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Brief Papers 
Active Noise Cancellation in Ducts Using Internal 

Model-Based Control Algorithms 
Jwu-Sheng Hu 

Abstract-A feedback control algorithm based on the internal 
model principle is proposed to solve the active noise control 
(ANC) problem in ducts. Because of its infinite open-loop gain 
at selected frequencies, the controller is able, at the cancellation 
speaker position, to block noise transmission of these frequencies. 
In other words, the speaker acts like a totally reflective boundary. 
Stability analysis of the closed-loop system is performed using the 
Nyquist criterion. Experimental results confirm the theoretical 
analysis, showing an average noise level reduction of 30 to 40 dB 
at the target frequencies. 

I. INTRODUCTION 

CTIVE noise control (ANC) uses the principle of super- A imposing sound wave to cancel unwanted noises. This 
technique has received much attention during the last decade 
because of recent advances in electronics and microprocessors 
[8], [14]. Various studies on fan noise, exhaust noise, and 
motor noise [5], [15] show great potential in applying ANC to 
noise control problems. An effective ANC system requires an 
efficient control algorithm. Controller design based on modern 
control theories [3], [ 1 11 and signal processing techniques such 
as the FIR (finite impulse response) filter, the IIR (infinite 
impulse response) filter [5], [19], adaptive filters 1131, and 
ARMAX models [16] were studied. Due to the complex 
dynamics of sound, however, both the model-based and black- 
box types of controller design face the problems of closed-loop 
stability and performance evaluation. 

This paper presents novel application of the internal model 
principle [7] to ANC. The internal model principle is a useful 
tool for disturbance rejection in feedback system design. One 
example is the so-called “repetitive controller” [9], [17]. In 
active noise control literature, a concept related to the internal 
model principle is the acoustical virtual earth [l], [18]. They 
found out that the pressure amplitude at the microphone can 
be greatly reduced if the open-loop gain is high. Moreover, 
as started by Trinder and Nelson [18]: The acoustical virtual 
earth thus behaves like a perfectly reflecting open-ended duct 
termination situated by y;. 

Here the y: is the location of the actuator. In other words, 
the noise will be totally reflected upstream if a pressure null 
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is created at the actuator’s location. As will be shown later, 
an internal model-based controller, which has infinite open- 
loop gain at the target frequencies, can completely block noise 
transmission at those frequencies. 

The stability of the closed-loop system is analyzed by using 
the Nyquist criterion. Since the internal model-based controller 
has unstable poles on the stability boundaries, the control gain 
must be carefully selected to avoid instability. Experimental 
results demonstrate the proposed controller’s effectiveness. An 
average reduction of 30 to 40 dB at target frequencies can be 
easily achieved. 

As compared with feedforward control methods commonly 
used in ANC (for example, [4] and [6]), the internal model- 
based control law does not need to measure the noise signal, 
i.e., only a feedback sensor is required. Consequently, the 
acoustic feedback problem [6] encountered in a feedforward 
sensor is avoided. The proposed control law, however, can 
only deal with narrow-band noise since the signal model 
(rational transfer function) of a broad-band noise does not 
exist. Moreover, the success of this control law depends on 
an accurate internal model of the noise (e.g., frequency). For 
applications such as the motor noise control, it is possible to 
synchronize the control law with the motor speed (e.g., using 
encoders to trigger the controller) to accurately pinpoint the 
noise frequency. 

11. CLOSED-FORM TRANSFER FUNCTION 
MODEL OF A DUCT 

The one-dimensional dynamic equation of sound in a hard- 
walled duct can be described as in [2]  and [121 

where L ,  r ,  e,  L G ,  p ,  and q are defined in the nomenclature 
section. The sound sources discussed in this paper are either 
force per unit mass or volume velocity source (such as a 
dipole). For a point dipole source located at x = a, (1) 
becomes 

L2 dp2 &l 3 = - - + pL - { - [.(t)]6(x - a ) }  (2)  8x2 e2 at2 ax at 

with 
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Feedback Microphone The duct's boundary conditions are described by the Noisesource 
impedance function [2], (Pierce, 1981), i.e., at x = 0 

x==a x=l 

and at x = 1 

Fig. 1. Schematic diagram of a finite-length duct. 

where zz's are specific acoustic impedance. From the first- 
order approximation of the force balance relation 

d X  
The boundary conditions can be transformed into 

(3) Fig. 2. Block diagram of the control system. C 5-1 P(1, s) = - z1(s) ~ 

Ls ax ' 

Unlike the discretization methods (e.g., Galerkin's method or 
modal reduction), (5) gives an exact description of the system's 
dynamic including the system's zeros. A detailed analysis of 
the transfer function can be found in [lo]. 

111. THE INTERNAL MODEL-BASED CONTROLLER 

Consider a noise source injected into the duct at x = d 
and a cancellation speaker placed at x = a (Fig. 1). Let the 
microphone's position be x. The block diagram of the control 
system in Fig. 1 can be shown as Fig. 2 where the transfer 
functions are derived as 

From the distribution theory, (4) can be reduced to where 

and C(s ) ,  F,(s), and F,(s) are the controller, input low- 
pass filter, and smoothing filter, respectively. If C(s) is 
implemented by a digital computer, F,(s) also serves as the 
antialias filter. It is assumed that both boundaries of the duct 
are passive. As a result, all the poles of (6) and (7) are on the 
left hand of the complex plane except possibly at s = 0 [lo]. 
This particular pole corresponds to the rigid-body mode of the 
system and will be discussed later. If the noise N ( s )  is a pure 
tone sound at frequency w,, the internal model principle [9] 
suggests that the noise's dynamic be placed in the feedback 
loop. Therefore, controller C ( s )  has the following form: 
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where y(s) is an additional filter used to achieve closed-loop 
stability. To apply this controller, it is necessary that both 
G,(z; s) and GN(IC ,  s) do not vanish at s = j w n .  This 
is usually achieved by carefully placing the microphone so 
that the transmission zeros of both the noise and cancellation 
sources are not located at or near s = j w n  [lo]. To analyze 
the effect of the internal model (8), first observe the following 
equality derived from (6) and (7): 

The second terms on the right side of (12) and (13) represent 
the effect of noise without active cancellation while the first 
term depict the energy reflected due to cancellation. 

To cancel noise with multiple tones, the controller (8) can 
be extended as 

m 

(14) 
Pn 

n=l  

GP(Y, j W ) G N ( Z ,  j w )  = G P ( ~ ,  j W ) G N ( Y ,  j w )  (9) The effect of applying (14) to the duct system is essentially 
the same as indicated in the previous analysis at a single 
frequency. It is also possible to write the controller in a serial 
form, i.e., 

where 1 2 2 a. The closed-loop response of the duct at is 

m 

The parallel structure of (14), however, allows a parallel 
hardware implementation of the controller. Besides, it is easy 
to determine the stability condition by using (14). This is the 
subject of the next section. 

Since C ( j w n )  --f 00 (9), the pressure response at wn becomes 

'(Y, j w n >  = -Gp(Y , j W n ) G N ( Z ,  j w n ) N ( j w n )  
Gp(x, jwn> 

Equation (1 1) means that by using an internal model-based 
controller, the noise at the segment of the duct, (1 _> y 2 a), 
will be completely canceled. Hence, a pressure null (zero 
pressure) is created at the cancellation source. This result 
matches the concept of acoustic virtual earth raised by Trinder 
and Nelson [18]. In fact, the internal model creates a totally re- 
flective boundary so that the noise is driven upstream (between 
zero and a). The residual pressure response at y,  a 2 2 0, 
is for a 2 . 1 ~  2 d 

f o r d ?  y 2 0  

IV. STABILITY CONDITIONS 

A. Continuous-Time Control System 

Although the internal model-based controller (15) offers 
good performance in canceling noise at designated frequencies, 
it is, however, an unstable filter. Care must be exercised 
regarding the stability of the closed-loop system. The closed 
loop characteristic equation of the system is (10) 

The Nyquist criterion makes it quite easy to determine the 
gains pi to guarantee stability. The following theorem states 
the condition: 

Stability Condition I: All the roots of (16) are on the open 
left side of the complex plane if 

and 
where 

G,"(Ic, s) = 

and 
G ~ ( z ,  s) = 

where 
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Equations (17b) and (17c) are closely related to the closed- 
loop roots on the imaginary axis. Notice that the set of gains 
which result in purely imaginary roots (hjn) satisfy 

One of the important features of this condition is the way it 
allows the design of pz’s  from experimental data, e.g., spec- 
trum. For a finite dimensional system (or lumped parameter 
system), the number of frequency points in set K (17c) is 
finite. An infinite dimensional system like the duct, however, 
may have an infinite number of points in K .  Solving an infinite 
number of inequalities (17b) is not a practical approach. To 
resolve this problem, the conditions in (17) are replaced by 
sufficient ones. Since most of the cancellations occur in the 
low-frequency range, it is possible to find an upper bound of 
R = Ru such that w, < R, for every n. Therefore, sufficient 
conditions to guarantee stability can be derived as follows. 

Stability Condition 2: All the roots of (16) are on the open 
left-hand side of the complex plane if 

forn = 1 N m 

and 

where 

Only a finite number of inequalities has to be checked [(18b) 
and (18c)l. 

B. Discrete-Time Control System 

To implement noise cancellation using DSP’s (digital signal 
processors), it is necessary to formulate the problem in the 
digital domain. The discrete internal model-based controller 
can be written as 

m 

1 -- I 

speaker 

T-- microphone 

Fig. 3. 
Time domain noise signal. (b) Noise spectrum. 

Experimental setup (DSP: TMS320C30 Digital Signal Processor). (a) 

TABLE I 
DISCRETE-TIME TRANSFER FUNCTION OF THE DUCT (SAMPLING RATE = 10 IcHz) 

POLE 

0 

0 

0.1223 f j 0.1089 

-0.0951 * j  0.4695 

0.7358 + j  0.0592 

0.7816 i j0 .1767  

0.8797 + j 0.2753 

0.8921 ij 0.4152 

0.9380 +j  0.2972 

0.9840 * j  0.0116 

0.9900 i j 0.0575 

0.9888 + j 0.0984 

0.9308 i j  0.3492 

0.9067 k j  0.4086 

0.9864 + j  0.1276 

0.9760 fj 0.1921 

0.9405 i j  0.3240 

0.9822 + j  0.1604 

0.9323 & j 0.2896 

0.9620 + j  0.2561 

0.9704 & j 0.2265 

__p_ 
ZERO 

5 5813 +J 15 7893 

-3 8907 fj 1 0843 

-1 2527 

-0 5852 

-0 3005 

- 0 0 8 3 8 + ~ 0 0 1 1 8  

0 0 0 4 1 ~ ~ 0 0 1 6 6  

0 9072 i j 0 4042 

0 9 8 2 8 + ~ 0 3 7 4 2  

0 9013 + j  0 3532 

0 9 4 3 7 + ~ 0 3 1 3 1  

0 9 1 1 0 + ~ 0 3 0 0 2  

10178 +J 0 2575 

0 9235 +J 0 2380 

0 9 7 6 1 k j 0 2 3 2 2  

10418 fj 0 1336 

0 9326 &J 0 1366 

0 9825 +J 0 1473 

0 9826 F J 0 0706 

10262 

10165 

I GAIN = 4.4082e-11 

where T is the sampling time and 2-l is the back shift 
operator. Defining the digital plant as 

Gd (2 - ) = .{ F z  (3)  Gp (s)Fo (3)) 

where z{ .} denotes the z-transform, the closed-loop charac- 
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(b) 
Fig. 4. Unattenuated noise measured by the feedback microphone (microphone calibration: 13.5 PASCAL/mVolt). 

teristic equation is Stability Condition 4: All the roots of (20) are inside the 
unit circle if 

m 

1 + G ~ ( z - ' ) ~ ( z - ' )  

Pn 

,unxIm {Gd(e-Jwn')r(e-JwnT)} > 0 ,  
n=l 

forn = 1 - m (224 
= 0. (20) 

One can derive stability conditions similar to the ones in the 
preceding section. 

Stability Condition 3: All the roots of (20) are inside the 
unit circle if 

1 - 2 COS ( jw,T)z- l  + 2 - 2  

Re {y(e-""T)Gd(e-3nT)e3'T} 

> -1 (22b) 1 Pn 
x { 2 (wn - 0)T sin ( W n  + R)T 

n=l 4 sin 
2 2 

,unxIm {Gd(e-""nT)y(e-3"-T)> > 0 ,  and 
(214 (wn - RuT sin (wn + Ru)T forn = 1 - m 

1 (22c) 
2 2 

1 sin 4 
m sup (Gd(e-3wT)y(e--3WT)I lbnl - 

w2nu 
Re { y (e--3 O T )  Gd ( e -JRT)eJGT)  

> - 1 (2 1 b) where 

R E K = {wI Im {y(e-~wT)Gd(e-"T)(e"WT)} = 0, 

CLn 

sin 
2 2 

w < nu}. 
where 

a E K = { Im {~(~-""T>G~(~-"T>.""T) = 0, V. SELECTION OF CONTROLLER PARAMETERS 

The closed-form transfer function formulation in Section I1 
explains the effect of an internal model-based control sys- 
tem. It is difficult, however, to obtain a closed-form transfer 
function in real practice. As a result, a reduced-order model 
is usually used for control system synthesis. While many 

7r 

w 5 T). (21c) 

By selecting an upper bound flu < n/T, the following 
sufficient condition can also be derived. 
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Fig. 5. Attenuated noise (reduction level. 37 89 dB at 100 Hz, 42 9 dB at 200 Hz, and 31 86 dB at 300 Hz). 

controller design methods are available, this paper presents 
a simple way to determine the controller’s parameters. Most 
important, the controller complexity is restricted to reduce the 
computation time. Since the controller will be implemented in 
discrete time, only the discrete-form design is presented. 

As shown in the preceding section, the sign of the control 
gain of each internal model depends on the phase of the 
plant at that frequency. If the plant’s phases are close to zero 
or 7r at those frequencies, only small phase variation of the 
plant can be tolerated. To increase the phase margin, the filter 
~ ( z - l )  is designed so that the phases of the open-loop system 
(without internal models) are either 7r /2  or -7r/2; this results 
in phase requirements of ~ ( 2 - l ) .  To completely determine the 
parameters on ~ ( z - ’ ) ,  additional constraints are needed. One 
of the choices is to minimize the gain of ~ ( 2 - l )  (or H, norm) 
for better robustness properties. In other words, the following 
optimization problem can be formulated: 

Cost function: 

Constraints: 

In this paper, the structure of g(2-l) was determined in 
advance to simplify computation. This point will be further 
illustrated in the experiment. 

The control gain p,’s have a direct effect on the system’s 
performance. In active noise cancellation, a fast system re- 

I I 

-1 5 1 
0 01 0 02 0 03 0 04 0 05 

time (second) 

Fig. 6.  
open end; solid line: active control off; dashed line: active control on). 

Sound pressure measured at a downstream position (1.2 m from the 

sponse is important, especially when the noise characteristic 
(such as magnitude or phase) changes in time. To achieve 
this, the magnitude of closed-loop poles must be as small as 
possible. Let the closed-loop poles be A,, i = 1 N N ,  where 
N is the order of the closed-loop system, and the following 
optimization problem is proposed: 

Cost Function: 

min max 
pn i = l ~ N  

(24) 

Constraints: (22a)-(22d). 
Both the problems in (23) and (24) can be solved numeri- 

cally once a reduced-order plant is identified. 
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bignals measured at an upstream position (1 m from the cancellation speaker: solid line: active control off, dashed line: 

VI. EXPERIMENTAL RESULTS 
An experimental model was built to verify the proposed the- 

ory. Fig. 3 shows the schematic diagram of the experimental 
setup. The circular duct is made of PVC material 3.13 m long 
and 0.2 m in diameter. A TMS320C30 floating point digital 
signal processor hosted by a PC-AT is used to perform the 
computation as well as data acquisition. The antialias filter 
is a fourth-order Butterworth filter with a cutoff frequency of 
3000 Hz. The cutoff frequency for the first mode of the duct 
is approximately 850 Hz. The cancellation speaker is placed 
2.0 m and the microphone is placed 0.18 m from the open 
end of the duct. Another speaker is mounted at the other end 
to generate noise. Since our primary concern is low-frequency 
noise, the cutoff frequency of the smoothing filter (sixth-order 
Butterworth) is selected to be 500 Hz. 

At a sampling rate of 10 kHz, the plants are identified as 

F,(z-’) = (0.1932-1 + 0 . 6 6 3 ~ - ~  

+ 0 . 2 4 5 ~ ~ ~  + 0.0092f4) /  

(1 - 0.0542-1 + 0 . 2 1 ~ - ~  
- 0 . 0 5 1 ~ - ~  + 0.0062~-~ ) ,  

+ 2 8 3 . 8 2 ~ - ~  + 5 2 . 5 ~ - ~  + 0 .903~-~ ) ] /  
[I - 5.852-1 +- 14.26z-’ - 1 8 . 5 6 ~ ~ ~  
+ 1 3 . 6 ~ ~ ~  - 5 . 3 2 ~ ~ ~  + 0.87.#] 

FO(zp1) = [2.12 x 10-ll(z-l + 5 5 . 8 2 ~ ~ ~  + 2 8 9 . 6 8 ~ ~ ~  

and the duct’s transfer function is shown in Table I. 
Three tonal noises are generated to demonstrate the con- 

trol system (100, 200, and 300 Hz). According to (19), the 

controller can be written as 

(1 - 1 . 9 9 6 L  + 2 - 2  
C(z-1) = r(z-1) 

cL2 

+ 1 - 1.98422-1 + 2 - 2  

+ 1 - 1 . 9 6 4 6 ~ ~  + x P 2  
cL3 

A simple choice of y(z-’) uses the FIR filter. The order of 
the filter is selected to be four. Solving (23), we obtain 

r(2-l) = 1 - 2.56182-1 + 1 . 4 5 0 4 ~ - ~  
+ 0 . 8 1 3 4 ~ - ~  - 0 . 7 6 0 1 ~ - ~  

and the resulting maximum gain is 4.9661. To solve the control 
gain p,’s, the constraints in (23) are calculated by selecting R, 
to be 600 Hz. One can choose a lower frequency to reduce the 
number of constraints, but it will result in a more conservative 
solution. The resulting control gains are computed as 

pi =0.1030, 
~2 =0.2624, 

p3 =0.1309 

and the maximum spectral radius of the closed-loop system 
is 0.9981. 

The noise generated by the speaker (measured at the feed- 
back microphone) is plotted in Fig. 4. Convergence of the 
error signal after ANC is plotted in Fig. 5(a). Although it 
takes about 4000 steps (0.4 s) to totally reduce the noise, 
laboratory experience shows that the response seems, to the 
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human ear, almost instant. From the spectrum [Figs. 4(b) and 
5(b)], the controller is able to reduce the noise level by 38 dB 
at 100 Hz, 43 dB at 200 Hz, and 32 dB at 300 Hz. To verify 
that the noise is blocked at the cancellation speaker location, 
sound measurements are taken at other downstream points of 
the duct. Fig. 6 depicts the pressure level of sound measured 
1.2 m from the open end. Since the feedback microphone is 
not placed at this position, a small sound level still exists 
after the controller is turned on. The significant reduction in 
sound, however, justifies the theory presented in Section 111. 
To verify the upstream reflection of noise, sound measurement 
is taken at an upstream position [Fig. 7(a)]. The increased 
sound energy level can be seen by comparing the spectrum 
shown in Fig. 7(b). An average increase of 6 dB reveals that 
the sound energy is approximately doubled. 

VII. CONCLUSION 

An internal model-based controller is proposed for active 
noise cancellation in ducts. It is shown that the controller can 
reduce the noise level by 30-40 dB at the downstream portions 
of the duct. Moreover, both theoretical and experimental 
results agree that the noise is driven to the upstream portion of 
the duct. While many ANC designs are based on feedfonvard 
types of algorithms, this paper shows that for noises with 
simple intemal models, it is possible to perform cancellation by 
a pure feedback configuration. Applications of the controller 
to branched-duct systems as well as theoretical studies on 
convergent rates will be investigated in future research. 
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