameters of (r+1)st iteration are defined as the values of �;�;�, S, R, and� that
maximize

G(�;�;�; S;R;�) = Er(logLjY1; . . . ; Yn): (13)

where Er denotes the conditional expectation relative to a density containing the
r-th iteration values of �(r), �(r), �(r), S(r), R(r) and �(r). The formula is
similar to that in Shumway and Stoffer(1982) except adding a parameter � in G
function.

By using the recursive EM algorithm, one can estimate the log likelihood with
parameter �, �, �, S, R, �, at each iteration. But there is one problem left to be
solved: we must know how to estimate the �1, �2 to construct �. From equation
(10), we can estimate �1, �2 as follows: (see Appendix B):

�̂1 = n�1�n
t=1

"
Qt � US;t�2;t � UC;t�3;t

UD;t�4;t

#
;
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�̂2 = n�1�n
t=1

"
Pt � UD;t�4;t � UC;t�6;t

US;t�2;t

#
(14)

Since �1 and �5 in equation (5) can be expressed in �2 and �4 respectively
through equation (4), the coefficients of structure form can be computed by solving
equation (5).

At = (� � �)�4;t

Bt = (1 � �=�)�2;t

Ct = �3;t � ��6;t

Dt = �3;t � ��6;t: (15)

Since �1 = � and �2 = 1=�, one can compute �, � from equation (14). �2;t, �3;t,
�4;t, �6;t are the elements of state variables at time t and can be generated from
the EM algorithm (see Appendix C).

3. Empirical Study

The motorcycle industry in Taiwan started in 1952. Motorcycles were first imported
by some trading companies, and later the imported parts were assembled locally.
In 1961 the government of Taiwan wanted to protect the industry and restricted
the import of motorcycles except the parts. Since San Yang Co., Ltd., established
the first mortorcycle manufactoring factory, several others joined the production.
The domestic sales of motorcycles in 1966 reached 144,000 units, worth U.S. $ 50
million dollars, with more than forty companies. The market became competitive
after Taiwan started a 20% advorum tax in 1968. Due to the growth of the market of
Taiwan, the annual sales of motorcycles reached 746,000 units in 1979. However,
the sales were decreased for the next three consecutive years due to the oil crisis.
The market has been revived since 1986.

Taiwan is now the 14th largest international trading country and is the 3rd
largest producer of motorcycles (preceded by Japan and Italy). The major firms
that produce motorcycles are Sang-Yang Ltd., Kuang-Yang Ltd., Taiwan Sun-Yeh
Ltd., Tai-Ling Ltd. and Taiwan vespa Ltd. Due to the low price, mobility, and easy
parking, motorcycles are becoming the hottest commodity in Taiwan and many
firms are extending their markets to mainland China. The motorcycle industry in
Taiwan can categorize its market into five sub-markets: 50 c.c and below, 50–
125 c.c. (medium-size), above 125 c.c., racing motorcycles, and the others. The
medium-size scooter motorcycles market is the largest of these five markets and
reaches a monthly sale of 50,000 units (see Figure 1). Therefore, this research
focuses on the market of medium-size scooter.

The monthly data between January 1987 to December 1992, from the Bureau
of Statistics, Ministry Administration and San Yang Lct., Co. of R. O. C., are
available for this research. A model capable of expressing the market behavior
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Figure 1. Number of Transaction Units and Average Price of medium-size scooter in Taiwan.
Monthly data set of 72 months; January 1987–December 1992.

should therefore consist of at least two equations: demand and supply. These
considerations lead to the following structure form:

Qt = �� Pt + (ADVtNOHt)�At + Constant � Ct + �1t (Demand)

Qt = � � Pt + ( MWAGEt TRENDt )�Bt + Constant�Dt + �2t (Supply)

Qt the transaction quantity observed at time t, an endogenous

variable in Demand-Supply model (unit: 100 units).

Pt the transaction price observed at time t, an average price of

various brands medium size scooter, an endogenous variables in

Demand-Supply model (unit: NT$ 100).

ADV: total expenditure of the advertisement in medium-size scooter

(unit: NT$ 100,000).

NOH: the number of houses in Taiwan (unit: 100,000 units).

MWAGEt Average (labor costs) wage in manufacture industry (unit:

NT$1,000).

TREND time trend (unit: 1, 2, ..., n).

Constant Constant term.

�1t and �2t are the error or noise terms of demand and supply equations,

respectively.
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Table I. The �2 log likelihood and BIC at each
iteration by the EM algorithm

Iteration BIC (Bayes �2 log(L)
information critical)

1 1523.91 1626.55
2 1320.69 1423.33
3 1208.12 1310.76
4 1135.24 1237.88
5 1082.98 1185.62
6 1044.25 1146.89
: : :
: : :
: : :
24 954.90 1057.49
25 954.82 1057.46

Refer to equation (1), � and � relate endogenous variables. � expresses how
much the price influences the quantity in the demand equation or dQD/dP. If the
commodity is a normal good then a should be negative. � expresses how much
the price influences the quantity in supply function or dQS/dP. If the commodity
is a normal good then � should be positive. A is the structure coefficients of the
exogenous variable (ADV andNOH) at time t. (The ADV is the total expenditure
of the advertisement in medium-size scooter. The NOH is the number of houses
in Taiwan.) If the ADV and NOH increases, the quantity of medium-size scooter
Qt demand should increase and the value of At should be positive. The (MWAGE
TREND) is a column vector and Bt is a 2�1 vector at time t where MWAGE is the
industry average wage in manufactures. If MWAGE, a production cost, increases
then the quantity of supply should decrease and the value of B1;t (the first element
of Bt) should be negative.

In order to apply the Kalman filter state space (KFSS) EM procedure (see
Appendix C), initial values are required for the parameters. Note that, to simplify
the calculation, we set the initial values of S, R, �, � by identity matrices. After
setting the initial points, we can compute each iteration’s log likelihood by using
equation (12). If the estimation is defined as a stationary point of the likelihood
function, then it is a non-decreasing likelihood, i.e. �2 log(L) is a non-increase
series (Dempster et al., 1977). From the equation (12), we can obtain the values
of �2 log(L) and BIC (Bayes information critical) for each iteration (Shumway,
1982).

Table 1 shows that the values of �2 log(L) and BIC are decreasing. This meets
Dempster assumption (Dempster et al., 1977) that �2 log(L) is a non-increase
series. At the convergency we can obtain the estimation of parameters �1, �2 and
�. At the final convergent point, the estimate of � is,
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�̂ =

0
BBBBBBBBBBBBBBB@

0 0 0 8:5547 0 0
0 0 0 0 8:5547 0
1:0000 0 0 0 0 0
0 1:0000 0 0 0 0
0 0 0 0 1:000 0
0 0 1:0000 0 0 0
0 0 0 1:0000 0 0
�2:1969 0 0 0 0 0
0 �2:1969 0 0 0 0
0 0 0 0 0 1:0000

1
CCCCCCCCCCCCCCCA

where, �̂1 = 8.5547 and �̂2 = �2:1969. Since � = 1=�2, � = �1, the estimates of
� and � can be evaluated as follows:

�̂ = �0:4552

�̂ = 8:5548:

In other words, when the price increases one unit then the quantity of demand will
decrease 0.4552 units and the quantity of supply will increase 8.5548 units. These
results are consistent with consumers’ behavior. Similarly, from equation (12), we
can obtain transition matrix, the covariance matrices of Vt and Wt as follows:

transition matrix (see Appendix B)

�̂ =

0
BBBBBBB@

0:8607 �0:1767 �2:2222 �0:7813 0:0043 0:0555
0:0713 0:9724 0:3969 0:0496 0:0002 �0:0064
0:0037 0:0160 0:5178 0:0422 �0:0003 �0:0015
�0:0271 �0:1844 0:0319 0:3254 0:0064 0:0446
0:0533 0:0566 �0:0741 0:2444 0:9954 �0:0152
0:1547 0:2750 0:2113 1:3330 �0:0189 0:8988

1
CCCCCCCA

covariance matrix of the noise term Vt

Ŝ =

0
BBBBBBB@

0:4711 �0:1712 0:0118 �0:0031 0:0101 0:0102
�0:1712 0:0683 �0:0035 0:0047 �0:0044 0:0097
0:0118 �0:0035 0:0033 �0:0060 0:0012 0:0031
�0:0031 0:0047 �0:0060 0:0217 �0:0037 �0:0031
0:0144 �0:0069 0:0012 �0:0037 0:9822 �0:0755
0:0092 0:0102 0:0031 �0:0010 �0:0656 0:6668

1
CCCCCCCA

and covariance matrix of the noise term Wt

R̂ =

�
0:9993 �0:0000
�0:0000 0:9636

�
:
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Figure 2. The coefficients At of ADV (total expenditure of the advertisement in medium-size
scooter) and NOH (the number of houses in Taiwan) in Demand function at last iteration.
January 1987–December 1992.

The estimates of �̂, Ŝ, R̂ are all fixed points of convergency over time at the
last iteration of EM algorithm. The next step, the dynamic coefficients of exoge-
nous variables are calculated. Figures 2–4 exhibit how the exogenous variables
coefficients change over time.

The demand side exogenous variables, coefficients Ât of ADV (total expendi-
ture of the advertisement in medium-size scooter) and NOH (the number of houses
in Taiwan), derived from equation (15), at last iteration by EM algorithm) are
shown in Figure 2.

The coefficients of ADV and NOH express how advertisement and the growth
of housing supply influence the qunatity of demand of medium- size scooter.

Second, about the supply side exogenous variables, the coefficients of MWAGE
and TREND (�̂t t = 1,2,. . .,144, calculated by equation (15) at last iteration), are
shown in Figure 3.

Figure 3 shows that the coefficients of the MWAGE increase and then decrease
whereas the coefficients of TREND increase. The coefficients of constant term Ĉt

in demand equation and D̂t in supply equation, t = 1,2,. . .,144, are shown in Figure
4.

Having calculated the estimates of transition equation residuals (Vt) and output
equation residuals (Wt), one should test that whether these residuals are normally
distributed. W1;t and W2t are tested to see whether they are normally distributed.
Figure 5 shows the residuals, W1;t, W2;t of output equation (10). Note that W1;t

and W2;t are within the range of �0.6 and 0.6.
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Figure 3. The coefficients of MWAGE and REND, Bt, in supply function at last iteration.
January 1987–December 1992.

Figure 4. The coefficients Ct, Dt of constant terms in Demand and Supply functions at last
iteration. Jan. 1987-Dec. 1992
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Figure 5. The residuals in the output equations at last iteration. Jan. 1987-Dec. 1992

Through the quantile-quantile plot and Bowman and Shenton’s (1975) test for
normality, one can evaluate the residuals of the Qt and Pt to see whether they are
normally distributed. Figure 6 shows the characteristics of residual W1;t.

The picture at upper left of Figure 6 is the histogram. The density function by
using bandwidth is shown at lower left. The box plot is shown at upper right. At
the lower right of Figures 6 is the quantile- quantile plot with normal quantile.

Bowman and Shenton (1975) proposed an alternative test for normality. Letp
�1 = �3=�

3=2
2 and �2 = �4=�

2
2 �r (r=2,3,4) where is the rth moment about the

mean. For the normal distribution �1=0 (since the distribution is symmetric) and
�2=3. The estimates of �1 and �2, say, �1 and �2, are obtained by replacing the �’s
with their sample estimates and are defined as

�̂r =
1
n
�n
t=1W

r
1;t (r = 2; 3; 4: n is the number of observations).

Therefore, test for normality is then a test of the null hypothesis

H0 : �1 = 0 and �2 = 3:

We may use the following test statistic which, under the null hypothesis, has a
chi-square distribution with two degrees of freedom (Bowman, 1975).

n[b1=6 + (b2 � 3)2=24] � �2(2) n is the number of observations.

The test statistics for W1;t and W2;t are the values of 0.3253499 and 0.9062722
respectively, the p values are 0.8498674 and 0.6356316> 0.05. If we were willing
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Figure 6. Histogram, box plot, density plot and quantile quantile plot of the residual W1;t.
The picture at upper left is the histogram that expresses the frequency of the residuals. The
picture at lower left is the density function by using bandwidth that expresses the distribution
of the residuals. The picture at upper right is the box plot that expresses mode and mean of the
residuals. It shows a little skewed toward right. The one at lower right is the well-known Q-Q
plot with normal quantile that expresses the residuals meet the normal distribution.

to use the asymptotic test procedure, we would not reject the hypothesis of normality
at the 5% level.

4. Conclusions

We successfully applied the Kalman filter method to estimate the coefficients of
simultaneous equations with overidentifying rank restrictions. The recursive EM
algorithm shows that the estimation of likelihood is non-decreasing and model
parameters (�, �, R, S) are convergent. The method dynamically adjusts the
exogenous variables coefficients of structure form to estimate the supply-demand
equations. In other words, this method indicates how the exogenous variables affect
the endogenous variables (price and quantity) in the market over time.

The coefficients of the endogenous variables were assumed as constant in this
research. To relax this assumption, the Kalman covariance transition equation can
be revised. The relaxation of this assumption deserves further researches.
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Appendix A: Finding the Estimator of Parameters that Used in Kalman
Filter Procedure

By adding the � into the Shumway and Stoffer’s (1982) smoothing theory, the log
likely function can be expressed as follows:

G(�;�;�; S; R;�) = �
1
2

ln j�j �
1
2
tr
�
��1(P0jn(X0 � �)(X0 � �)

T )
	

�
n

2
ln jSj �

1
2
tr
�
S
�1(E �H�T � �HT +�M�T )

	
�
n

2
ln jRj �

1
2
tr
�
R
�1�n

t=1

�
(Yt �	�Xt)

T (Yt �	�Xt)
�	
;

where the conditional mean

Xtjn = E(XtjY1; Y2; . . . ; Yn)

and covariance functions

Ptjn = cov(XtjY1; Y2; . . . ; Yn)

and

Pt;t�1jn = cov(Xt;Xt�1jY1; Y2; . . . ; Yn):

From Shumway and Stoffer’s (1982) smoothing theory, M , H , E, �, �, R are
defined as follows:

M = �n
t=1(Pt�1jn +Xt�1jn(Xt�1jn)

T )

H = �n
t=1(Pt;t�1jn +Xtjn(Xt�1jn)

T )

E = �n
t=1(Ptjn +Xtjn(Xtjn)

T )

�(r + 1) = HM�1

S(r + 1) = n�1(E �HM�1HT )

R(r + 1) = n�1�n
t=1

h
(Tt ��t	tXt)(Yt ��	tXt)

T +�t	tPtjn	
T
t �

T
t

i
:
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This research defines a parameter Q(r+1) as follows:

�(r + 1) =

2
66666664

0 ID � �1(r + 1) 0 0
Is 0 0 0
0 0 Ic 0
0 ID 0 0
Is � �2(r + 1) 0 0 0
0 0 0 Ic

3
77777775
;

where

�1(r + 1) = n�1�n
t=1

"
Qt � US;t�2;t � UC;t�3;t

UD;t�4;t

#
:

�2(r + 1) = n�1�n
t=1

"
Pt � UD;t�4;t � UC;t�6;t

US;t�2;t

#
:

Appendix B: The Relationship Between the Exogenous Variables,
Coefficients and �

Yt = 	t�Xt +Wt, is the short form of�
Qt

Pt

�
=

�
UD;t US;t UC;t 0 0 0
0 0 0 UD;t US;t UC;t

�
2
66666664

0 ID � �1 0 0
Is 0 0 0
0 0 Ic 0
0 ID 0 0
Is � �2 0 0 0
0 0 0 IC

3
77777775

2
664
�2;t

�4;t

�3;t

�6;t

3
775+

�
W1;t

W2;t

�
:

To evaluate the �1 and �2, the matrix form can be rewritten as:

Qt = �1�4;tUD;t +�2;tUS;t +�3;tUC;t +W1;t

Pt = �2�2;tUS;t +�4;tUD;t +�6;tUC;t +W2;t:

as E(W1;t) = 0 and E(W2;t) = 0, the estimates of �1 and �2 are

�̂1 = n�1�n
t=1

"
Qt � US;t�2;t � UC;t�3;t

UD;t�4;t

#
:

�̂2 = n�1�n
t=1

"
Pt � UD;t�4;t � UC;t�6;t

US;t�2;t

#
:

Appendix C: A Revised Shumway EM Algorithm by Adding �

X denotes state vector
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Y denotes observed output
�0 �� are defined in equation (12)
Given: �(0), S(0), R(0), �(0), �0, Yi, i = 1,. . . n.
Find: max Er(logLjYi), Xi(r)| i = 1,. . .,n.
Note: Pt;t�1 is the covariance matrix of Xt, Xt�1.

Qt is the covariance of Vt.
Rt is the covariance of Wt.

Step 1: Forward recursions. Do the following for t = 1,2,. . .n

f
1: Pt;t�1 = �t�1Pt�1;t�1�

T
t�1 + St�1

2:Xt;t = Xt;t�1 +Gt(Yt ��t	tXt;t�1

3: Gt = Pt;t�1	
T
t �

T
t (�t	tPt;t�1	

T
t �

T
t +Rt)

�1

4: Pt;t = (I �Gt�at	t)Pt;t�1

g

Step 2: Backward recursions.
Do the following for t = n, n–1,. . .,1

f
1: Jt�1 = Pt�1jt�1�

T
t (Ptjt�1)

�1

2:Xt�1jn = Xt�1jt�1 + Jt�1(Xtjn � �tXt�1jt�1)

3: Pt�1jn = Pt�1jt�1 + Jt�1(Ptjn � Ptjt�1)J
T
t�1

4: Pn;n�1jn = (I ��t	t)�nPn�1jn�1

g

Step 3: Compute Er(logLjYi).
Step 4: Compute parameters �(r + 1); S(r + 1); R(r + 1);�(r + 1) (for next

time).
Step 5: If Er converges then exit else goto step 1 (forward recursion).
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